Preserving Privacy and Social Influence

Isabelle Stanton

Social Network Privacy

- Bakstrom, Dwork and Kleinberg show removing names isn’t enough
- Present passive, semi-active and active attacks against social networking graphs

Economic Motivation

- Wants to sell ads
- Viral Marketing needs social graph

Goal of the Project

- Develop a perturbation scheme that preserves privacy of individuals while also approximately preserving their influence

Influence

- Modeled as a weighted graph $G=(V,E)$, where $p_{u,v}$ is the probability that u influences v.
- $p_{u,v} \geq 0$
- For each v, sum of incoming probabilities at most 1.
 - For each v, $\sum_{u} p_{u,v} \leq 1$
- Influence of a node: Expected number of active nodes
Obtaining the (Indirect) Influence Graph

- Ask each user to rate how their friends influence them.
- Put into a matrix A
- A^2 is how a node indirectly influences its' friends' friends.
- Corresponds to a Markov Process
- $I = \Sigma A^k$

Privacy Definitions

- Def 1: If an attacker knows all the values in the original I except u then:
 \[1 - \epsilon < \frac{\text{Pr}(\text{state}(x, y) \mid I)}{\text{Pr}(\text{state}(x, y) \mid I^\prime)} < 1 + \epsilon \]
- Def 2: Given a perturbed version of I, I^\prime, and an edge u, the weight of u shouldn't affect I^\prime much:
 \[1 - \epsilon < \frac{\text{Pr}(I^\prime \text{state}(x, y))}{\text{Pr}(I^\prime \text{state}(x, y))} < 1 + \epsilon \]

Perturbation ideas

- Randomly select a value within $[0, 1]$ for each edge weight, then normalize
 - Preserves privacy but is obviously useless for preserving influence
- Randomly select a value in $[1-\epsilon, 1+\epsilon]$ for each edge and multiply.
 - Influence for each node is within $(1+\epsilon)^n$ but privacy is not preserved by any definition

My Idea

- The Influence graph is calculated as a Markov process
- A small change initially will result in a large change in the end
- Perturb the original graph instead of the end product

Original Graph Perturbation

- Nodes in clusters have approximately equal influence
- Cluster the graph
- For each inter-cluster edge, select new nodes in the cluster to assign the edge to
- Add and remove some small fraction of inter-cluster edges

No proofs today
Any suggestions?