
10
Objects

It was amazing to me, and it is still amazing, that people could not imagine what the
psychological difference would be to have an interactive terminal. You can talk about it on a

blackboard until you are blue in the face, and people would say, “Oh, yes, but why do you need
that?”. . . We used to try to think of all these analogies, like describing it in terms of the

difference between mailing a letter to your mother and getting on the telephone. To this day I
can still remember people only realizing when they saw a real demo, say, “Hey, it talks back.

Wow! You just type that and you got an answer.”
Fernando Corbató (who worked on Whirlwind in the 1950s)

Charles Babbage Institute interview, 1989

So far, we have seen two main approaches for solving problems:

Functional programming
Break a problem into a group of simpler procedures that can be composed
to solve the problem (introduced in Chapter 4).

Data-centric programming
Model the data the problem involves, and develop procedures to manip-
ulate that data (introduced in Chapter 5, and extended to imperative pro-
gramming with mutation in the previous chapter).

All computational problems involve both data and procedures. All procedures
act on some form of data; without data they can have no meaningful inputs and
outputs. Any data-focused design must involve some procedures to perform
computations using that data.

This chapter introduces a new problem-solving approach known as object-ori-
ented programming . By packaging procedures and data together, object-orien- object-oriented

programmingted programming overcomes a weakness of both previous approaches: the data
and the procedures that manipulate it are separate.

Unlike many programming languages, Scheme does not provide special built-
in support for objects.1 We build an object system ourselves, taking advantage
of the stateful evaluation rules. By building an object system from simple com-
ponents, we provide a clearer and deeper understanding of how object systems
work. In Chapter 11, we see how Python provides language support for object-
oriented programming.

The next section introduces techniques for programming with objects that com-
bine state with procedures that manipulate that state. Section 10.2 describes

1This refers to the standard Scheme language, not the many extended Scheme languages pro-
vided by DrScheme. The MzScheme language does provide additional constructs for supporting
objects, but we do not cover them in this book.

196 10.1. Packaging Procedures and State

inheritance, a powerful technique for programming with objects by implement-inheritance

ing new objects that add or modify the behaviors of previously implemented
objects. Section 10.3 provides some historical background on the development
of object-oriented programming.

10.1 Packaging Procedures and State
Recall our counter from Example 9.1:

(define (update-counter!) (set! counter (+ counter 1)) counter)

Every time an application of update-counter! is evaluated, we expect to obtain a
value one larger than the previous application. This only works, however, if there
are no other evaluations that modify the counter variable. Hence, we can only
have one counter: there is only one counter place in the global environment.
If we want to have a second counter, we would need to define a new variable
(such as counter2, and implement a new procedure, update-counter2! , that is
identical to update-counter! , but manipulates counter2 instead. For each new
counter, we would need a new variable and a new procedure.

10.1.1 Encapsulation
It would be more useful to package the counter variable with the procedure that
manipulates it. Then we could create as many counters as we want, each with
its own counter variable to manipulate.

The Stateful Application Rule (from Section 9.2.2) suggests a way to do this: eval-
uating an application creates a new environment, so a counter variable defined
an the application environment is only visible through body of the created pro-
cedure.

The make-counter procedure creates a counter object that packages the count
variable with the procedure that increases its value:

(define (make-counter)
((lambda (count)

(lambda () (set! count (+ 1 count)) count))
0))

Each application of make-counter produces a new object that is a procedure
with its own associated count variable. Protecting state so it can only be manip-
ulated in controlled ways is known as encapsulation.encapsulation

The count place is encapsulated within the counter object. Whereas the previ-
ous counter used the global environment to store the counter in a way that could
be manipulated by other expressions, this version encapsulates the counter vari-
able so the only way to manipulate the counter value is through the counter ob-
ject.

An equivalent make-counter definition uses a let expression to make the initial-
ization of the count variable clearer:

(define (make-counter)
(let ((count 0))

(lambda () (set! count (+ 1 count)) count)))

Chapter 10. Objects 197

Figure 10.1 depicts the environment after creating two counter objects and ap-
plying one of them.

Figure 10.1. Environment produced by evaluating:
(define counter1 (make-counter))
(define counter2 (make-counter))
(counter1)

10.1.2 Messages
The object produced by make-counter is limited to only one behavior: every
time it is applied the associated count variable is increased by one and the new
value is output. To produce more useful objects, we need a way to combine state
with multiple behaviors.

For example, we might want a counter that can also return the current count
and reset the count. We do this by adding a message parameter to the procedure
produced by make-counter :

(define (make-counter)
(let ((count 0))

(lambda (message)
(if (eq? message ’get-count) count

(if (eq? message ’reset!) (set! count 0)
(if (eq? message ’next!) (set! count (+ 1 count))

(error "Unrecognized message")))))))

Like the earlier make-counter , this procedure produces a procedure with an en-
vironment containing a frame with a place named count . The produced proce-
dure takes a message parameter and selects different behavior depending on the
input message.

The message parameter is a Symbol. A Symbol is a sequence of characters pre-
ceded by a quote character such as ’next!. Two Symbols are equal, as determined
by the eq? procedure, if their sequences of characters are identical. The running
time of the eq? procedure on symbol type inputs is constant; it does not increase
with the length of the symbols since the symbols can be represented internally
as small numbers and compared quickly using number equality. This makes

198 10.1. Packaging Procedures and State

symbols a more efficient way of selecting object behaviors than Strings, and a
more memorable way to select behaviors than using Numbers.

Here are some sample interactions using the counter object:

> (define counter (make-counter))
> (counter ’next!)
> (counter ’get-count)
1

> (counter ’previous!)
Unrecognized message

Conditional expressions. For objects with many behaviors, the nested if ex-
pressions can get quite cumbersome. Scheme provides a compact conditional
expression for combining many if expressions into one smaller expression:

Expression ::⇒ CondExpression
CondExpression::⇒ (cond CondClauseList)
CondClauseList ::⇒ CondClause CondClauseList
CondClauseList ::⇒ ε

CondClause ::⇒ (Expressionpredicate Expressionconsequent)

The evaluation rule for a conditional expression can be defined as a transforma-
tion into an if expression:

Evaluation Rule 9: Conditional. The conditional expression (cond)
has no value. All other conditional expressions are of the form (cond
(Expressionp1 Expressionc1) Rest) where Rest is a list of conditional
clauses. The value of such a conditional expression is the value of the
if expression:

(if Expressionp1 Expressionc1 (cond Rest))

This evaluation rule is recursive since the transformed expression still includes a
conditional expression, but uses the empty conditional with no value as its base
case.

The conditional expression can be used to define make-counter more clearly
than the nested if expressions:

(define (make-counter)
(let ((count 0))

(lambda (message)
(cond ((eq? message ’get-count) count)

((eq? message ’reset!) (set! count 0))
((eq? message ’next!) (set! count (+ 1 count)))
(true (error "Unrecognized message"))))))

For linguistic convenience, Scheme provides a special syntax else for use in con-
ditional expressions. When used as the predicate in the last conditional clause
it means the same thing as true. So, we could write the last clause equivalently
as (else (error "Unrecognized message")).

Sending messages. A more natural way to interact with objects is to define
a generic procedure that takes an object and a message as its parameters, and
send the message to the object.

Chapter 10. Objects 199

The ask procedure is a simple procedure that does this:

(define (ask object message) (object message))

It applies the object input to the message input. So, (ask counter ’next!) is equiv-
alent to (counter ’next!), but looks more like passing a message to an object than
applying a procedure. Later, we will develop more complex versions of the ask
procedure to provide a more powerful object model.

Messages with parameters. Sometimes it is useful to have behaviors that take
additional parameters. For example, we may want to support a message adjust!
that increases the counter value by an input value.

To support such behaviors, we generalize the behaviors so that the result of ap-
plying the message dispatching procedure is itself a procedure. The procedures
for reset! , next! , and get-count take no parameters; the procedure for adjust!
takes one parameter.

(define (make-adjustable-counter)
(let ((count 0))

(lambda (message)
(cond ((eq? message ’get-count) (lambda () count))

((eq? message ’reset!) (lambda () (set! count 0)))
((eq? message ’next!) (lambda () (set! count (+ 1 count))))
((eq? message ’adjust!)
(lambda (val) (set! count (+ count val))))

(else (error "Unrecognized message"))))))

We also need to also change the ask procedure to pass in the extra arguments.
So far, all the procedures we have defined take a fixed number of operands. To
allow ask to work for procedures that take a variable number of arguments, we
use a special definition construct:

Definition ::⇒ (define (Name Parameters . NameRest) Expression)

The name following the dot is bound to all the remaining operands combined
into a list. This means the defined procedure can be applied to n or more operands
where n is the number of names in Parameters. If there are only n operand ex-
pressions, the value bound to NameRest is null. If there are n + k operand expres-
sions, the value bound to NameRest is a list containing the values of the last k
operand expressions.

To apply the procedure we use the built-in apply procedure which takes two
inputs, a Procedure and a List. It applies the procedure to the values in the list,
extracting them from the list as each operand in order.

(define (ask object message . args)
(apply (object message) args))

We can use the new ask procedure with two or more parameters to invoke meth-
ods with any number of arguments (e.g., > (ask counter ’adjust! 5)).

10.1.3 Object Terminology
An object is an entity that packages state and procedures. object

200 10.1. Packaging Procedures and State

The state variables that are part of an object are called instance variables. Theinstance variables

instance variables are stored in places that are part of the application environ-
ment for the object. This means they are encapsulated with the object and can
only be accessed through the object. An object produced by (make-counter) de-
fines a single instance variable, count .

The procedures that are part of an object are called methods. Methods may pro-methods

vide information about the state of an object (we call these observers) or modify
the state of an object (we call these mutators). An object produced by (make-
counter) provides three methods: reset! (a mutator), next! (a mutator), and get-
count (an observer).

An object is manipulated using the object’s methods. We invoke a method on aninvoke

object by sending the object a message. This is analogous to applying a proce-
dure.

A class is a kind of object. Classes are similar to data types. They define a set ofclass

possible values and operations (methods in the object terminology) for manip-
ulating those values. We also need procedures for creating new objects, such as
the make-counter procedure above. We call these constructors. By convention,constructors

we call the constructor for a class make-<class> where <class> is the name of
the class. Hence, an instance of the counter class is the result produced when
the make-counter procedure is applied.

Exercise 10.1. Modify the make-counter definition to add a previous! method
that decrements the counter value by one.

Exercise 10.2. [?] Define a variable-counter object that provides these meth-
ods:

make-variable-counter : Number→ VariableCounter
Creates a variable-counter object with an initial counter value of 0 and an
initial increment value given by the parameter.

set-increment! : Number→ Void
Sets the increment amount for this counter to the input value.

next! : Void→ Void
Adds the increment amount to the value of the counter.

get-count : Void→ Number
Outputs the current value of the counter.

Here are some sample interactions using a variable-counter object:

> (define vcounter (make-variable-counter 1))
> (ask vcounter ’next!)
> (ask vcounter ’set-increment! 2)
> (ask vcounter ’next!)
> (ask vcounter ’get-count)
3

Chapter 10. Objects 201

10.2 Inheritance
Objects are particularly well-suited to programs that involve modeling real or
imaginary worlds such as graphical user interfaces (modeling windows, files,
and folders on a desktop), simulations (modeling physical objects in the real
world and their interactions), and games (modeling creatures and things in an
imagined world).

Objects in the real world (or most simulated worlds) are complex. Suppose we
are implementing a game that simulates a typical university. It might include
many different kinds of objects including places (which are stationary and may
contain other objects), things, and people. There are many different kinds of
people, such as students and professors. All objects in our game have a name
and a location; some objects also have methods for talking and moving. We
could define classes independently for all of the object types, but this would
involve a lot of duplicate effort. It would also make it hard to add a new behavior
to all of the objects in the game without modifying many different procedures.

The solution is to define more specialized kinds of objects using the definitions
of other objects. For example, a student is a kind of person. A student has all the
behaviors of a normal person, as well as some behaviors particular to a student
such as choosing a major and graduating. To implement a student class, we
want to reuse methods from the person class without needing to duplicate them
in the student implementation. We call the more specialized class (in this case
the student class) the subclass and say student is a subclass of person. The reused subclass

class is known as the superclass, so person is the superclass of student . A class superclass

can have many subclasses but only one superclass.2

Figure 10.2 illustrates some inheritance relationships for a university simulator.
The arrows point from subclasses to their superclass. A class may be both a sub-
class to another class, and a superclass to a different class. For example, person
is a subclass of movable-object , but a superclass of student and professor .

Figure 10.2. Inheritance Hierarchy.

2Some object systems (such as the one provided by the C++ programming language) allow a class
to have more than one superclass. This can be confusing, though. If a class has two superclasses and
both define methods with the same name, it may be ambiguous which of the methods is used when
it is invoked on an object of the subclass. In our object system, a class may have only one superclass.

202 10.2. Inheritance

Our goal is to be able to reuse superclass methods in subclasses. When a method
is invoked in a subclass, if the subclass does not provide a definition of the
method, then the definition of the method in the superclass is used. This can
continue up the superclass chain. For instance, student is a subclass of person,
which is a subclass of movable-object , which is a subclass of sim-object (simula-
tion object), which is the superclass of all classes in the simulator.

Hence, if the sim-object class defines a get-name method, when the get-name
method is invoked on a student object, the implementation of get-name in the
sim-object class will be used (as long as neither person nor movable-object de-
fines its own get-name method).

When one class implementation uses the methods from another class we say the
subclass inherits from the superclass. Inheritance is a powerful way to obtaininherits

many different objects with a small amount of code.

10.2.1 Implementing Subclasses
To implement inheritance we change class definitions so that if a requested
method is not defined by the subclass, the method defined by its superclass will
be used.

The make-sub-object procedure does this. It takes two inputs, a superclass ob-
ject and the object dispatching procedure of the subclass, and produces an in-
stance of the subclass which is a procedure that takes a message as input and
outputs the method corresponding to that message. If the method is defined by
the subclass, the result will be the subclass method. If the method is not defined
by the subclass, it will be the superclass method.

(define (make-sub-object super subproc)
(lambda (message)

(let ((method (subproc message)))
(if method method (super message)))))

When an object produced by (make-sub-object obj proc) is applied to a mes-
sage, it first applies the subclass dispatch procedure to the message to find an
appropriate method if one is defined. If no method is defined by the subclass
implementation, it evaluates to (super message), the method associated with the
message in the superclass.

References to self. It is useful to add an extra parameter to all methods so the
object on which the method was invoked is visible. Otherwise, the object will
lose its special behaviors as it is moves up the superclasses. We call this the self
object (in some languages it is called the this object instead). To support this, we
modify the ask procedure to pass in the object parameter to the method:

(define (ask object message . args)
(apply (object message) object args))

All methods now take the self object as their first parameter, and may take addi-
tional parameters. So, the counter constructor is defined as:

Chapter 10. Objects 203

(define (make-counter)
(let ((count 0))

(lambda (message)
(cond
((eq? message ’get-count) (lambda (self) count))
((eq? message ’reset!) (lambda (self) (set! count 0)))
((eq? message ’next!) (lambda (self) (set! count (+ 1 count))))
(else (error "Unrecognized message"))))))

Subclassing counter. Since subclass objects cannot see the instance variables
of their superclass objects directly, if we want to provide a versatile counter class
we need to also provide a set-count! method for setting the value of the counter
to an arbitrary value. For reasons that will become clear later, we should use set-
count! everywhere the value of the count variable is changed instead of setting
it directly:

(define (make-counter)
(let ((count 0))

(lambda (message)
(cond
((eq? message ’get-count) (lambda (self) count))
((eq? message ’set-count!) (lambda (self val) (set! count val)))
((eq? message ’reset!) (lambda (self) (ask self ’set-count! 0)))
((eq? message ’next!)
(lambda (self) (ask self ’set-count! (+ 1 (ask self ’current)))))

(else (error "Unrecognized message"))))))

Previously, we defined make-adjustable-counter by repeating all the code from
make-counter and adding an adjust! method. With inheritance, we can define
make-adjustable-counter as a subclass of make-counter without repeating any
code:

(define (make-adjustable-counter)
(make-sub-object
(make-counter)
(lambda (message)

(cond
((eq? message ’adjust!)
(lambda (self val)

(ask self ’set-count! (+ (ask self ’get-count) val))))
(else false)))))

We use make-sub-object to create an object that inherits the behaviors from one
class, and extends those behaviors by defining new methods in the subclass im-
plementation.

The new adjust! method takes one Number parameter (in addition to the self
object that is passed to every method) and adds that number to the current
counter value. It cannot use (set! count (+ count val)) directly, though, since the
count variable is defined in the application environment of its superclass object
and is not visible within adjustable-counter . Hence, it accesses the counter us-
ing the set-count! and get-count methods provided by the superclass.

Suppose we create an adjustable-counter object:

204 10.2. Inheritance

(define acounter (make-adjustable-counter))

Consider what happens when (ask acounter ’adjust! 3) is evaluated. The acounter
object is the result of the application of make-sub-object which is the procedure,

(lambda (message)
(let ((method (subproc message)))

(if method method (super message)))))

where super is the counter object resulting from evaluating (make-counter) and
subproc is the procedure created by the lambda expression in make-adjustable-
counter . The body of ask evaluates (object message) to find the method associ-
ated with the input message, in this case ’adjust!. The acounter object takes the
message input and evaluates the let expression:

(let ((method (subproc message))) . . .)

The result of applying subproc to message is the adjust! procedure defined by
make-adjustable-counter :

(lambda (self val)
(ask self ’set-count! (+ (ask self ’get-count) val)))

Since this is not false, the predicate of the if expression is non-false and the value
of the consequent expression, method, is the result of the procedure application.
The ask procedure uses apply to apply this procedure to the object and args pa-
rameters. The object is the acounter object, and the args is the list of the extra
parameters, in this case (3).

Thus, the adjust! method is applied to the acounter object and 3. The body of
the adjust! method uses ask to invoke the set-count! method on the self object.
As with the first invocation, the body of ask evaluates (object message) to find
the method. In this case, the subclass implementation provides no set-count!
method so the result of (subproc message) in the application of the subclass ob-
ject is false. Hence, the alternate expression is evaluated: (super message). This
evaluates to the method associated with the set-count! message in the super-
class. The ask body will apply this method to the self object, setting the value of
the counter to the new value.

We can define new classes by defining subclasses of previously defined classes.
For example, reversible-counter inherits from adjustable-counter :

(define (make-reversible-counter)
(make-subobject
(make-adjustable-counter)
(lambda (message)

(cond
((eq? message ’previous!) (lambda (self) (ask self ’adjust! −1)))
(else false)))))

The reversible-counter object defines the previous! method which provides a
new behavior. If the message to a adjustable-counter object is not previous! ,
the method from its superclass, adjustable-counter is used. Within the previous!
method we use ask to invoke the adjust! method on the self object. Since the
subclass implementation does not provide an adjust! method, this results in the

Chapter 10. Objects 205

superclass method being applied.

10.2.2 Overriding Methods
In addition to adding new methods, subclasses can replace the definitions of
methods defined in the superclass. When a subclass replaces a method defined
by its superclass, then the subclass method overrides the superclass method. overrides

When the method is invoked on a subclass object, the new method will be used.

For example, we can define a subclass of reversible-counter that is not allowed
to have negative counter values. If the counter would reach a negative number,
instead of setting the counter to the new value, it produces an error message and
maintains the counter at zero. We do this by overriding the set-count! method,
replacing the superclass implementation of the method with a new implemen-
tation.

(define (make-positive-counter)
(make-subobject
(make-reversible-counter)
(lambda (message)

(cond
((eq? message ’set-count!)
(lambda (self val) (if (< val 0) (error "Negative count")

. . .)))
(else false)))))

What should go in place of the . . .? When the value to set the count to is not
negative, what should happen is the count is set as it would be by the super-
class set-count! method. In the positive-counter code though, there is no way
to access the count variable since it is in the superclass procedure’s application
environment. There is also no way to invoke the superclass’ set-count! method
since it has been overridden by positive-counter .

The solution is to provide a way for the subclass object to obtain its superclass
object. We can do this by adding a get-super method to the object produced by
make-sub-object :

(define (make-sub-object super subproc)
(lambda (message)

(if (eq? message ’get-super)
(lambda (self) super)
(let ((method (subproc message)))

(if method method (super message))))))

Thus, when an object produced by make-sub-object is passed the get-super mes-
sage it returns a method that produces the super object. The rest of the proce-
dure is the same as before, so for every other message it behaves like the earlier
make-sub-object procedure.

With the get-super method we can define the set-count! method for positive-
counter , replacing the . . . with:

(ask (ask self ’get-super) ’set-count! val))

Figure 10.3 shows the subclasses that inherit from counter and the methods they
define or override.

206 10.2. Inheritance

Figure 10.3. Counter class hierarchy.

Consider these sample interactions with a positive-counter object:
> (define poscount (make-positive-counter))
> (ask poscount ’next!)
> (ask poscount ’previous!)
> (ask poscount ’previous!)

Negative count

> (ask poscount ’get-count)
0

For the first ask application, the next! method is invoked on a positive-counter
object. Since the positive-counter class does not define a next! method, the mes-
sage is sent to the superclass, reversible-counter . The reversible-counter imple-
mentation also does not define a next! method, so the message is passed up to its
superclass, adjustable-counter . This class also does not define a next! method,
so the message is passed up to its superclass, counter . The counter class defines
a next! method, so that method is used.

For the next ask, the previous! method is invoked. Since the positive-counter
class does not define a previous! method, the message is sent to the superclass.
The superclass, reversible-counter , defines a previous! method. Its implemen-
tation involves an invocation of the adjust! method: (ask self ’adjust! −1). This
invocation is done on the self object, which is an instance of the positive-counter
class. Hence, the adjust! method is found from the positive-counter class imple-
mentation. This is the method that overrides the adjust! method defined by the
adjustable-counter class. Hence, the second invocation of previous! produces
the “Negative count” error and does not adjust the count to −1.

The property this object system has where the method invoked depends on
the object is known as dynamic dispatch. The method used for an invocationdynamic dispatch

depends on the self object. In this case, for example, it means that when we
inspect the implementation of the previous! method in the reversible-counter
class by itself it is not possible to determine what procedure will be applied for
the method invocation, (ask self ’adjust! −1). It depends on the actual self ob-

Chapter 10. Objects 207

ject: if it is a positive-counter object, the adjust! method defined by positive-
counter is used; if it is a reversible-counter object, the adjust! method defined by
adjustable-counter class (the superclass of reversible-counter) is used.

Dynamic dispatch provides for a great deal of expressiveness. It enables us to
use the same code to produce many different behaviors by overriding methods
in subclasses. This is very useful, but also very dangerous — it makes it impos-
sible to reason about what a given procedure does, without knowing about all
possible subclasses. For example, we cannot make any claims about what the
previous! method in reversible-counter actually does without knowing what the
adjust! method does in all subclasses of reversible-counter .

The value of encapsulation and inheritance increases as programs get more com-
plex. Programming with objects allows a programmer to manage complexity
by hiding implementation details inside the objects from how those objects are
used.

Exercise 10.3. Define a countdown class that simulates a rocket launch count-
down: it starts at some initial value, and counts down to zero, at which point the
rocket is launched. Can you implement countdown as a subclass of counter?

Exercise 10.4. Define the variable-counter object from Exercise 10.2 as a sub-
class of counter .

Exercise 10.5. Define a new subclass of parameterizable-counter where the in-
crement for each next! method application is a parameter to the constructor
procedure. For example, (make-parameterizable-counter 0.1) would produce
a counter object whose counter has value 0.1 after one invocation of the next!
method.

10.3 Object-Oriented Programming
Object-oriented programming is a style of programming where programs are
broken down into objects that can be combined to solve a problem or model a
simulated world. The notion of designing programs around object manipula-
tions goes back at least to Ada (see the quote at the end if Chapter 6), but started
in earnest in the early 1960s.

During World War II, the US Navy began to consider the possibility of building a
airplane simulator for training pilots and aiding aircraft designers. At the time,
pilots trained in mechanical simulators that were custom designed for partic-
ular airplanes. The Navy wanted a simulator that could be used for multiple
airplanes and could accurately model the aerodynamics of different airplanes.

Project Whirlwind was started at MIT to build the simulator. The initial plans
called for an analog computer which would need to be manually reconfigured
to change the aerodynamics model to a different airplane. Jay Forrester learned
about emerging projects to build digital computers, including ENIAC which be-
came operational in 1946, and realized that building a programmable digital
computer would enable a much more flexible and powerful simulator, as well
as a machine that could be used for many other purposes.

208 10.3. Object-Oriented Programming

Before Whirlwind, all digital computers operated as batch processors where a
programmer creates a program (typically described using a stack of punch cards)
and submits it to the computer. A computer operator would set up the computer
to run the program, after which it would run and (hopefully) produce a result. A
flight simulator, though, requires direct interaction between a human user and
the computer.

The first Whirlwind computer was designed in 1947 and operational by 1950. It
was the first interactive programmable digital computer. Producing a machine
that could perform the complex computations needed for a flight simulator fast
enough to be used interactively required much faster and more reliable mem-
ory that was possible with available technologies based on storing electrostatic
charges in vacuum tubes. Jay Forrester invented a much faster memory based
known as magnetic-core memory. Magnetic-core memory stores a bit using
magnetic polarity.

The interactiveness of the Whirlwind computer opened up many new possibili-
ties for computing. Shortly after the first Whirlwind computer, Ken Olson led an
effort to build a version of the computer using transistors. The successor to this
machine became the TX-2, and Ken Olsen went on to found Digital Equipment
Corporation (DEC) which pioneered the widespread use of moderately priced
computers in science and industry. DEC was very successful in the 1970s and
1980s, but suffered a long decline before eventually being bought by Compaq.

Ivan Sutherland, then a graduate student at MIT, had an opportunity to use the
TX-2 machine. He developed a program called Sketchpad that was the first pro-
gram to have an interactive graphical interface. Sketchpad allowed users to draw
and manipulate objects on the screen using a light pen. It was designed around
objects and operations on those objects:3

In the process of making the Sketchpad system operate, a few very gen-
eral functions were developed which make no reference at all to the spe-
cific types of entities on which they operate. These general functions give
the Sketchpad system the ability to operate on a wide range of problems.
The motivation for making the functions as general as possible came from
the desire to get as much result as possible from the programming effort
involved. . . Each of the general functions implemented in the Sketchpad
system abstracts, in some sense, some common property of pictures inde-
pendent of the specific subject matter of the pictures themselves.

Components in
Sketchpad Sketchpad was a great influence on Douglas Engelbart who developed a research

program around a vision of using computers interactively to enhance human in-
tellect. In what has become known as “the mother of all demos”, Engelbart and
his colleagues demonstrated a networked, graphical, interactive computing sys-
tem to the general public for the first time in 1968. With Bill English, Engelbard
also invented the computer mouse.

Sketchpad also influenced Alan Kay in developing object-oriented programming.
The first language to include support for objects was the Simula programming
language, developed in Norway in the 1960s by Kristen Nygaard and Ole Johan
Dahl. Simula was designed as a language for implementing simulations. It pro-
vided mechanisms for packaging data and procedures, and for implementing

3Ivan Sutherland, Sketchpad: a Man-Machine Graphical Communication System, 1963

Chapter 10. Objects 209

subclasses using inheritance.

In 1966, Alan Kay entered graduate school at the University of Utah, where Ivan
Sutherland was then a professor. Here’s how he describes his first assignment:4

Head whirling, I found my desk. On it was a pile of tapes and listings,
and a note: “This is the Algol for the 1108. It doesn’t work. Please make it
work.” The latest graduate student gets the latest dirty task. The documen-
tation was incomprehensible. Supposedly, this was the Case-Western Re-
serve 1107 Algol—but it had been doctored to make a language called Sim-
ula; the documentation read like Norwegian transliterated into English,
which in fact it was. There were uses of words like activity and process that
didn’t seem to coincide with normal English usage. Finally, another grad-

Alan Kayuate student and I unrolled the program listing 80 feet down the hall and
crawled over it yelling discoveries to each other. The weirdest part was the
storage allocator, which did not obey a stack discipline as was usual for Al-
gol. A few days later, that provided the clue. What Simula was allocating
were structures very much like the instances of Sketchpad. There were de-
scriptions that acted like masters and they could create instances, each of
which was an independent entity. . . .

This was the big hit, and I’ve not been the same since. . . For the first time
I thought of the whole as the entire computer and wondered why anyone
would want to divide it up into weaker things called data structures and
procedures. Why not divide it up into little computers, as time sharing was
starting to? But not in dozens. Why not thousands of them, each simulat-
ing a useful structure?

Alan Kay went on to design the language Smalltalk, which became the first widely
used object-oriented language. Smalltalk was developed as part of a project at
XEROX’s Palo Alto Research Center to develop a hand-held computer that could
be used as a learning environment by children. Don’t worry about

what anybody else is
going to do. The best
way to predict the
future is to invent it.
Really smart people
with reasonable
funding can do just
about anything that
doesn’t violate too
many of Newton’s
Laws!
Alan Kay

In Smalltalk, everything is an object, and all computation is done by sending
messages to objects. For example, in Smalltalk one computes (+ 1 2) by send-
ing the message + 2 to the object 1. Here is Smalltalk code for implementing a
counter object:

class name counter
instance variable names count
new count <− 0
next count <− count + 1
current ˆ count

The new method is a constructor analogous to make-counter . The count in-
stance variable stores the current value of the counter, and the next method up-
dates the counter value by sending the message + 1 to the count object.

Nearly all widely-used languages today provide built-in support for some form
of object-oriented programming. For example, here is how a counter object
could be defined in Python:

4Alan Kay, The Early History of Smalltalk, 1993

210 10.4. Summary

class counter:
def init (self): self. count = 0
def rest(self): self. count = 0
def next(self): self. count = self. count + 1
def current(self): return self. count

The constructor is named init . Similarly to the object system we developed
for Scheme, each method takes the self object as its parameter.

10.4 Summary
An object is an entity that packages state with procedures that manipulate that
state. By packaging state and procedures together, we can encapsulate state in
ways that enable more elegant and robust programs.

Inheritance allows an implementation of one class to reuse or override meth-
ods in another class, known as its superclass. Programming using objects and
inheritance enables a style of problem solving known as object-oriented pro-
gramming in which we solve problems by modeling problem instances using
objects.

Dynabook Images

From Alan Kay, A Personal Computer for Children of All Ages, 1972.

