
LCLint: A Tool for Using Specifications to Check Code

David Evans, John Guttag, James Horning, and Yang Meng Tan�

Abstract

This paper describes LCLint, an efficient and flexible tool that
accepts as input programs (written in ANSI C) and various
levels of formal specification. Using this information, LCLint
reports inconsistencies between a program and its specifica-
tion. We also describe our experience using LCLint to help
understand, document, and re-engineer legacy code.

Keywords: C, Larch, LCLint, lint, specifications, static check-
ing

1 Introduction

Software engineers have long understood that static analysis
of program texts can both reduce the number of residual errors
and improve the maintainability of programs. Traditional static
checkers [10, 20] detect type errors and simple anomalies such
as obviously uninitialized variables. These checkers demand
little effort from the user, and are frequently used. However,
their utility is limited by their lack of information about the
intent of the programmer. At the other extreme are program
verification systems [2]. They are used to demonstrate that
a program implements a specification. They require consid-
erable effort from the user, and are seldom used in software
development.

Somewhere between these extremes are tools that use formal
specifications, but don’t attempt complete verification. They
are intended to retain the ease of use and efficiency of tradi-

�James Horning can be reached at the DEC Systems Research Center,
horning@src.dec.com. The other authors are at the MIT Laboratory for
Computer Science, [evs,guttag,ymtan]@lcs.mit.edu and are sup-
ported in part by ARPA (N00014-92-J-1795), NSF (9115797-CCR), and DEC
ERP.

tional static checkers while providing stronger checking using
the specifications.

The goal of the work presented here is to gain a better un-
derstanding of how to build static checkers that allow users to
conveniently manage the tradeoff between ease of specifica-
tion and comprehensiveness of checking and how such tools
can aid software development and maintenance. To do this, we
built and used a flexible tool, LCLint, that supports different
levels of specification and different styles of programming.

The next section outlines the design goals of LCLint and dis-
cusses the kinds of checks it performs. Section 3 uses a tiny
example to illustrate how LCLint can be used to understand
and improve code. Section 4 reports on our experience using
LCLint on larger programs. Section 5 discusses related work.
Section 6 summarizes what we learned by building and using
LCLint. Appendix A provides a comprehensive list of LCLint
flags. Appendix B shows how stylized comments can be used
for local control of checking. Appendix C describes how to
obtain LCLint by anonymous ftp.

2 An Overview of LCLint

LCLint accepts as input programs written in ANSI C and var-
ious amounts of specification written in the LCL language
[8, 19]. It is intended to be useful in developing new code and
in helping to understand, document, and re-engineer legacy
code.

Some of our important design goals were:

� Efficiency—Since LCLint should be run whenever the
source code or specification is changed, the time needed
to run LCLint should be comparable to that for compi-
lation. This limits the checking to simple checks that do
not require global analysis.

� Flexibility—LCLint is not intended to impose a specific
style of coding. Hence, its checking must be customiz-
able to support different programming styles.

� Incremental effort and gain—LCLint should provide sig-
nificant benefits without programmers expending much
effort on writing specifications. Benefits should increase
as further effort is put into the specifications.

� Ease of use—LCLint should be as easy to run as a com-
piler, and its output should be easy to understand.

� Ease of learning—LCLint is intended to be an entry
into writing formal specifications for programmers who
would not otherwise write them, so the knowledge of for-
mal specifications needed to start realizing the benefits
of LCLint should be minimal.

While LCLint may be run on any ANSI C program, it cannot
do better checking than a traditional lint unless the program
conforms to stylistic guidelines or the programmer supplies
additional information in the form of partial specifications.

LCLint warns about the following problems, using information
not available to traditional static checkers:

� Violation of abstraction boundaries.

– Failure to properly distinguish between private and
public functions, variables, and types.

– Direct access to the representation of an abstract
type in client code.

– Client code whose meaning might change if the
representation of an abstract type were changed.

– Inappropriate use of a type cast.

– Exposure of an abstract representation (e.g., client
code may gain access to a pointer into an abstract
data structure.)

� Undocumented use of global variables.

� Undocumented modification of state visible to clients
(through global variables or reference formal parame-
ters.)

� Missing initialization for an actual parameter or use of
an uninitialized formal parameter.

The checks that LCLint currently does represent only a fraction
of the checking that such a tool could do. However, as indicated
in Section 4, even these basic checks offer significant benefits.

LCLint has several checking modes for coarse control of check-
ing, as well as many command line flags to enable and disable
specific checks. Regions of code can be annotated to suppress
warnings that the user does not wish to see. (See AppendicesA
and B for details.)

3 The Incremental Use of LCLint

In this section, we interleave a discussion of the kinds of check-
ing done by LCLint with a running example. We show how
successively more checking can be performed as style guide-
lines are adopted or specifications are added. We start with a
program that has no specification, then separate interface and
implementation information, then introduce an abstract type,
then add information about global variables, then say which
variables each function may modify, and finally indicate which
pointer parameters are to be used only for returning values.

3.1 Checking Raw Code

We begin by looking at the way LCLint’s type system and fine-
grained control flags can be used to understand the conventions
used in legacy code. We start with a module, date.c (Fig-
ure 1), taken from a C program. We have seeded some errors
in the module to illustrate the kinds of errors LCLint can catch.
We assume initially that the programmer has not distinguished
the types int, char, and bool. (Though C does not have a
separate type for the result of logical tests, LCLint treats bool
as a built-in type.1)
Running LCLint with the command line

lclint +boolint +charint date.c

yields no warnings.2

We now begin to try to understand the conventions used in
the program by running LCLint with various flags. We first
test whether or not the program distinguishes int, char, and
bool by running LCLint with the command line

lclint date.c

This generates six warnings:

date.c:27,19: Conditional predicate not bool,
type int: local

date.c:32,20: Function setToday expects arg 2
to be int gets bool: TRUE

date.c:34,20: Function setToday expects arg 2
to be int gets bool: FALSE

date.c:60,12: Return value type bool does not
match declared type int: FALSE

date.c:67,14: Return value type bool does not
match declared type int: FALSE

date.c:69,14: Return value type bool does not
match declared type int: ((d1.normal.year
< d2.normal.year) || ((d1.normal.year ==
d2.normal.year) && (day_of_year(d1) <
day_of_year(d2))))

The first message is generated because LCLint expects the test
of a conditional expression to be a bool. The next four mes-
sages are generated because the constants TRUE and FALSE
are of type bool, but are used where ints are expected. The
final message is generated because LCLint treats the result of
a comparison operator as type bool. These messages con-
firm our hypothesis that the programmer has not distinguished
bool from int. However, it appears that the programmer has
not relied upon char and int being the same.

We now convert to a style of programming that treats bool
as a distinct type. This involves some editing, replacing int
by bool wherever we intend a logical value. So, for exam-
ple, the function prototype for the function date_isInYear
becomes

bool date_isInYear (date d, int year);

Running LCLint on the revised program yields one warning:

date.c:61,10: Return value type int does not
match declared type bool: (d.normal.year =
year)

1A client of the bool type includes a standard header defining the bool
type as int, and exporting two constants: TRUE and FALSE.

2The flags +boolint and +charint indicate that bools, ints, and
chars are to be treated as equivalent.

#include <stdio.h>
#include <time.h>
#include "date.h"
#include "error.h" /* defines error */

date today;
date todayGMT;
static int date_tab[13] =

{ 0, 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31 };

#define isLeap(y) \
((((y) % 4 == 0) && (((y) % 100) != 0)) \
|| (((y) % 400) == 0))

#define isLeapMonth(m) ((m) == 2)
#define days_in_month(y,m) \

(date_tab[m] + \
((isLeapMonth(m) && isLeap(y)) ? 1 : 0))

int days_in_year (int y)
{ return (isLeap(y) ? 366 : 365); }

void setToday (date * d, int local) {
char asciDate[10];
time_t tm = time((time_t *) NULL);
(void) strftime(asciDate, 10, "%D\0",

27 local ? localtime(&tm)
: gmtime(&tm));

(void) date_parse(asciDate, d);
}
void setTodayLocal (void)

32 { setToday(&today, TRUE); }
void setTodayGMT (void)

34 { setToday(&today, FALSE); }
void copyDate (date *d1, date *d2) {

36 if (date_isNormal(*d1)) d2->normal = d1->normal;
37 d2->tag = d1->tag;

}
int date_year (date d) {

if (!date_isNormal(d)) {
error("year_date expects normal date");
return -1; }

return d.normal.year;
}
int day_of_year (date nd) {

if (!date_isNormal(nd)) {
error("day_of_year expects normal date");
return 0;

} else {
ndate d = nd.normal;
int m, day = d.day;
for (m = 1; m < d.month; m++)

day += days_in_month(d.year, m);
return day;

}
}
int date_isInYear (date d, int year) {

if (!date_isNormal(d)) {
error("dateisInYear expects normal date");

60 return FALSE; }
61 return (d.normal.year = year);

}
int date_isBefore (date d1, date d2) {

if (!(date_isNormal(d1) && date_isNormal(d2)))
{

error("date_isBefore expects normal dates");
67 return FALSE;

} else {
69 return ((d1.normal.year < d2.normal.year)

|| ((d1.normal.year == d2.normal.year)
&& (day_of_year(d1)

< day_of_year(d2))));
}

}
(date_parse removed to save space)

Figure 1: date.c

#ifndef DATE_H
#define DATE_H

#include "bool.h"

typedef enum { UNDEFINED, NORMAL } dateKind;
typedef struct {

int month, day, year; } ndate;
typedef struct {

dateKind tag; ndate normal; } date;

extern date today;
extern date todayGMT;

extern void setToday (date *d, int local);
extern void setTodayLocal (void);
extern void setTodayGMT (void);
extern void copyDate (date *d1, date *d2);
extern int date_year (date d);
extern int day_of_year (date d);
extern int days_in_year (int year);
extern int date_isBefore (date d1, date d2);
extern int date_isInYear (date d, int year);
extern int date_parse (char dateStr[],

date *ind);
extern int date_isNormal (date d);

#define date_isNormal(d) ((d).tag == NORMAL)
#endif

Figure 2: date.h

Examining the code, we discover that the implementation of
date_isInYear returns an int because the assignment
operator (=) was used where == was intended. We correct this
bug, and proceed to the next level, where adding specifications
allows additional checking to be done.

3.2 Separating Interfaces from Implementations

A common style for organizing a C program is as a set of
program units, often called modules. A module consists of an
interface and an implementation. The interface is a collection
of types, functions, variables, and constants for use by other
modules, called its clients. An interface specification provides
information needed to write clients.

A C module M is typically represented by two files: M.h
contains a description of its interface, plus parts of its imple-
mentation; M.c contains most of its implementation, including
function definitions and private data declarations. When us-
ing LCLint, the role of M.c is unchanged, but we move some
information previously contained in M.h into a separate file,
M.lcl:

� M.lcl contains an interface specification—aformal de-
scription of the types, functions, variables, and constants
provided for clients as well as comments providing in-
formal documentation. It replaces M.h as documenta-
tion for client programmers, who should no longer look
at M.h. The information provided in the specification
is also exploited by LCLint to perform more extensive
checking than could be done by a traditional lint.

typedef enum { UNDEFINED, NORMAL } dateKind;
typedef struct {
int month, day, year; } ndate;

typedef struct {
dateKind tag; ndate normal; } date;

date today;
date todayGMT;

void setToday (date *d, bool local);
void setTodayLocal (void);
void setTodayGMT (void);
void copyDate (date *d1, date *d2);
int date_year (date d);
int day_of_year (date d);
int days_in_year (int year);
bool date_isBefore (date d1, date d2);
bool date_isInYear (date d, int year);
int date_parse (char dateStr[], date *ind);
bool date_isNormal (date d);

Figure 3: Client information moved to date.lcl

#ifndef DATE_H
#define DATE_H
#include "date.lh"
#define date_isNormal(d) ((d).tag == NORMAL)
#endif

Figure 4: New date.h

� M.h contains the information needed by the compiler to
compile M.c and clients of M.

LCLint generates a header file, M.lh, from M.lcl for in-
clusion in M.h. This file contains prototypes for functions
and declarations of types, variables and constants specified in
M.lcl. Automatic generation of .lh files saves the user
from repeating information from the .lcl file in the .h file,
avoiding an opportunity for error.

Here, we construct date.lcl by moving the global types,
constants, variables, and prototypes that constitute the interface
of the date module from date.h to date.lcl. The files
date.lcl and date.h are shown in Figures 3 and 4.

We now run LCLint with the argument date, so that both
date.lcl and date.c are checked. No inconsistencies
are reported. This is hardly surprising, since we have merely
redistributed information in a more modular way.

3.3 Making a Type Abstract

LCLint categorizes types as exposed or abstract:

� An exposed type is a data structure that is described as
a C type (e.g., char *) that is made known to clients,
who are entitled to rely on it.

� An abstract type hides representation information from
clients, but provides functions to operate on its values.
Abstract types are best thought of as collections of re-
lated operations on collections of related values [11, 14].

#include <stdio.h>
#include "date.h"
#include "error.h"

int days_between (date startD, date endD) {
6 if (startD.tag != NORMAL
7 || endD.tag != NORMAL) {

error("days_between expects normal dates");
return -1;

} else if (date_isBefore(endD, startD)) {
: : :

Figure 5: test.c, a trivial client for date

Exposed types correspond exactly to types in C; abstract types
do not correspond to anything in C. All the types in our example
thus far have been exposed.

C provides no direct support for abstract types, but there is
a style of C programming in which they play a prominent
role. The programmer relies on conventions to ensure that the
implementation of an abstract type can be changed without
affecting the correctness of clients. The key restriction is that
clients never directly access the representation of an abstract
value. All access is through the functions provided by its
interface.

An exposed type is specified (in an.lclfile) by a Ctypedef.
An abstract type is specified by a type declaration and a col-
lection of functions that manipulate values of its type. The
representation of these values is hidden within the implemen-
tation (in the .h file). Clients can create, modify and examine
abstract values by calling the functions in the interface. Type
checking for abstract types is done by name, except within
their implementations, where the abstract type and its repre-
sentation are equivalent. This allows an implementation to
access internal structure that is hidden from clients.

Both mutable and immutable abstract types are supported. The
value of an instance of an immutable type is unchangeable. The
value of an instance of a mutable type depends on the com-
putation state. LCLint checking is the same for mutable and
immutable types, except for additional checks on mutable types
involving modifications and checkingthat the representation of
a mutable type conforms to assignment sharing.
We continue our example by making date an immutable
abstract data type. To do this, we move the typedefs in
date.lcl back to the implementation (just before the
#include of date.lh) and replace them in date.lcl
by the line

immutable type date;

This set of changes has no effect on checking date. It does
affect the checking done on clients of date.lcl, which may
access the structure of dates only through the functions pro-
vided in the interface. To see the effect of this checking, we
check a sample client module, test.c, shown in Figure 5.

Running LCLint with the command line

lclint date test.c

results in the warnings:

test.c:6,7: Access field of abstract type
(date): startD.tag

test.c:7,10: Access field of abstract type
(date): endD.tag

indicating the two places where test.c violates the ab-
straction boundary of date. To repair this, we replace the
implementation-dependent expression,

startD.tag != NORMAL

with the abstract call

!date_isNormal(startD)

(and likewise for endD).

3.4 Function Speci�cations: Globals

An LCL function specification starts with a header, which is
a C prototype, extended with a list of the global variables that
may be referenced by the function’s implementation. It is com-
pleted by a body enclosed in curly braces. The body contains
an optional requires clause, an optional modifies clause, and
an optional ensures clause.

Continuing our example, we add globals lists and empty bodies
to the function prototypes in date.lcl, e.g.,

void setTodayLocal (void) date today;
{ }

10 void setTodayGMT (void) date todayGMT;
{ }

We now use LCLint to check that the function bodies refer-
ence exactly the intended variables. Running LCLint on the
implementation in Figure 1 with the command line3

lclint -modifies date test.c

results in the warnings

date.c:34,13: Unauthorized use of global today
date.lcl:10,1: Global todayGMT listed but not

used

which are both symptoms of using the wrong global variable
in the body of setTodayGMT.

3.5 Function Speci�cations: Modi�es

A modifies clause says which externally visible objects a func-
tion is allowed to change. If there is no modifies clause, then
it must not make an externally visible change to the value of
any object.

Continuing our example, we add, in date.lcl, modifies
clauses for the function prototypes of functions that we expect
to modify visible objects:

void setTodayLocal (void) date today;
{ modifies today; }

void setTodayGMT (void) date todayGMT;
{ modifies todayGMT; }

void setToday (date *d, bool local)

3The -modifies flag is used to suppress messages regarding modification
errors. This will be discussed in the next section.

{ modifies *d; }

void copyDate (date *d1, date *d2)
{ modifies *d1; }

Running LCLint on the implementation in Figure 1 with the
command line

lclint date test.c

results in the warnings

date.c:36,27: Suspect modification of
d2->normal: d2->normal = d1->normal

date.c:37,3: Suspect modification of d2->tag:
d2->tag = d1->tag

which are both symptoms of assignments in the wrong direction
in the body of copyDate.

We correct those errors and proceed.

3.6 Use Before De�nition

Like many static checkers, LCLint detects instances where the
value of a location may be used before it is defined. This
analysis is usually done at the function level. If there is a
path through the function that uses a local variable before it is
defined, a use-before-definition warning is issued.

Detecting use-before-definition errors involving parameters is
more difficult. In C, it is common to use a pointer to an
undefined value as an argument intended only to receive a
return value. Without specifications, we must either do global
analysis to detect use-before-definition errors across function
calls, or make assumptions that lead to spurious warnings or
undetected errors.

In a function specification header, the out type qualifier indi-
cates a pointer formal or mutable abstract objects that is meant
only to receive a result value. The value pointed to by an out
parameter is assumed to be undefined when the function is
entered. LCLint will generate a warning if it is used before
it is defined in the body. All other parameters are assumed to
be defined upon entry. LCLint will generate a warning at the
point of call if a function is called with an undefined argument,
unless it is specified as an out parameter.
Continuing our example, we add the out type qualifier to three
specifications:

void setToday (out date *d, bool local)
{ modifies *d; }

void copyDate (out date *d1, date *d2)
{ modifies *d1; }

int date_parse (char dateStr[],
out date *ind)

{ }

Running LCLint on the implementation in Figure 1 now yields
the message

date.c:36,25: Variable d1 used before set

The problem here is that the body of copyDate tests the tag
field of d1 when it should have tested the tag of d2. This

is related to the errors detected by the modifies checking dis-
cussedabove. The original implementation uniformly reversed
d1 and d2.

4 Experience using LCLint

We don’t yet have signficant experience using LCLint to de-
velop completely new code. We do, however, have some expe-
rience using LCLint to understand and maintain legacy code.
We have used LCLint on several programs including:

� A small database program, formally specified in [8].

� pm, an 1800-line portfolio management tool that had
been in use for several years. This program had no
formal specifications, but was structured around abstract
data types.

� quake, a 5000-line program for automating system
builds in Modula-3. We had not looked at this program
before running LCLint on it. It had no formal specifi-
cations, and we had no idea what style of programming
had been employed.

� LCLint itself.

Running LCLint on the database example did not find many
significant problems [4]. It did uncover two abstraction vi-
olations, and one undocumented modification that revealed a
memory leak. It also generated five spurious modification
warnings, because of LCLint’s imprecise modifies checking.
For example, it failed to determine that a series of assignments
to an object culminated in restoring the object’s initial value.

The pm program was used in a study of how formal specifica-
tions could facilitate a software re-engineering process aimed
at making existing programs easier to maintain and reuse [19].
We wrote LCL specifications for the main modules of the
program, and then tried to improve them. Modifications to
the program were driven by changes made to the specifica-
tions of its modules. Each time the specification of a module
changed, the code was revised. We then used LCLint to check
the revised code against its new specification. In the process,
LCLint uncovered various inconsistencies between the imple-
mentations of the modules and their specifications, including
abstraction violations, unsanctioned object modifications, and
unsanctioned global variable accesses.

The most illuminating experiment was using LCLint onquake
[4]. We applied it in the manner described in Section 3. We
found two bugs (which could also have been found by a conven-
tional lint) by running LCLint on the quake source without
any specifications. We also learned that the programmer had
not distinguished between types int andchar, but almost al-
ways treated int and bool as distinct. Three minor changes
were all that was required to make this distinction complete.

Then we used LCLint to discover which types were treated as
abstract, by declaring one type at a time to be abstract, and
inspecting the messages generated by LCLint. One type was
used completely abstractly, and several were so close to being
used abstractly that we decided that the abstraction violations
were unintended and changed the program to eliminate them.
Eliminating these abstraction violations made the client code

shorter and simpler. Furthermore, through this process we
gained an understanding of the code, which we recorded in
the specifications. In particular, the abstract type declarations
make clear which types can be safely modified in isolation and
supply information about the level of detail at which one needs
to read various parts of the program.

Finally, we moved the prototypes from the .h files to .lcl
files. Since we didn’t know what the various functions were
supposed to do, we did not attempt to construct globals or
modifies clauses. We merely ran LCLint with globals and
modifies checking turned on. This yielded messages reporting
the global variables accessed and the objects modified by each
function. We then used these messages to add globals and
modifies clauses to the specifications of the functions—thus
greatly improving the documentation of the program.

Towards the end of LCLint’s development, we began using it
on its own code and specifications. Many errors were caught,
most involving violations of type abstractions. Most of the
actual bugs detected by LCLint were not related to specifica-
tion checking, although the flexibility and strict type checking
provided by LCLint helped us discover errors that we would
not have found with a traditional lint. Relatively late in the
development of LCLint, we decided that the underlying imple-
mentation for representing types was too inefficient. Without
LCLint, we would have been reluctant to reimplement such
a pervasive type for fear that unexpected dependencies on the
previous implementation would lead to bugs that would be hard
to find. By using LCLint, however, we could verify that the
type was truly abstract, and change its implementation without
concern that it might introduce bugs elsewhere.

5 Related Work

Several checkers have been developed to analyze programs
using some form of formal specifications.

Cesar [16] allows programmers to specify sequencing con-
straints for an abstract type using a specification language
based on regular expressions. For example, a programmer
could specify a file type that may be opened, written to mul-
tiple times, and closed, in that order. The prototype Cesar
system was too inefficient to be a useful tool in real software
development. Cesar built on other systems [7, 20] that use
sequencing constraints to find errors in code.

Inscape [17] uses a specification language that can specify
pre-conditions and post-conditions of a procedure, as well as
obligations on the caller following return from the call (such as
closing a returned file). Inscape propagates the specifications
of procedures in a program using a special propagation logic
incorporating unknown and possible values. Bugs are detected
when a pre-condition or an obligation is contradicted. LCL
provides no way to express obligations on the caller after the
called function returns. Some useful checking could be done
if specifications could require, for example, that the caller
eventually free a returned object, or that it not modify the
returned object.

Aspect [9] is a system for efficiently detecting bugs, by look-
ing for unsatisfied dependencies. The specification language
describes dependencies between “aspects” of objects (such as
an array’s size) in the post-state and pre-state, and the checker
reports when a specified dependency is not present in the im-

plementation. Dependency information in LCL specifications
is often not available, or is hidden within the specification.
Moreover, LCL has no notion of aspects of an abstract type,
so it cannot provide the information for some of the checking
done by Aspect. Every error reported by Aspect is guaranteed
to be an error in the code or the specification. LCLint doesn’t
provide such a guarantee—some spurious warnings may be
generated, but they can all be turned off by the user.

Other tools have been developed more along the lines of im-
proving lint. CCEL [3] is a metalanguage that allows program-
mers to express constraints that can be checked automatically
about C++ programs. Constraints are specified in a language
similar to C++, and can constrain design, implementation, and
style. Constraints are lexical in nature, but general enough to
catch some high-level C++ errors such as flaws in the inheri-
tance hierarchy. CCEL differs from LCLint in that the specifi-
cations describe general constraints and naming conventions,
but do not specify the properties of specific functions.

LCLint can be viewed as a tool for promoting modular software
designs and abstract data types in C. Many modern languages,
including C++ [18], Ada [1], Modula-3 [15] and CLU[11],
support both. C++ adds support for abstract types and data
encapsulation to C, using an object-oriented paradigm. For
programmers who need type inheritance, using C with LCLint
is not an alternative to C++. But for C programmers who
merely wish to use modules and abstract types, LCLint pro-
vides data encapsulation and type safety without the overhead
and complexity of C++. The other checking done by LCLint
is useful in both C and C++.

Like LCLint, the Fortran Abstract Data (FAD) system [13]
adds abstract types to an existing programming language. It
extends the syntax of Fortran and provides a preprocessor to
convert FAD declarations into standard Fortran. Programs
using FAD abstract types cannot be compiled by a standard
Fortran compiler or readily understood by an experienced For-
tran programmer with no knowledge of FAD. In contrast, LCL
specifications used by LCLint are orthogonal to the code: the
source code is standard ANSI C.

6 Summary and Conclusions

In this paper, we have tried to give a flavor of the kinds of things
LCLint can do, but we made no attempt to be comprehensive. A
report by Evans [4] contains a complete description of LCLint,
and a discussion of how it can be used in developing new code,
and in understanding and maintaining legacy code. Tan [19]
presents a programming methodology based on the use of LCL
and LCLint.

LCLint detects inconsistencies between code and a combina-
tion of specifications and programming conventions. Some-
times warnings expose errors in the specifications or in the
code. Sometimes they indicate a violation of a programming
convention. Such a violation might not be a bug. However a
warning that the code depends on implementation details not
apparent in the specification, or that it violates conventions
upon which other parts of the program may rely, can help pro-
grammers produce better programs and better documentation,
and can decrease maintenance costs.

LCLint was designed report as many real problems as possi-
ble, while generating relatively few spurious warnings. Most

checks are sound and complete—it is possible to determine
and report exactly those cases where a particular problem is
present. Some of the checks involving use-before-definition
and modification are imprecise. There are cases where LCLint
cannot determine if a suspected problem is present, so a mes-
sage may be issued for a non-existent problem. In other cases, a
real problem may go undetected. Early experience with LCLint
[4, 19] suggests that relatively few spurious warnings are gener-
ated, and that the available command line options and syntactic
comments are adequate to suppress inappropriate messages. It
is more difficult to assess the impact of incomplete checks,
since we cannot know how many undetected problems exist.

We originally developed LCLint as a tool to detect bugs in pro-
grams. We haven’t yet had any significant experience using
it while developing new programs. (LCLint was well along
in development before it was ready to check itself.) Since we
mostly applied LCLint to well-tested code, it is not surprising
that we mostly got warnings about violations of data abstrac-
tions and style conventions, rather than about bugs. But it did
expose a few bugs in the well-tested code by reporting incon-
sistencies with the specifications. Our experience shows that
LCLint is also useful in improving code quality, supporting
data abstraction, and detecting flaws in specifications.

LCLint does not yet take full advantage of complete LCL spec-
ifications. We plan to explore the benefits of more extensive
checking. It is not yet clear where we will reach the point of
diminishing returns.

Acknowledgments

LCLint is the result of a joint R&D project (Larch) involving
Digital and MIT. The other participants in this project, Gary
Feldman, Steve Garland, Kevin Jones, Bill McKeeman, Joe
Wild and Jeannette Wing, all contributed ideas and/or code that
helped immensely. Special thanks are due to Steve Garland
who has contributed every step of the way. Also, thanks to
Steve Harrison for providing the quake example.

References

[1] The Ada programming language reference manual.
ANSI/MIL-STD 1815A, US Department of Defense,
US Government Printing Office, February 1983.

[2] Dan Craigen. “Verification Environments,” Software
Engineer’s Reference Book, edited by John A. McDer-
mid, CRC Press, 1993.

[3] Carolyn K. Duby and Scott Meyers and Steven P. Reiss.
“CCEL: A Metalanguage for C++,” USENIX C++ Con-
ference Proceedings, August 10-13, 1992.

[4] David Evans. Using Specifications to Check Source
Code, MIT/LCS/TR-628, MIT Laboratory for Com-
puter Science, June 1994.

[5] David Evans. LCLint User’s Guide, Version 1.4.
September 1994. Available in:

ftp://larch.lcs.mit.edu/pub/Larch/
lclint/lclint1.4.userguide.ps.Z

[6] G. Feldman and J. Wild. “The DECspec project: tools
for Larch/C,” Proc. Fifth Int. Workshop on Computer-
Aided Software Engineering, Montreal, Jul. 1992. Re-
vised version in [12].

[7] L. D. Fosdick and Leon J. Osterweil. “Data flow analysis
in software reliability,” ACM Computing Surveys, 8(3),
September 1976.

[8] J.V. Guttag and J.J. Horning with S.J. Garland,
K.D. Jones, A. Modet, and J.M. Wing. Larch: Lan-
guages and Tools for Formal Specification, Springer-
Verlag, 1993.

[9] Daniel Jackson. Aspect: A formal specification lan-
guage for detecting bugs, MIT/LCS/TR-543, MIT Lab-
oratory for Computer Science, June 1992.

[10] S.C. Johnson. Lint, a C Program Checker, Unix Docu-
mentation.

[11] Barbara Liskov and John Guttag. Abstraction and Spe-
cification in Program Development, MIT EECS Series,
MIT Press, 1986.

[12] U. Martin and J.M. Wing. Proc. First Intl. Workshop on
Larch, Dedham, Jul. 1992, Springer-Verlag, 1993.

[13] Keith W. Miller, Larry J. Morell, and Fred Stevens.
“Adding data abstraction to Fortran software,” IEEE
Software, November 1988.

[14] James H. Morris, Jr. “Types are Not Sets,” First ACM
Symp. Principles of Programming Languages, Boston,
Oct. 1973.

[15] Greg Nelson, editor. Systems Programming with
Modula-3. Prentice Hall, 1991.

[16] Kurt M. Olender and Leon J. Osterweil. “Interproce-
dural static analysis of sequencing constraints,” ACM
Transactions on Software Engineering and Methodol-
ogy, 1(1), January 1992.

[17] Dewayne E. Perry. “The logic of propagation in the
Inscape environment,” In Proceedings of the ACM SIG-
SOFT’89 Third Symposium on Software Testing, Analy-
sis, and Verification (TAV3), 1989.

[18] Bjarne Stroustrup. The C++ Programming Language.
Addison-Wesley, 1986.

[19] Yang Meng Tan. Formal Specification Techniques
for Promoting Software Modularity, Enhancing Soft-
ware Documentation, and Testing Specifications,
MIT/LCS/TR-619, MIT Laboratory for Computer Sci-
ence, June 1994.

[20] Cindy Wilson and Leon J. Osterweil. “Omega—a data
flow analysis tool for the C programming language.”
IEEE Transactions on Software Engineering, SE-11(9),
September 1985.

A Flags

This appendix describes LCLint command line options. It is
extracted from the LCLint User’s Guide, version 1.4 [5].

So that many programming styles can be supported, LCLint
provides many flags. Modes are provided for setting many
flags at once. Individual message flags override the setting in
the mode. Flags listed before the mode have no effect.

Flags are preceded by + or -. When a flag is preceded by + it
is on; when it is preceded by - it is off. This convention is clear
and concise, but is not standard in UNIX; since it is easy to
accidentally use the wrong one, LCLint issues warnings when
a user redundantly sets a flag to the value it already had (unless
-warnflags is used to suppresssuch warnings). The precise
meaning of on and off depends on the particular flag.

Default flag settings are read from ˜/.lclintrc if it is
readable. Command-line flags override settings in this default
file. The syntax of the .lclintrc file is the same as that of
command-line flags, except that flags may be on separate lines
and the # character may be used to indicate that the remainder
of the line is a comment.

Flags can be grouped into four major categories: mode flags
for coarse control of LCLint checking, message control flags
for selecting specific classes of messages to be reported or sup-
pressed, type equivalence flags for denoting particular types as
equivalent or distinct, and general flags for controlling high
level behavior. General flags are applicable only at the com-
mand line; all other flags may be used both at the command
line and in control comments.

Mode Flags

Mode flags set many type equivalence and message control
flags to predefined values. A mode flag has the same effect
when used with either + or -. These are brief descriptions to
give a general idea of what each mode does. To see the exact
flag settings in each mode, use lclint -help modes.

weak weak checking, intended for typical C code. No mod-
ifies checking, macro checking, rep exposure, or clean
interface checking is done. Return values of type int
may be ignored. The types bool, int, char and user-
defined enum types are all equivalent. Old style C dec-
larations are unreported. Globals checking and predicate
checking is done.

standard the default mode. All checking done by weak,
plus modifies checking, global alias checking, use all pa-
rameters, ignored return values or any type, macro check-
ing, unreachable code, infinite loops, and fall-through
cases. The types bool, int and char are distinct. Old
style C declarations are reported.

checks moderately strict checking. All checking done by
standard, plus must modification checking, rep expo-
sure, return alias, and clean interfaces.

strict extremely strict checking. All checking done by
checks, plus modifications and globals used in unspec-
ified functions, unspecifieduse and modifications of stan-
dard streams (stdio), and strict typing of C operators.

Message Control Flags

Message control flags are preceded by a - to turn the message
off, or a + to turn the message on. Each flag is described
by the class of messages that are reported when it is on, and
suppressed when it is off.

� Globals and Modifies Checking

+globals unspecified use of global variable
+globunspec use of global in unspecified function
+globuse global listed for a function not used
+modifies unspecified modification of visible state
+mustmod specified modification is not detected
+modunspec modification in unspecified function
+stdio unspecified use or modification of standard

stream (stdio, stdout, stderr)

� Clean Interfaces

+specundef function or variable specified but never
defined

+export variable, function or type definition exported
but not specified (equivalent to exportvar,
exportfcn and exporttype)

+exportvar variable exported but not specified
+exportfcn function exported but not specified
+exporttype type definition exported but not

specified

� Declarations

+topuse declaration at top level not used
+paramuse function parameter not used
+varuse variable declared but not used
+fcnuse function declared but not used
+overload library function overloaded
+incondefs function or variable redefined with

inconsistent type

� Type Checking

+bool representation of bool is exposed
+pred type of condition test (for if, while or for)

not boolean
+predptr type of condition test not boolean or

pointer
+ptrarith arithmetic involving pointer and integer
+ptrcompare comparison between pointer and

number
+boolcompare comparison between bools4

+strictops primitive operation does not type check
strictly

� Return Values

+returnval return value ignored
+returnvalbool return value of type bool ignored
+returnvalint return value of type int ignored

� Rep Exposure and Aliasing

+repexpose abstract representation is exposed
(equivalent to retexpose and assignexpose)

4This is dangerous, because there are many possible true values in C. The
result of a comparison between two true bools is not necessarily TRUE.

+retexpose – abstract representation is exposed
(return values only)

+assignexpose abstract representation is exposed
(assignments only)

+retalias function returns alias to parameter or
global

+globalias function returns with global aliasing
external state

� Macros

+macroundef undefined identifier in macro
+macroparens macro parameter used without

parentheses
+macroparams macro parameter is not used exactly

once
+allmacros check all parameterized macros as

functions (macros are not expanded)

� Others

+ansi warn about old style function declarations
+infloops likely infinite loop is detected
+casebreak non-empty case in a switch without

preceding break
+unreachable code detected that is never executed

Type Equivalence Flags

+boolint bool and int are equivalent

+charindex char can be used to index arrays

+charint char and int are equivalent

+enumint enum and int are equivalent

+forwarddecl forward struct and union declarations of
pointers to abstract representation match the abstract
type

+numliteral int literals can be floats

+voidabstract allow void * to match pointers to
abstract types

+zeroptr literal 0 can be treated as a pointer

General Flags

These flags have the same meaning when used with either +
or -. They control initializations, message printing, and other
behavior not related to specific checks.

help on-line help. Help can be followed by a topic
(available topics shown if no argument is used) or list of
flags.

dump file save state in file (default extension .lldmp)

load file load state from file (instead of standard library
file)

nolib do not load standard library

whichlib show pathname and creation information for
standard library

i file set LCL initialization file

f file load options from file

nof do not load default options file (˜/.lclintrc)

noaccess ignore access and noaccess comments

nocomments ignore all stylized comments

Idirectory add directory to C include path

Sdirectory add directory to search path for LCL specs

Dinitializer define initializer (passed to C preprocessor)

Uname undefine identifier (passed to C preprocessor)

tmpdir dir set directory for writing temporary files

showfunc show name of function containing error (first
error in function only)

singleinclude optimize include files

stats display information on number of lines processed
and execution time

nolh suppress generation of .lh files

quiet suppress herald and error count

expect n set expected number of code errors)

lclexpect n set expected number of specification errors)

limit n suppress nth and higher consecutive similar
messages

linelen n set length of messages in characters

The following flags have different meanings if + or - is used.
The default behavior is on, described below. Using -flag has
the opposite effect.

+warnflags warn when command line sets flag to default
value in mode

+showcolumn show column number where error is found

+hints provide hopefully helpful hints

+accessunspec representations of abstract types are
accessible in unspecified function in the .c file with the
same name as the specification

B Control Comments

To provide source level control of LCLint, stylized C comments
may be used. All control comments begin with /*@ and are
ended like normal C comments.
Any of the message control and type equivalence flags can be
set locally using control comments. At any point in a file,
a control comment can set the flags locally to override the
command line settings. The original flag settings are restored
before processing the next file. The syntax for setting flags
in control comments is the same as that of the command line,
except that flags may also be preceded by = to restore their
setting to the original command-line value. For instance,

/*@ +boolint -modifies =charint */

makes bool and int indistinguishable types, turns off mod-
ifies checking, and restores the equivalence of char and int
to its command line or default setting. This is useful to turn
of a particular check for a small segment of code where a
convention is consciously violated.

For coarser control, /*@ignore*/ and /*@end*/ can be
used to suppress all messages. No errors will be reported in

code between/*@ignore*/ and/*@end*/. The ignore
and end comments must be matched—a warning is printed if
the file ends in an ignore region.

The control comment /*@i*/ will suppress reporting of any
errors from here to the end of the line. The syntax /*@in*/
will suppress any errors from here to the end of the line, but
reports a warning message unless exactly n errors are found.

Control comments may also be used to override type access
settings. /*@access t*/ allows succeeding code to access
the representation of t. To disallow access to abstract type
t, use /*@noaccess t*/. Both access and noaccess
may be given a list of types separated by spaces. Type access
applies from the point of the comment to the end of the file or
the next access control comment for that type.

When +allmacros is used, /*@notfunction*/ can be
used to indicate that the next macro definition is not intended to
be a function,and should be expanded in line instead of checked
as a macro function definition. However,+nocomments does
not cause /*@notfunction*/ comments to be ignored,
because of their syntactic role.

C Availability

LCLint is available via anonymous ftp from

ftp://larch.lcs.mit.edu/pub/Larch/lclint

Look at README in this directory for more information. If you
have problems installing LCLint, send a message to

lclint@larch.lcs.mit.edu

Several platforms are supported, including DEC Alpha AXPs
running OSF/1, DECstations running Ultrix, Sun workstations
(Sparc) running Solaris 2, Sun workstations (Sparc) running
SunOS4.1/Solaris 1, and PCs running linux. Source code is
available if you would like to build a version for some other
platform.

There are two mailing lists associated with LCLint.

� lclint-announce@larch.lcs.mit.edu
Reserved for announcements of new releases and bug
fixes.

� lclint-interest@larch.lcs.mit.edu
Informal discussions on the use and development of lclint.

To subscribe to a list, send a (human-readable) message to

lclint-request@larch.lcs.mit.edu

The URL for the LCLint home page in the World-Wide Web is

http://larch-www.lcs.mit.edu:8001/
larch/lclint.html

(without the line break).

