LCLint: A Tool for Using Specifications to Check Code

David Evans, John Guttag, James Horning, and Yang Meng Tan*

Abstract

This paper describesLCLint, an efficient and flexible tool that
accepts as input programs (written in ANSI C) and various
levels of formal specification. Using this information, LCLint
reports inconsistencies between a program and its specifica
tion. We also describe our experience using LCLint to help
understand, document, and re-engineer legacy code.

Keywords: C, Larch, LCLint, lint, specifications, static check-
ing

1 Introduction

Software engineers have long understood that static analysis
of program texts can both reduce the number of residual errors
andimprove the maintainability of programs. Traditional static
checkers[10, 20] detect type errors and simple anomalies such
as obviously uninitialized variables. These checkers demand
little effort from the user, and are frequently used. However,
their utility is limited by their lack of information about the
intent of the programmer. At the other extreme are program
verification systems [2]. They are used to demonstrate that
a program implements a specification. They reguire consid-
erable effort from the user, and are seldom used in software
development.

Somewhere between these extremes are tools that use formal
specifications, but don't attempt complete verification. They
are intended to retain the ease of use and efficiency of tradi-

*James Horning can be reached at the DEC Systems Research Center,
hor ni ng@r c. dec. com The other authors are at the MIT Laboratory for
Computer Science, [evs, guttag, yntan] @cs. mt. edu and are sup-
ported in part by ARPA (N00014-92-J-1795), NSF (9115797-CCR), and DEC
ERP.

tional static checkerswhile providing stronger checking using
the specifications.

The goa of the work presented here is to gain a better un-
derstanding of how to build static checkersthat allow usersto
conveniently manage the tradeoff between ease of specifica-
tion and comprehensiveness of checking and how such tools
can aid software devel opment and maintenance. To dothis, we
built and used a flexible tool, LCLint, that supports different
levels of specification and different styles of programming.

The next section outlines the design goals of LCLint and dis-
cusses the kinds of checksit performs. Section 3 uses atiny
example to illustrate how LCLint can be used to understand
and improve code. Section 4 reports on our experience using
LCLint onlarger programs. Section 5 discussesrelated work.
Section 6 summarizes what we learned by building and using
LCLint. Appendix A providesa comprehensivelist of LCLint
flags. Appendix B shows how stylized comments can be used
for local control of checking. Appendix C describes how to
obtain LCLint by anonymousftp.

2 An Overview of LCLint

LCLint acceptsasinput programswritten in ANSI C and var-
ious amounts of specification written in the LCL language
[8,19]. It isintended to be useful in developing new code and
in helping to understand, document, and re-engineer legacy
code.

Some of our important design goals were:

¢ Efficiency—Since LCLint should be run whenever the
source code or specification is changed, the time needed
to run LCLint should be comparable to that for compi-
lation. Thislimits the checkingto simple checksthat do
not require global analysis.

e Flexibility—LCLint is not intended to impose a specific
style of coding. Hence, its checking must be customiz-
able to support different programming styles.

¢ Incremental effort and gain—L CLint should providesig-
nificant benefits without programmers expending much
effort onwriting specifications. Benefitsshouldincrease
asfurther effort is put into the specifications.

e Easeof use—L CLint should be as easy to run asacom-
piler, and its output should be easy to understand.

e Ease of learning—LCLint is intended to be an entry
into writing formal specificationsfor programmers who
would not otherwisewrite them, sotheknowledgeof for-
mal specifications needed to start realizing the benefits
of LCLint should be minimal.

While LCLint may be run on any ANS| C program, it cannot
do better checking than a traditional lint unless the program
conforms to stylistic guidelines or the programmer supplies
additional information in the form of partial specifications.

L CLint warnsabout thefollowing problems, usinginformation
not available to traditional static checkers:

o Violation of abstraction boundaries.

— Failureto properly distinguish between private and
public functions, variables, and types.

— Direct access to the representation of an abstract
typein client code.

— Client code whose meaning might change if the
representation of an abstract type were changed.

— Inappropriate use of atype cast.

— Exposure of an abstract representation (e.g., client
code may gain accessto a pointer into an abstract
data structure.)

¢ Undocumented use of global variables.

¢ Undocumented modification of state visible to clients
(through global variables or reference formal parame-
ters.)

¢ Missing initialization for an actual parameter or use of
an uninitialized formal parameter.

Thechecksthat LCLint currently doesrepresent only afraction
of the checking that such atool could do. However, asindicated
in Section 4, even these basi ¢ checks offer significant benefits.

LCLint hasseveral checking modesfor coarse control of check-
ing, aswell as many command line flags to enable and disable
specific checks. Regions of code can be annotated to suppress
warningsthat the user doesnot wish to see. (See AppendicesA
and B for details.)

3 The Incremental Use of LCLint

In this section, weinterleave adiscussion of thekindsof check-
ing done by LCLint with arunning example. We show how
successively more checking can be performed as style guide-
lines are adopted or specifications are added. We start with a
program that has no specification, then separate interface and
implementation information, then introduce an abstract type,
then add information about global variables, then say which
variableseach function may modify, and finally indicate which
pointer parameters are to be used only for returning values.

3.1 Checking Raw Code

We begin by looking at theway L CLint'stype systemand fine-
grained control flags can be used to understandthe conventions
used in legacy code. We start with a module, dat e. ¢ (Fig-
ure 1), taken from a C program. We have seeded some errors
inthe moduleto illustrate the kindsof errors L CLint can catch.
We assumeinitially that the programmer has not distinguished
the typesi nt, char, and bool . (Though C doesnot have a
separatetypefor theresult of logical tests, LCLint treatsbool
asabuilt-in type.l)

Running LCLint with the command line

lclint +boolint +charint date.c

yields no warnings.?

We now begin to try to understand the conventions used in
the program by running LCLint with various flags. We first
test whether or not the program distinguishesi nt , char, and
bool by running LCLint with the command line

lclint date.c
This generatessix warnings:

date.c:27,19: Conditional predicate not bool
type int: |oca
date.c:32,20: Function setToday expects arg 2
to be int gets bool: TRUE
date. c: 34,20: Function set Today expects arg 2
to be int gets bool: FALSE
date.c:60,12: Return value type bool does not
mat ch decl ared type int: FALSE
date.c:67,14: Return value type bool does not
mat ch decl ared type int: FALSE
date.c:69,14: Return value type bool does not
mat ch declared type int: ((dl.normal.year
< d2.nornul .year) || ((dl.normal.year ==
d2. normal . year) && (day_of year(dl) <
day_of _year(d2))))

Thefirst messageis generated because L CLint expectsthe test
of aconditional expressionto beabool . The next four mes-
sages are generated because the constants TRUE and FALSE
are of typebool , but are used wherei nt s are expected. The
final messageis generated because LCLint treats the result of
a comparison operator as type bool . These messages con-
firm our hypothesisthat the programmer has not distinguished
bool fromi nt. However, it appearsthat the programmer has
not relied upon char andi nt being the same.

We now convert to a style of programming that treats bool
asadistinct type. Thisinvolves some editing, replacing i nt
by bool wherever we intend alogical value. So, for exam-
ple, thefunction prototypefor thefunctiondat e_i sl nYear
becomes

bool date_islnYear (date d, int year);
Running LCLint on the revised program yields one warning:
date.c:61,10: Return value type int does not

mat ch decl ared type bool: (d.normal.year =
year)

LA client of the bool type includes a standard header defining the bool
typeasi nt, and exportingtwo constants: TRUE and FALSE.

2The flags +bool i nt and +chari nt indicate that bool s, i nts, and
char s areto betreated as equivalent.

#i ncl ude <stdio. h>

#i nclude <tinme.h>

#i nclude "date.h"

#include "error.h" /* defines error */

date today;
date todayGQwr;
static int date_tab[13] =
{ 0, 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31 };

#define isLeap(y) \
((((y) %4 ==0) & (((y) %100) != 0)) \
[l (((y) %400) == 0))
#define isLeapMonth(m ((m == 2)
#define days_in_nmonth(y,m \
(date_tab[n] + \
((i sLeapMonth(m && isLeap(y)) ? 1 : 0))

int days_in_year (int y)
{ return (isLeap(y) ? 366 : 365); }

voi d setToday (date * d, int local) {
char asci Date[10] ;
time_t tm=time((time_t *) NULL);
(void) strftine(asci Date, 10, "9\ 0",
27 local ? localtime(&m
gntinme(&m);
(voi d) date_parse(asci Date, d);

voi d set TodayLocal (void)
32 { setToday(& oday, TRUE); }
voi d set TodayGMI' (voi d)
34 { setToday(& oday, FALSE); }
voi d copyDate (date *dl, date *d2) {

36 if (date_isNormal (*d1)) d2->normal = d1->nornal;

37 d2->tag = di1->tag;
}

int date_year (date d) {
if (!date_i sNornmal (d)) {
error("year_date expects nornmal date");
return -1; }
return d.normal .year;

}
int day_of _year (date nd) {
if ('date_i sNormal (nd)) {
error("day_of _year expects nornmal date");
return O;
} else {
ndate d = nd.nornal ;
int m day = d.day;
for (m=1; m< d. nonth; mH+)
day += days_i n_nonth(d.year, m;
return day;

}

int date_islnYear (date d, int year) {
if (!date_i sNornmal (d)) {
error("dateislnYear expects nornal date");
60 return FALSE }
61 return (d.nornal.year = year);

}
int date_isBefore (date dl, date d2) {
if (!(date_i sNornmal (dl) && date_isNormal (d2)))
{

error("date_i sBefore expects nornmal dates");

67 return FALSE;
} else {
69 return ((dl.normal.year < d2.nornal.year)
|| ((dl.nornal.year == d2.nornal.year)

&8 (day_of _year (d1)
< day_of _year (d2))));
}

(dat e_par se removedto save space)

Figure 1: date.c

#i f ndef DATE_H
#defi ne DATE_H

#i ncl ude "bool . h"

typedef enum { UNDEFI NED, NORMAL } dat eKi nd;
typedef struct {

int month, day, year; } ndate;
typedef struct {

dateKind tag; ndate normal; } date;

extern date today;
extern date todayGQMr;

extern void setToday (date *d, int local);
extern void set TodayLocal (void);

extern void set TodayGMI (void);

extern void copyDate (date *dl, date *d2);

extern int date_year (date d);

extern int day_of year (date d);

extern int days_in_year (int year);

extern int date_isBefore (date dl, date d2);
extern int date_islnYear (date d, int year);
extern int date_parse (char dateStr[],

date *ind);
extern int date_isNormal (date d);

#define date_i sNormal (d) ((d).tag == NORMAL)
#endi f

Figure2: date.h

Examining the code, we discover that the implementation of
date_i sl nYear returns an i nt because the assignment
operator (=) was used where == wasintended. We correct this
bug, and proceed to the next level, where adding specifications
allows additional checkingto be done.

3.2 Separating Interfaces from Implementations

A common style for organizing a C program is as a set of
program units, often called modules. A module consists of an
interface and an implementation. Theinterfaceis a collection
of types, functions, variables, and constants for use by other
modules, caledits clients. An interface specification provides
information needed to write clients.

A C module Mis typically represented by two filess M h
contains a description of its interface, plus parts of itsimple-
mentation; M ¢ containsmost of itsimplementation, including
function definitions and private data declarations. When us-
ing LCLint, therole of M ¢ is unchanged, but we move some
information previously contained in M h into a separate file,
Mlcl:

e M| cl containsaninterface specification—aformal de-
scription of thetypes, functions, variables, and constants
provided for clients as well as comments providing in-
formal documentation. It replacesM h as documenta-
tion for client programmers, who should no longer ook
at M h. Theinformation provided in the specification
is also exploited by LCLint to perform more extensive
checking than could be done by atraditional lint.

typedef enum { UNDEFI NED, NORMAL } dat eKi nd;
typedef struct {

int nonth, day, year; } ndate;
typedef struct {

dat eKi nd tag; ndate normal; } date;

dat e today;
dat e todayQWr;

voi d set Today (date *d, bool |ocal);
voi d set TodayLocal (void);
voi d set TodayGMI (voi d);
voi d copyDate (date *d1,
int date_year (date d);
int day_of year (date d);
int days_in_year (int year);

bool date_isBefore (date dl1, date d2);

bool date_islnYear (date d, int year);

int date_parse (char dateStr[], date *ind);
bool date_isNormal (date d);

date *d2);

Figure 3: Client information moved to date.lcl

#i f ndef DATE_H

#defi ne DATE_H

#i nclude "date.lh"

#define date_i sNormal (d) ((d).tag == NORMAL)
#endi f

Figure 4: New date.h

¢ M h containstheinformation needed by the compiler to
compileM ¢ and clients of M

LCLint generates a header file, M | h, from M | ¢l for in-
clusion in M h. This file contains prototypes for functions
and declarations of types, variables and constants specified in
M I cl. Automatic generation of . | h files saves the user
from repeating information from the . | ¢l fileinthe. h file,
avoiding an opportunity for error.

Here, we construct dat e. | cI by moving the global types,
constants, variables, and prototypesthat constitutetheinterface
of thedat e module from dat e. h todat e. | cl . Thefiles
date. | cl anddate. h areshownin Figures3 and 4.

We now run LCLint with the argument dat e, so that both
date. | cl and date.c are checked. No inconsistencies
arereported. Thisis hardly surprising, since we have merely
redistributed information in amore modular way.

3.3 Making a Type Abstract
LCLint categorizestypes as exposed or abstract:

e An exposed type is a data structure that is described as
aCtype(e.g. char *) that is made known to clients,
who are entitled to rely onit.

e An abstract type hides representation information from
clients, but provides functions to operate on its values.
Abstract types are best thought of as collections of re-
lated operationson collectionsof related values[11, 14].

#i ncl ude <stdio. h>
#i ncl ude "date.h"
#include "error.h"

int days_between (date startD, date endD) {

6 if (startD. tag != NORVAL

7 || endD.tag != NORVAL) {
error ("days_between expects normal dates");
return -1;

} else if (date_isBefore(endD, startD)) {
Figure 5: test.c, atrivia client for date

Exposed types correspond exactly to typesin C; abstract types
do not correspondto anythingin C. All thetypesin our example
thusfar have been exposed.

C provides no direct support for abstract types, but there is
a style of C programming in which they play a prominent
role. The programmer relies on conventionsto ensure that the
implementation of an abstract type can be changed without
affecting the correctness of clients. The key restriction is that
clients never directly access the representation of an abstract
value. All access is through the functions provided by its
interface.

Anexposedtypeisspecified(inan. | cl file)byaCt ypedef .
An abstract type is specified by a type declaration and a col-
lection of functions that manipulate values of its type. The
representation of these valuesis hidden within the implemen-
tation (inthe . h file). Clients can create, modify and examine
abstract values by calling the functions in the interface. Type
checking for abstract types is done by name, except within
their implementations, where the abstract type and its repre-
sentation are equivalent. This allows an implementation to
accessinternal structure that is hidden from clients.

Both mutable and immutable abstract typesare supported. The
valueof aninstance of animmutabletypeisunchangeable. The
value of an instance of a mutable type depends on the com-
putation state. LCLint checking is the same for mutable and
immutabl etypes, except for additional checkson mutabletypes
involving modificationsand checkingthat the representation of
amutabl e type conforms to assignment sharing.

We continue our example by making dat e an immutable
abstract data type. To do this, we move the typedefs in
date.lcl back to the implementation (just before the
#i ncl ude of date. | h) and replace them in date. | cl
by theline

i mrut abl e type date;

This set of changeshas no effect on checking dat e. It does
affect the checkingdoneon clients of dat e. | ¢l , which may
access the structure of dates only through the functions pro-
vided in the interface. To see the effect of this checking, we
check asampleclient module, t est . ¢, shownin Figure 5.

Running LCLint with the command line
Iclint date test.c
resultsin the warnings:
test.c:6,7: Access field of abstract type
(date): startD.tag

test.c:7,10: Access field of abstract type
(date): endD.tag

indicating the two places where t est . ¢ violates the ab-
straction boundary of dat e. To repair this, we replace the
implementati on-dependent expression,

startD.tag ! = NORVAL
with the abstract call
Idate_i sNornal (startD)

(and likewisefor endD).

3.4 Function Specifications: Globals

An LCL function specification starts with a header, which is
a C prototype, extended with alist of the global variables that
may bereferenced by thefunction’simplementation. It iscom-
pleted by a body enclosed in curly braces. The body contains
an optional requires clause, an optional modifies clause, and
an optional ensuresclause.

Continuing our example, we add global slists and empty bodies
to the function prototypesindat e. | cl , eg.,

voi d set TodayLocal (void) date today;

{1}

10 void set TodayGWI' (voi d) date todayGMr;
{1}

We now use LCLint to check that the function bodies refer-
ence exactly the intended variables. Running LCLint on the

implementation in Figure 1 with the command line®
lclint -nodifies date test.c
resultsin the warnings

date. c:34,13: Unauthorized use of gl obal today
date.lcl:10,1: dobal todayGMr |isted but not
used

which are both symptoms of using the wrong global variable
inthe body of set Today GMI.

3.5 Function Specifications: Modifies

A modifiesclause sayswhich externally visible objectsafunc-
tion is allowed to change. If there is no modifies clause, then
it must not make an externally visible changeto the value of
any object.

Continuing our example, we add, in date. | cl, modifies
clausesfor the function prototypes of functionsthat we expect
to modify visible objects:

voi d set TodayLocal (void) date today;
{ nodifies today; }

voi d set TodayGMI (voi d) date todayGwr;
{ nodifies todayGMr; }

voi d set Today (date *d, bool I|ocal)

3The- modi fi es flagis used to suppress messages regarding modification
errors. Thiswill be discussed in the next section.

{ nodifies *d; }

voi d copyDate (date *dl, date *d2)
{ nodifies *d1; }

Running LCLint on the implementation in Figure 1 with the
command line

lclint date test.c
resultsin the warnings

date.c: 36,27: Suspect nodification of
d2->normal : d2->normal = d1->nornal
date.c:37,3: Suspect nodification of d2->tag:
d2->tag = dl->tag

which areboth symptoms of assignmentsin thewrong direction
in the body of copyDat e.

We correct those errors and proceed.

3.6 Use Before Definition

Likemany static checkers, LCLint detectsinstanceswherethe
value of a location may be used before it is defined. This
analysis is usually done at the function level. If thereis a
path through the function that usesalocal variable beforeit is
defined, a use-before-definition warning is issued.

Detecting use-before-definition errors involving parametersis
more difficult. In C, it is common to use a pointer to an
undefined value as an argument intended only to receive a
return value. Without specifications, we must either do global
analysis to detect use-before-definition errors across function
calls, or make assumptions that lead to spurious warnings or
undetected errors.

In afunction specification header, the out type qualifier indi-
catesapointer formal or mutable abstract objectsthat is meant
only to receive aresult value. The value pointed to by an out
parameter is assumed to be undefined when the function is
entered. LCLint will generate a warning if it is used before
it is defined in the body. All other parameters are assumed to
be defined upon entry. LCLint will generate a warning at the
point of call if afunctionis called with an undefined argument,
unlessit isspecifiedasan out parameter.

Continuing our example, we addthe out typequdifier tothree
specifications:

voi d set Today (out date *d, bool I|ocal)
{ nodifies *d; }

voi d copyDate (out date *dl1l, date *d2)
{ nodifies *d1; }

int date_parse (char dateStr[],
out date *ind)
{1

Running LCLint on theimplementation in Figure 1 now yields
the message

date.c:36,25: Variable dl1 used before set

The problem hereisthat the body of copyDat e teststhet ag
field of d1 when it should have tested the t ag of d2. This

is related to the errors detected by the modifies checking dis-
cussedabove. Theoriginal implementation uniformly reversed
d1l andd2.

4 Experience using LCLint

We don’t yet have signficant experience using LCLint to de-
velop completely new code. We do, however, have some expe-
rience using LCLint to understand and maintain legacy code.
We have used LCLint on several programsincluding:

e A small database program, formally specifiedin [8].

¢ pm an 1800-line portfolio management tool that had
been in use for several years. This program had no
formal specifications, but wasstructured around abstract
data types.

e quake, a 5000-line program for automating system
builds in Modula-3. We had not looked at this program
before running LCLint on it. It had no formal specifi-
cations, and we had no ideawhat style of programming
had been employed.

e LCLint itself.

Running LCLint on the database example did not find many
significant problems [4]. It did uncover two abstraction vi-
olations, and one undocumented modification that revealed a
memory leak. It also generated five spurious modification
warnings, because of LCLint’s imprecise modifies checking.
For example, it failed to determine that a series of assignments
to an object culminated in restoring the object’sinitial value.

The pmprogram was used in a study of how formal specifica
tions could facilitate a software re-engineering process aimed
at making existing programs easier to maintain and reuse[19].
We wrote LCL specifications for the main modules of the
program, and then tried to improve them. Modifications to
the program were driven by changes made to the specifica-
tions of its modules. Each time the specification of a module
changed, the code wasrevised. We then used LCL int to check
the revised code against its new specification. In the process,
LCLint uncovered variousinconsi stencies between the imple-
mentations of the modules and their specifications, including
abstraction violations, unsanctioned object modifications, and
unsanctioned global variable accesses.

Themost illuminating experiment wasusingL CLintonquake
[4]. We applied it in the manner described in Section 3. We
found two bugs (which could a so have been found by aconven-
tional lint) by running LCLint on the quake source without
any specifications. We also learned that the programmer had
not distinguished betweentypesi nt andchar , but ailmost al-
waystreated i nt and bool asdistinct. Three minor changes
were all that was required to make this distinction complete.

Thenwe used LCLint to discover which types were treated as
abstract, by declaring one type at a time to be abstract, and
inspecting the messages generated by LCLint. One type was
used completely abstractly, and several were so close to being
used abstractly that we decided that the abstraction violations
were unintended and changed the program to eliminate them.
Eliminating these abstraction violations made the client code

shorter and simpler. Furthermore, through this process we
gained an understanding of the code, which we recorded in
the specifications. In particular, the abstract type declarations
make clear which types can be safely modified in isolation and
supply information about the level of detail at which one needs
to read various parts of the program.

Finally, we moved the prototypes from the . h filesto . | cl
files. Since we didn’'t know what the various functions were
supposed to do, we did not attempt to construct globals or
modifies clauses. We merely ran LCLint with globals and
modifies checking turned on. Thisyielded messagesreporting
the global variables accessed and the objects modified by each
function. We then used these messages to add globals and
modifies clauses to the specifications of the functions—thus
greatly improving the documentation of the program.

Towardsthe end of LCLint’s development, we began using it
on its own code and specifications. Many errors were caught,
most involving violations of type abstractions. Most of the
actual bugs detected by LCLint were not related to specifica-
tion checking, although the flexibility and strict type checking
provided by LCLint helped us discover errors that we would
not have found with a traditional lint. Relatively late in the
development of LCLint, we decided that the underlyingimple-
mentation for representing types was too inefficient. Without
LCLint, we would have been reluctant to reimplement such
apervasive type for fear that unexpected dependencieson the
previousimplementation wouldlead to bugsthat would be hard
to find. By using LCLint, however, we could verify that the
typewastruly abstract, and changeitsimplementation without
concernthat it might introduce bugs el sewhere.

5 Related Work

Several checkers have been developed to analyze programs
using someform of formal specifications.

Cesar [16] allows programmers to specify sequencing con-
straints for an abstract type using a specification language
based on regular expressions. For example, a programmer
could specify afile type that may be opened, written to mul-
tiple times, and closed, in that order. The prototype Cesar
system was too inefficient to be a useful tool in real software
development. Cesar built on other systems [7, 20] that use
sequencing constraintsto find errorsin code.

Inscape [17] uses a specification language that can specify
pre-conditions and post-conditions of a procedure, as well as
obligationsonthe caller following return from thecall (such as
closing a returned file). Inscape propagates the specifications
of proceduresin a program using a special propagation logic
incorporating unknownand possiblevalues. Bugsare detected
when a pre-condition or an obligation is contradicted. LCL
provides no way to express obligations on the caller after the
called function returns. Some useful checking could be done
if specifications could require, for example, that the caller
eventualy free a returned object, or that it not modify the
returned object.

Aspect [9] is asystem for efficiently detecting bugs, by look-
ing for unsatisfied dependencies. The specification language
describes dependenciesbetween “ aspects’ of objects (such as
an array’s size) in the post-state and pre-state, and the checker
reports when a specified dependency is not present in the im-

plementation. Dependency information in LCL specifications
is often not available, or is hidden within the specification.
Moreover, LCL has no notion of aspects of an abstract type,
so it cannot provide the information for some of the checking
done by Aspect. Every error reported by Aspect is guaranteed
to be an error in the code or the specification. LCLint doesn't
provide such a guarantee—some spurious warnings may be
generated, but they can all be turned off by the user.

Other tools have been developed more aong the lines of im-
provinglint. CCEL [3] isametalanguagethat allows program-
mers to express constraints that can be checked automatically
about C++ programs. Constraints are specified in a language
similar to C++, and can constrain design, implementation, and
style. Constraints are lexical in nature, but general enough to
catch some high-level C++ errors such as flaws in the inheri-
tance hierarchy. CCEL differsfrom LCLint in that the specifi-
cations describe general constraints and naming conventions,
but do not specify the properties of specific functions.

LCLint canbeviewed asatool for promoting modul ar software
designsand abstract datatypesin C. Many modern languages,
including C++ [18], Ada [1], Modula-3 [15] and CLU[11],
support both. C++ adds support for abstract types and data
encapsulation to C, using an object-oriented paradigm. For
programmers who need typeinheritance, using C with LCLint
is not an aternative to C++. But for C programmers who
merely wish to use modules and abstract types, LCLint pro-
vides data encapsul ation and type safety without the overhead
and complexity of C++. The other checking done by LCLint
isuseful in both C and C++.

Like LCLint, the Fortran Abstract Data (FAD) system [13]
adds abstract types to an existing programming language. It
extends the syntax of Fortran and provides a preprocessor to
convert FAD declarations into standard Fortran. Programs
using FAD abstract types cannot be compiled by a standard
Fortran compiler or readily understood by an experienced For-
tran programmer with no knowledgeof FAD. In contrast, LCL
specifications used by LCLint are orthogonal to the code: the
source codeis standard ANS| C.

6 Summary and Conclusions

In thispaper, we havetried to give aflavor of thekindsof things
L CLint can do, but we made no attempt to becomprehensive. A
report by Evans[4] containsacomplete description of LCLint,
and adiscussion of how it can be usedin developing new code,

and in understanding and maintaining legacy code. Tan [19]

presentsa programming methodol ogy based on the use of LCL

and LCLint.

LCLint detects inconsistencies between code and a combina-
tion of specifications and programming conventions. Some-
times warnings expose errors in the specifications or in the
code. Sometimes they indicate a violation of a programming
convention. Such aviolation might not be a bug. However a
warning that the code depends on implementation details not
apparent in the specification, or that it violates conventions
upon which other parts of the program may rely, can help pro-
grammers produce better programs and better documentation,
and can decrease mai ntenance costs.

LCLint was designed report as many real problems as possi-
ble, while generating relatively few spurious warnings. Most

checks are sound and complete—it is possible to determine
and report exactly those cases where a particular problem is
present. Some of the checks involving use-before-definition
and modification areimprecise. Thereare caseswhereLCLint
cannot determine if a suspected problem is present, so ames-
sagemay beissued for anon-existent problem. Inother cases, a
real problem may go undetected. Early experiencewith LCLint
[4, 19] suggeststhat relatively few spuriouswarningsaregener-
ated, and that the avail able command line optionsand syntactic
comments are adequateto suppressinappropriate messages. It
is more difficult to assess the impact of incomplete checks,
since we cannot know how many undetected problems exist.

Weoriginally developed LCLint asatool to detect bugsin pro-
grams. We haven't yet had any significant experience using
it while developing new programs. (LCLint was well along
in development before it was ready to check itself.) Sincewe
mostly applied LCLint to well-tested code, it is not surprising
that we mostly got warnings about violations of data abstrac-
tions and style conventions, rather than about bugs. But it did
expose a few bugsin the well-tested code by reporting incon-
sistencies with the specifications. Our experience shows that
LCLint is also useful in improving code quality, supporting
data abstraction, and detecting flawsin specifications.

LCLint doesnot yet takefull advantageof complete LCL spec-
ifications. We plan to explore the benefits of more extensive
checking. It is not yet clear where we will reach the point of
diminishing returns.

Acknowledgments

LCLint isthe result of ajoint R&D project (Larch) involving
Digital and MIT. The other participants in this project, Gary
Feldman, Steve Garland, Kevin Jones, Bill McKeeman, Joe
Wild and JeannetteWing, all contributed ideasand/or codethat
helped immensely. Special thanks are due to Steve Garland
who has contributed every step of the way. Also, thanks to
Steve Harrison for providing the quake example.

References

[1] The Ada programming language reference manual.
ANSI/MIL-STD 1815A, US Department of Defense,
US Government Printing Office, February 1983.

[2] Dan Craigen. “Verification Environments,” Software
Engineer’s Reference Book, edited by John A. McDer-
mid, CRC Press, 1993.

[3] CarolynK. Duby and Scott Meyersand Steven P. Reiss.
“CCEL: A Metalanguagefor C++,” USENIX C++ Con-
ference Proceedings, August 10-13, 1992.

[4] David Evans. Using Specifications to Check Source
Code, MIT/LCS/ITR-628, MIT Laboratory for Com-
puter Science, June 1994.

[5] David Evans. LCLint User's Guide, Version 1.4.
September 1994. Availablein:

ftp://larch.lcs.mt.edu/ pub/Larch/
lclint/lclintl. 4.userguide.ps.Z

[6] G. Feldman and J. Wild. “The DECspec project: tools
for Larch/C,” Proc. Fifth Int. Workshop on Computer-
Aided Software Engineering, Montreal, Jul. 1992. Re-
vised version in [12].

[7] L.D. FosdickandLeonJ. Osterweil. “ Dataflow analysis
in software reliability,” ACM Computing Surveys, 8(3),
September 1976.

[8] JV. Guttag and JJ. Horning with SJ. Garland,
K.D. Jones, A. Modet, and JM. Wing. Larch: Lan-
guages and Tools for Formal Specification, Springer-
Verlag, 1993.

[9] Daniel Jackson. Aspect: A formal specification lan-
guagefor detecting bugs, MIT/LCS/TR-543, MIT Lab-
oratory for Computer Science, June 1992.

[10] S.C. Johnson. Lint, a C Program Checker, Unix Docu-
mentation.

[11] BarbaraLiskov and John Guttag. Abstraction and Spe-
cification in Program Development, MIT EECS Series,
MIT Press, 1986.

[12] U. Martin and J.M. Wing. Proc. First Intl. Workshopon
Larch, Dedham, Jul. 1992, Springer-Verlag, 1993.

[13] Keith W. Miller, Larry J. Morell, and Fred Stevens.
“Adding data abstraction to Fortran software,” IEEE
Software, November 1988.

[14] JamesH. Morris, Jr. “Types are Not Sets,” First ACM
Symp. Principles of Programming Languages, Boston,
Oct. 1973.

[15] Greg Nelson, editor. Systems Programming with
Modula-3. Prentice Hall, 1991.

[16] Kurt M. Olender and Leon J. Osterweil. “Interproce-
dural static analysis of sequencing constraints,” ACM
Transactions on Software Engineering and Methodol-
ogy, 1(1), January 1992.

[17] Dewayne E. Perry. “The logic of propagation in the
Inscapeenvironment,” In Proceedingsof the ACM SIG-
SOFT’ 89 Third Symposiumon Software Testing, Analy-
sis, and Verification (TAV3), 1989.

[18] Bjarne Stroustrup. The C++ Programming Language.
Addison-Wesley, 1986.

[19] Yang Meng Tan. Formal Specification Techniques
for Promoting Software Modularity, Enhancing Soft-
ware Documentation, and Testing Specifications,
MIT/LCS/TR-619, MIT Laboratory for Computer Sci-
ence, June 1994.

[20] Cindy Wilson and Leon J. Osterweil. “Omega—a data
flow analysis tool for the C programming language”
|EEE Transactionson Software Engineering, SE-11(9),
September 1985.

A Flags

This appendix describes LCLint command line options. It is
extracted from the LCLint User’sGuide, version 1.4 [5].

So that many programming styles can be supported, LCLint
provides many flags. Modes are provided for setting many
flags at once. Individual message flags override the setting in
the mode. Flagslisted before the mode have no effect.

Flags are preceded by + or - . When aflagis preceded by + it
ison; whenitisprecededby - it isoff. Thisconventionisclear
and concise, but is not standard in UNIX; since it is easy to
accidentally use the wrong one, LCLint issueswarnings when
auser redundantly setsaflag to thevalueit already had (unless
-war nf | ags isusedto suppresssuchwarnings). Theprecise
meaning of on and off dependson the particular flag.

Default flag settings are read from “/ .l clintrc if it is
readable. Command-line flags override settings in this default
file. Thesyntax of the. | cl i ntrc fileisthe sameasthat of
command-lineflags, except that flags may be on separatelines
and the # character may be used to indicate that the remainder
of theline isa comment.

Flags can be grouped into four major categories: mode flags
for coarse control of LCLint checking, message control flags
for selecting specific classesof messagesto be reported or sup-
pressed, type equivalenceflagsfor denoting particul ar typesas
equivalent or distinct, and general flags for controlling high
level behavior. General flags are applicable only at the com-
mand line; all other flags may be used both at the command
line and in control comments.

Mode Flags

Mode flags set many type equivalence and message control
flags to predefined values. A mode flag has the same effect
when used with either + or - . These are brief descriptionsto
give ageneral idea of what each mode does. To see the exact
flag settingsin each mode, usel cl i nt - hel p nodes.

weak weak checking, intended for typical C code. No mod-
ifies checking, macro checking, rep exposure, or clean
interface checking is done. Return vaues of typei nt
may beignored. Thetypesbool , i nt, char and user-
defined enumtypes are al equivalent. Old style C dec-
larations are unreported. Globals checking and predicate
checkingis done.

st andar d the default mode. All checking done by weak,
plus modifies checking, global alias checking, useall pa-
rameters, ignored return valuesor any type, macro check-
ing, unreachable code, infinite loops, and fall-through
cases. Thetypesbool , i nt andchar aredistinct. Old
style C declarations are reported.

checks moderately strict checking. All checking done by
st andar d, plusmust modification checking, rep expo-
sure, return dias, and clean interfaces.

strict extremely strict checking. All checking done by
checks, plusmodificationsand global sused in unspec-
ified functions, unspecifieduse and modificationsof stan-
dard streams (st di 0), and strict typing of C operators.

Message Control Flags

Message control flagsare preceded by a- to turn the message
off, or a + to turn the message on. Each flag is described
by the class of messagesthat are reported when it is on, and
suppressed when it is off.

¢ Globals and Modifies Checking

+gl obal s unspecified use of global variable

+gl obunspec useof global in unspecified function

+gl obuse global listed for afunction not used

+nodi fi es unspecified modification of visible state

+rmust nod specified modification is not detected

+modunspec modification in unspecified function

+st di o unspecified use or modification of standard
stream (st di o, st dout , stderr)

¢ Clean Interfaces

+specundef function or variable specified but never
defined

+export variable, function or type definition exported

but not specified (equivalent to export var,
exportfcn andexporttype)

+exportvar variable exported but not specified
+exportfcn function exported but not specified
+exporttype typedefinition exported but not
specified
e Declarations
+t opuse declaration at top level not used
+par anuse function parameter not used
+var use variable declared but not used
+f cnuse function declared but not used
+over | oad library function overloaded
+i ncondef s function or variable redefined with
inconsistent type
¢ Type Checking

+bool representation of bool isexposed

+pr ed typeof conditiontest (fori f, whil e orfor)
not boolean

+pr edpt r type of condition test not boolean or
pointer
+ptrarith arithmeticinvolving pointer and integer

+pt r conpar e comparison between pointer and
number

+bool conmpar e comparison betweenbool s*
+strictops primitive operation does not type check
strictly
e Return Values

+returnval returnvalueignored
+ret urnval bool returnvalueof typebool ignored
+returnval i nt return valueof typei nt ignored

¢ Rep Exposureand Aliasing

+r epexpose abstract representation is exposed
(equivalenttor et expose andassi gnexpose)

4This is dangerous, because there are many possible true values in C. The
result of a comparison between two truebool s is not necessarily TRUE.

+r et expose -—abstract representation is exposed
(return values only)

+assi gnexpose abstract representation is exposed
(assignmentsonly)

+retalias functionreturnsaliasto parameter or
global

+gl obal i as function returns with global aliasing
externa state

e Macros
+macr oundef undefined identifier in macro
+macr opar ens macro parameter used without
parentheses

+macr opar ans macro parameter is not used exactly
once

+al | macr os check al parameterized macros as
functions (macros are not expanded)

e Others
+ansi warn about old style function declarations
+i nfl oops likely infiniteloop is detected
+casebr eak non-empty casein aswitch without
preceding break
+unr eachabl e code detected that is never executed

Type Equivalence Flags

+bool i nt bool andi nt areequivaent
+chari ndex char canbeusedto index arrays
+charint char andi nt areequivaent
+enunmi nt enumandi nt areequivaent

+f orwar ddecl forward struct and union declarations of
pointers to abstract representation match the abstract

type
+num i teral int literalscanbefloats

+voi dabstract alowvoi d * tomatch pointersto
abstract types

+zeroptr literal O can betreated asa pointer

General Flags

These flags have the same meaning when used with either +
or - . They control initializations, message printing, and other
behavior not related to specific checks.

hel p on-line help. Help can befollowed by atopic
(available topics shown if no argument is used) or list of
flags.

dunmp file save statein file (default extension. | | dnp)

| oad file load state from file (instead of standard library
file)

nol i b do not load standard library

whi chl i b show pathname and creation information for
standard library

i file set LCL initidization file
f file load optionsfrom file

nof do not load default optionsfile "/ .l clintrc)
noaccess ignore accessand noaccesscomments
nocoment s ignoreal stylized comments

| directory add directoryto C include path

Sdirectory add directory to search path for LCL specs
Dinitializer defineinitializer (passedto C preprocessor)
Uname undefineidentifier (passed to C preprocessor)

t npdi r dir set directory for writing temporary files

showf unc show name of function containing error (first
error in function only)

si ngl ei ncl ude optimizeincludefiles

st at s display information on number of lines processed
and execution time

nol h suppressgeneration of . | h files

qui et suppressherald and error count

expect n set expected number of codeerrors)

| cl expect n set expected number of specification errors)

limt n suppressnthand higher consecutivesimilar
messages
I'i nel en n setlength of messagesin characters

The following flags have different meaningsif + or - isused.
The default behavior is on, described below. Using - flag has
the opposite effect.

+war nf | ags warnwhen command line setsflag to default
value in mode

+showcol umm show column number where error is found
+hi nts provide hopefully helpful hints

+accessunspec representationsof abstract typesare
accessiblein unspecified function in the . ¢ file with the
same name as the specification

B Control Comments

Toprovidesourcelevel control of LCLint, stylized C comments
may be used. All control comments begin with / * @and are
ended like normal C comments.

Any of the message control and type equivalence flags can be
set locally using control comments. At any point in afile,
a control comment can set the flags locally to override the
command line settings. The original flag settings are restored
before processing the next file. The syntax for setting flags
in control commentsis the same as that of the command line,
except that flags may also be preceded by = to restore their
setting to the original command-linevalue. For instance,

/*@+boolint -nodifies =charint */

makesbool andi nt indistinguishabletypes, turns off mod-
ifies checking, and restoresthe equivalence of char andi nt
to its command line or default setting. This is useful to turn
of a particular check for a small segment of code where a
convention is consciously violated.

For coarser control, / * @ gnor e*/ and/* @nd*/ canbe
used to suppress al messages. No errors will be reported in

codebetween/ * @ gnor e*/ and/ * @nd*/ . Thei gnor e
andend comments must be matched—awarning is printed if
thefile endsin an ignore region.

The control comment/ * @ */ will suppressreporting of any
errors from hereto the end of theline. The syntax / * @ n*/
will suppress any errors from here to the end of the line, but
reports a warning message unless exactly n errors are found.

Control comments may aso be used to override type access
settings. / * @ccess t*/ alows succeeding code to access
the representation of t. To disallow access to abstract type
t, use/ * @oaccess t*/. Bothaccess and noaccess
may be given alist of types separated by spaces. Type access
appliesfrom the point of the comment to the end of the file or
the next access control comment for that type.

When +al | macr os isused,/ * @ot f unct i on*/ canbe
usedto indicate that the next macro definitionisnot intended to
beafunction, and should be expandedinlineinstead of checked
asamacro function definition. However, +noconment s does
not cause / * @ot f unct i on*/ comments to be ignored,
because of their syntactic role.

C Availability

LCLint isavailable viaanonymousftp from
ftp://larch.lcs.mt.edu/ pub/Larch/lclint

Look at README inthisdirectory for moreinformation. If you
have problems installing LCLint, send a messageto

lclint@arch.lcs.mt.edu

Severd platforms are supported, including DEC Alpha AXPs
running OSF/1, DECstations running Ultrix, Sun workstations
(Sparc) running Solaris 2, Sun workstations (Sparc) running
SunO$4.1/Solaris 1, and PCs running linux. Source code is
available if you would like to build a version for some other
platform.

There are two mailing lists associated with LCLint.

e lclint-announce@arch.lcs.nit.edu
Reserved for announcements of new releases and bug
fixes.

elclint-interest@arch.lcs.nit.edu
Informal discussionsontheuse and devel opment of Iclint.

To subscribeto alist, send a (human-readable€) messageto
lclint-request@arch.lcs.nmt.edu
The URL for the LCLint home pagein the World-Wide Webis

http://1arch-ww. | cs. mt.edu: 8001/
larch/lclint.htm

(without the line break).

