Overview

1. Introduction, Pre-WWII cryptology
 - Lorenz Cipher (Fish)
 - Used by Nazis for high command messages
 - First programmable electronic computer built to break it
2. Enigma Cipher
 - Used by German Navy, Army, Air Force
 - Broken by team including Alan Turing
3. Post-WWII
 - Modern symmetric ciphers
 - Public-Key Cryptography

Menu

- Introduction to Cryptology
 - Terminology
 - Principles
 - Brief history of 4000 years of Cryptology
- Cryptology before World War II
 - A simple substitution cipher
 - [Break]
 - Breaking substitution cipher
 - Vigenère Cipher

What is cryptology?

- Greek: “krypto” = hide
- Cryptology = science of hiding
 - Cryptography, Cryptanalysis = hide meaning of a message
 - Steganography, Steganalysis = hide existence of a message
- Cryptography = secret writing
- Cryptanalysis = analyzing (breaking) secrets
 - Cryptanalysis is what attacker does
 - Decipher or Decryption is what legitimate receiver does

Cryptology and Security

Cryptology is a branch of mathematics.

Security is about people.

Attackers try find the weakest link. In most cases, this is not the mathematics.
Introductions

Encrypt

Decrypt

Plaintext → Ciphertext → Plaintext

Alice

Eve (passive attacker)

Bob

Insecure Channel

Introductions

Encrypt

Decrypt

Plaintext → Ciphertext → Plaintext

Alice

Malice (active attacker)

Bob

Insecure Channel

Cryptosystem

Ciphertext = \(E(\text{Plaintext}) \)

Required property: \(E \) must be invertible

Plaintext = \(D(\text{Ciphertext}) \)

Desired properties:

Without knowing \(D \) must be “hard” to invert

\(E \) and \(D \) should be easy to compute

Possible to have lots of different \(E \) and \(D \)

“The enemy knows the system being used.”

Claude Shannon

Kerckhoff’s Principle

- French handbook of military cryptography, 1883
- Cryptography **always** involves:
 - Transformation
 - Secret
- **Security should depend only on the key**
- Don’t assume enemy won’t know algorithm
 - Can capture machines, find patents, etc.
 - Too expensive to invent new algorithm if it might have been compromised

Axis powers often forgot this
Symmetric Cryptosystem

Ciphertext = E (K, Message)
Message = D (K, Ciphertext)

Desired properties:
1. Kerckhoff’s: secrecy depends only on K
2. Without knowing K must be “hard” to invert
3. Easy to compute E and D

All cryptosystems until 1970s were like this. Asymmetric cryptosystems allow encryption and decryption keys to be different.

Really Brief History
First 4000 years

Desired properties:
- Kerckhoff’s: secrecy depends only on K
- Without knowing K must be “hard” to invert
- Easy to compute E and D

Really Brief History - last 100+ years

Themes
- Armes race: cryptographers vs. cryptanalysts
 - Often disconnect between two (e.g., Mary Queen of Scots uses monoalphabetic cipher long after known breakable)
- Motivated by war (more recently: commerce)
- Driven by advances in technology, mathematics
 - Linguists, classicists, mathematicians, computer scientists, physicists
- Secrecy often means advances rediscovered and mis-credited

Types of Attacks
- Ciphertext-only - How much Ciphertext?
- Known Plaintext - often “Guessed Plaintext”
- Chosen Plaintext (get ciphertext)
 - Not as uncommon as it sounds!
- Chosen Ciphertext (get plaintext)
- Dumpster Diving
- Social Engineering
- “Rubber-hose cryptanalysis”
 - Cryptanalyst uses threats, blackmail, torture, bribery to get the key

Security vs. Pragmatics
- Trade-off between security and effort
 - Time to encrypt, cost and size of equipment, key sizes, change frequency
 - One-time pad (1918) offers theoretically “perfect” security, but unacceptable cost
 - Compromises lead to insecurity (class 2)
- Commerce
 - Don’t spend $10M to protect $1M
 - Don’t protect $1B with encryption that can be broken for $1M
- Military
 - Values (and attacker resources) much harder to measure
Simple Substitution Cipher

- Substitute each letter based on mapping
- Key is alphabet mapping:
 a → J, b → L, c → B, d → R, ..., z → F
- How secure is this cipher?

Key Space

- Number of possible keys
 26 (ways to choose what a maps to)
 * 25 (b can map to anything else)
 * 24 (c can map to anything else)
 ... * 1 (only one choice left for z)
 = 26! = 403291461126605635584000000

If every person on earth tried one per second, it would take 5B years to try them all.

Really Secure?

- Key space gives the upper bound
 - Worst possible approach for the cryptanalyst is to try all possible keys
- Clever attacker may find better approach:
 - Eliminate lots of possible keys quickly
 - Find patterns in ciphertext
 - Find way to test keys incrementally

Monoalphabetic Cipher

"XBW HGQW XS ACFPSUWG FWPGWXF CF AWWKZV CDQGJCDWA CD BHYJD DJXHGJ; WUWD XBW ZWJFX PHGCSHF YCDA CF GSHFWA LV XBW KGSYCFW SI FBJGCDQ RDSOZWAQW OCXBBWZA IGSY SXBWGF."

Frequency Analysis

"XBW HGQW XS ACFPSUWG FWPGWXF CF AWWKZV CDQGJCDWA CD BHYJD DJXHGJ; WUWD XBW ZWJFX PHGCSHF YCDA CF GSHFWA LV XBW KGSYCFW SI FBJGCDQ RDSOZWAQW OCXBBWZA IGSY SXBWGF."

W: 20 "Normal" English:
 e 12%
C: 11 t 9%
F: 11 a 8%
G: 11

Pattern Analysis

"XBe HGQe XS ACFPSUEG FePGeXF CF AeeKZV CDQGJCDeA CD BHYJD DJXHeG; eUeD XBe ZeJFX PHGCSHF YCDA CF GSHFeA LV XBe KGSYCFe SI FBJGCDQ RDSOZeAqE OCXBBeZA IGSY SXBeGF."

XBe = "the"
Most common trigrams in English:
 the = 6.4%
 and = 3.4%
Guessing
"the HGQe tS ACFPSUeG FePGetF CF AeeKZV CDQGJCDeA CD HHYJD DJtHGe; eueD the ZeJFt PHGCSHF YCDA CF GSHFeA LV the KGYSyFe SI FhJGCDQ RDOZeAQe OChthzeZA IGSY StheGF."

S = "0"

Guessing
"the HGQe to ACFPOUeG FePGetF CF AeeKZV CDQGJCDeA CD HHYJD DJtHGe; eueD the ZeJFt PHGCoHF YCDA CF GohFeA LV the KGoYCFe oI FhJGCDQ RDOOZeAQe OChthzeZA IGoY otheGF."

otheGF = "others"

Guessing
"the HRQe to ACSPoUer sePresCs AeeKZV CDqrJCeA CD HHYJD DJtHre; eueD the ZeJst PHrCHOs YCDA Cs roHseA LV the KroYCe oI shJrCDQ RDOOZeAQe OChthzeZA IroY others."

"sePresCs" = "secrets"

Guessing
"the HRQe to ACsCOUer secretsCs AeeKZV CDQjJCDeA CD HHYJD DJtHre; eueD the ZeJst CHRCHs YCDA CS roHseA LV the KroYCSe oI shJrCDQ RDOOZeAQe OChthzeZA IroY others."

"ACsCOUer" = "discover"

Guessing
"the HRQe to discover secrets is deekZv iDQRjiDeD iD HHYJD DJtHre; eved the ZeJst chirOs YiD ds roHSed LV the KroYise oI shJriDQ RDOOZedQe OithhezD IroY others."

Monoalphabetic Cipher
"The urge to discover secrets is deeply ingrained in human nature; even the least curious mind is roused by the promise of sharing knowledge withheld from others."
- John Chadwick,
The Decipherment of Linear B
Why was it so easy?
• Doesn’t hide statistical properties of plaintext
• Doesn’t hide relationships in plaintext (EE cannot match dg)
• English (and all natural languages) is very redundant: about 1.5 bits of information per letter (~68% of letters redundant)
 – Compress English with gzip ~ about 1:6

How to make it harder?
• Cosmetic
• Hide statistical properties:
 – Encrypt “e” with 12 different symbols, “t” with 9 different symbols, etc.
 – Add nulls, remove spaces
• Polyalphabetic cipher
 – Use different substitutions
• Transposition
 – Scramble order of letters

Ways to Convince
• “I tried really hard to break my cipher, but couldn’t. I’m a genius, so I’m sure no one else can break it either.”
• “Lots of really smart people tried to break it, and couldn’t.”
• Mathematical arguments – key size (dangerous!), statistical properties of ciphertext, depends on some provably (or believed) hard problem
• Invulnerability to known cryptanalysis techniques (but what about undiscovered techniques?)

Vigenère
• Invented by Blaise de Vigenère, ~1550
• Considered unbreakable for 300 years
• Broken by Charles Babbage but kept secret to help British in Crimean War
• Attack discovered independently by Friedrich Kasiski, 1863.

Vigenère Encryption
Key is a \(N \)-letter string.
\[E_K (P) = C \]
\[C_i = (P_i + K_i \mod N) \mod Z \]
(size of alphabet)

\[E_{KEY} ("test") = DIQD \]
\[C_0 = (t + K) \mod 26 = D \]
\[C_1 = (e + E) \mod 26 = I \]
\[C_2 = (s + Y) \mod 26 = Q \]
\[C_3 = (t + K) \mod 26 = D \]
Babbage’s Attack

- Use repetition to guess key length:
 Sequence XFO appears at 65, 71, 122, 176.
 Spacings = (71 – 65) = 6 = 3 * 2
 (122 – 65) = 57 = 3 * 19
 (176 – 122) = 54 = 3 * 18
 Key is probably 3 letters long.

Key length - Frequency

- Once you know key length, can slice ciphertext and use frequencies:
 \[L_0: \text{DLQ}L\text{CN}Q\text{L}S\text{Q}R\text{KGBSEV}Y\text{NDOIOXYR}S\text{OS}GYKY} \]
 VZXVOCDNOSOOCOWDKOOGYROEVS\text{RBXENI}
 Frequencies: O: 12, S: 7, Guess O = e
 \[C_i = (P_i + K_{i \mod N}) \mod Z \]
 ‘O’ = (‘e’ + K_0) \mod 26
 14 = 5 + 9 \Rightarrow K_0 = ‘K’

Sometimes, not so lucky...

L_1: "LMISQTVYJSSSHJYECYSGWGVJMRXEGWRPEJSI"
S: 9, X: 7, I: 6 guess S = ‘e’
 ‘S’ = (‘e’ + K_1) \mod 26
 19 = 5 + 14 \Rightarrow K_1 = ‘N’
 ‘X’ = (‘e’ + K_1) \mod 26
 24 = 5 + 19 \Rightarrow K_1 = ‘M’
 ‘I’ = (‘e’ + K_1) \mod 26
 10 = 5 + 5 \Rightarrow K_1 = ‘E’

Vigenère Simplification

- Use binary alphabet \{0, 1\}:
 \[C_i = (P_i + K_{i \mod N}) \mod 2 \]
 \[C_i = P_i \oplus K_{i \mod N} \]
- Use a key as long as P:
 \[C_i = P_i \oplus K_i \]
- One-time pad – perfect cipher!

Perfectly Secure Cipher: One-Time Pad

- Mauborge/tern [1917]
- XOR (\(\oplus\)):
 \[
 \begin{align*}
 0 \oplus 0 &= 0 \\
 1 \oplus 0 &= 1 \\
 0 \oplus 1 &= 1 \\
 1 \oplus 1 &= 0
 \end{align*}
 \]
 a \oplus a = 0
 a \oplus 0 = a
 a \oplus b = a
- E(P, K) = P \oplus K
 D(C, K) = C \oplus K = (P \oplus K) \oplus K = P

Why perfectly secure?

For any given ciphertext, all plaintexts are equally possible.

Ciphertext: 01001
Key1: 01001
Plaintext1: 00000
Key2: 10110
Plaintext2: 11111
Perfect Security Solved?

- Cannot reuse K
 - What if receiver has
 \[C_1 = P_1 \oplus K \text{ and } C_2 = P_2 \oplus K \]
 \[C_1 \oplus C_2 = P_1 \oplus K \oplus P_2 \oplus K \]
 \[= P_1 \oplus P_2 \]
- Need to generate truly random bit sequence as long as all messages
- Need to securely distribute key

Next week: “One-Time” Pads in Practice

- Lorenz Machine
- Nazi high command in WWII
 - Operator errors: reused key
- Pad generated by 12 rotors
 - Not really random

Public Lecture Tonight

- David Goldschmidt, “Communications Security: A Case History”
 - Director of Center for Communications Research, Princeton
 - Enigma and how it was broken
- 7:30pm Tonight
- UVa Physics Building, Room 203

We will cover some of the same material in the third class.