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Abstract 

Executing code can be dangerous.  This thesis describes a scheme for protecting the user by 
constraining the behavior of an executing program.  We introduce Naccio, a general architecture 
for constraining the behavior of program executions.  Naccio consists of languages for defining 
safety policies in a platform-independent way and a system architecture for enforcing those 
policies on executions by transforming programs.  Prototype implementations of Naccio have 
been built that enforce policies on JavaVM classes and Win32 executables. 

Naccio addresses two weaknesses of current code safety systems.  One problem is that current 
systems cannot enforce policies with sufficient precision.  For example, a system such as the Java 
sandbox cannot enforce a policy that limits the rate at which data is sent over the network without 
denying network use altogether since there are no safety checks associated with sending data.  
The problem is more fundamental than simply the choices about which safety checks to provide.  
The system designers were hamstrung into providing only a limited number of checks by a design 
that incurs the cost of a safety check regardless of whether it matters to the policy in effect.  
Because Naccio statically analyzes and compiles a policy, it can support safety checks associated 
with any resource manipulation, yet the costs of a safety check are incurred only when the check 
is relevant. 

Another problem with current code safety systems is that policies are defined in ad hoc and 
platform-specific ways.  The author of a safety policy needs to know low-level details about a 
particular platform and once a safety policy has been developed and tested it cannot easily be 
transferred to a different platform.  Naccio provides a platform-independent way of defining 
safety policies in terms of abstract resources.  Safety policies are described by writing code 
fragments that account for and constrain resource manipulations.  Resources are described using 
abstract objects with operations that correspond to manipulations of the corresponding system 
resource.  A platform interface provides an operational specification of how system calls affect 
resources.  This enables safety policies to be described in a platform-independent way and 
isolates most of the complexity of the system.  

This thesis motivates and describes the design of Naccio, demonstrates how a large class of safety 
policies can be defined, and evaluates results from our experience with the prototype 
implementations. 
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Chapter 1 
Introduction 

Traditional computer security has focused on assuring confidentiality, integrity and availability.  
Confidentiality means hiding information from unauthorized users; integrity means preventing 
unauthorized modifications of data; and availability means preventing an attacker from making a 
resource unavailable to legitimate users.  Military and large commercial systems operators are (or 
at least should be) willing to spend large amounts of effort and money as well as to risk 
inconveniencing their users in order to provide satisfactory confidentiality, integrity and 
availability assurances.   

The security concerns for typical home and non-critical business users are very different.  In the 
past, these users had limited security concerns.  Since they were typically not connected to a 
network, their primary concern was viruses on software distributed on floppy disks.  Although 
viruses could be a considerable annoyance, users who stuck to shrink wrapped software were 
unlikely to encounter viruses, and the damage was limited to destroying files (or occasionally 
hardware) on a single machine. 

Today, nearly all computers are connected to the public Internet much of the time.  Although the 
benefits of connectivity are unquestioned, being on a network introduces significant new security 
risks.  The damage a program can do is no longer limited to damaging local data or hardware – it 
can send personal information through the global Internet, damaging the operator’s reputation or 
finances.  Furthermore, the likelihood of executing an untrustworthy program is dramatically 
increased.  The ease of distributing code on the Internet means users often have little or no 
knowledge about the origin of the code they choose to run.  In addition, it is becoming hard to 
distinguish the “programs” from the “data” – Java applets embedded in web pages can run 
unbeknownst to the user; documents can contain macros that access the file system and network; 
and email messages can contain attachments that are arbitrary executables. 

The solution in high security environments is to turn off all mobile code and only run validated 
programs from trusted sources.  This can be done by configuring browsers and other applications 
to disallow active contents such as Java applets and macros, or by installing a firewall that 
monitors all network traffic and drops packets that may contain untrustworthy code.  This 
solution sacrifices the convenience and utility of the network, and would be unacceptable in many 
environments.  Instead, solutions should allow possibly untrustworthy programs to run, but allow 
the user to place precise limits on what they may do.  In such an environment, security 
mechanisms must be inexpensive and unobtrusive.  Anecdotal evidence suggests that any code 
safety system that places a burden on its users will be quickly disabled, since its benefits are only 
apparent in the extraordinary cases in which a program is behaving dangerously. 

A code safety system provides confidence that a program execution will not do certain 
undesirable things.  Although much progress has been made toward this goal in the last few years, 
current systems are still unsatisfactory.  This work seeks to address two important weaknesses of 
existing code safety systems: 
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1. They cannot enforce sufficiently precise policies.  This means either a program is allowed 
to do harmful things, or users are unable to run some useful programs.  For example, a 
system like the Java sandbox cannot enforce a policy that limits the number of bytes that 
may be written to the file system without preventing writing completely.  This is a result 
of the limited locations where safety checking can be done.  The designers were forced to 
select a small number of security-relevant operations that can have safety checking since 
the overhead of a safety check is always suffered even if the policy in effect places no 
constraints on the security-relevant operation. 

2. The mechanisms they provide for defining safety policies are ad hoc and platform-
specific.  Ad hoc policy definition mechanisms limit the policies that can be defined to 
the class of policies considered by the system designers. It is impossible to anticipate all 
possible attacks or security requirements, so ad hoc policy definition mechanisms are 
inevitably vulnerable to new attacks.  Tying policy definition to a particular execution 
platform means that policy authors need to know intimate details about that platform, and 
there is no opportunity to reuse policies on different execution platforms.  This is a 
problem for policy authors, but also limits what policies are available to users.  Further, it 
increases the gap between those people capable of writing and understanding policies and 
those who must trust a provided definition. 

This thesis demonstrates that it is possible to produce a code safety system that does not suffer 
from these weaknesses without sacrificing convenience or efficiency.  We describe Naccio1, an 
architecture for code safety, and report on two prototype implementations: Naccio/JavaVM that 
enforces policies on JavaVM classes, and Naccio/Win32 that enforces policies on Win32 
executables.  Naccio defines policies by associating checking code with abstract resource 
manipulations.  A Naccio implementation includes an operational specification of an execution 
platform in terms of those abstract resource manipulations.  Naccio enforces policies by 
transforming programs to interpose checking code around security-critical operations. 

1.1 Threats and Countermeasures 

No security system can prevent all types of threats.  Our focus is on threats stemming from 
executing programs.  We ignore threats that do not result from a legitimate user running a 
program including compromised authentications and physical security breeches.   

Different kinds of threats call for different countermeasures.  Countermeasures for threats related 
to program executions come in two basic forms: restrictions on which programs may run, and 
constraints on what executions may do.  Restrictions on which programs may run can be based on 
trust and cryptography (only run programs that are cryptographically signed by someone I trust), 
or based on static analysis that proves a program does not have certain undesired properties (only 
run programs that a virus detector checks do not contain instruction sequences matching known 
viruses).  Constraints on what executions may do can be expressed as a policy.2  The policy that 

                                                      

1 The name Naccio is derived from catenaccio, a style of soccer defense popularized by Inter Milan in the 
1960s. Catenaccio sought to protect the Inter net from attacks, by wrapping potential threats with a marker 
that monitors their activity and aggressively removing potentially dangerous parts (that is, the ball) from 
attackers as soon as they cross the domain protection boundary (also known as the midfield line). 

2 Not to be confused with an organizational security policy that specifies what policy to enforce on different 
types of programs. 
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should be enforced on an execution depends on how much trust the user has in the program and 
how much knowledge is available about its expected behavior.  Ideally, all executions would run 
with a policy that limits them to exactly the behavior deemed acceptable for that program.  This is 
not possible, however, since users cannot be expected to research and encode the limits of 
expected behavior for every program before running it.  Instead, we should use different policies 
as countermeasures to different types of threats.  Threats where code safety is an important 
countermeasure include viruses, Trojan horses, faulty programs and user mistakes.  

Viruses 

Viruses are code fragments that propagate themselves automatically.  The damage they cause 
ranges from causing a minor annoyance to destroying hard drives and distributing confidential 
information.  Every few weeks a new virus attack is reported widely in the mainstream media 
[NYTimes99a, NYTimes99b, NYTimes99c]. �

Although early computer viruses spread by attaching themselves to programs, extensibility 
features in modern email programs and web browsers make creating and spreading viruses much 
easier.  A recent example is the Melissa Word macro virus [Pethia99].  It propagates using an 
infected Word document contained in an email message.  When a user opens the infected 
document, the macro executes automatically (unless Word macros are disabled).  The macro then 
lowers the macro security settings to permit all macros to run when future documents are opened 
and propagates itself by sending infected email messages to addresses found in the user’s 
Microsoft Outlook address books.  The macro also infects the standard document template file 
that is loaded by default by all Word documents.  If the user opens another Word document, that 
document will be mailed along with the virus to addresses in the user’s address books. 

The most common virus countermeasures are virus detection programs such as McAfee 
VirusScan [McAfee99] and Symantec Norton AntiVirus [Symantec98].  Nearly every new PC 
comes with virus detection software installed.  Most virus detectors scan files for signatures 
matching a database of known viruses.  Commercial products for detecting viruses recognize tens 
of thousands of known viruses, and their vendors employ large staffs to identify new viruses. 

The problem with this approach is that it depends on recognizing a known virus, so it offers no 
protection against new viruses.  Because viruses like the Melissa macro virus can spread 
remarkably quickly over the Internet, they can do considerable damage before they are identified 
and virus detection databases can be updated.  The damage inflicted by Melissa was limited to 
propagating itself and sending possibly confidential files to known addresses.  A terrorist 
motivated to cause as much damage as possible could fairly easily create a variant of Melissa that 
inflicts far more harm. 

To detect or prevent damage from previously unidentified viruses requires an approach that does 
not depend on recognizing a known sequence of instructions.  Some commercial virus detection 
products include heuristics for identifying likely viruses based on static properties of the code or 
dynamic properties of an execution [Symantec99].  These approaches lead to an arms race 
between virus creators and virus detectors, as virus creators go to greater lengths to make their 
viruses hard to detect.  Although heuristic detection techniques show some promise, it is unlikely 
that they will ever be able to correctly distinguish all viruses from legitimate programs. 

A different approach is to limit the damage viruses can cause and their ability to propagate by 
observing and constraining program behavior.  For example, the damage done by macro viruses 
could be limited by enforcing a policy on Microsoft Word executions.  We would want to enforce 
different policies on Word executions depending on whether they were started to read a document 
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embedded in an email message or web page, or started to edit a trusted document.  When Word is 
used to edit a local document, perhaps a policy that prohibits any network transmission would be 
adequate.  For documents from untrustworthy sources, a reasonable policy would require explicit 
permission from the user before Word transmits anything over the Internet, reads sensitive files, 
alters the registry, or modifies the standard document templates.   

Trojan horses 

A Trojan horse is an apparently useful program that also does some things the user considers 
undesirable.  There have been many instances where an attacker has distributed a deliberately 
malicious program in the guise of a useful one.  For example, someone distributed a version of 
linux-util that contained a login program that would allow unauthorized users to execute arbitrary 
commands [CERT99b].   

In addition, there are programs a user may consider malicious even if the author did not intend to 
produce a malicious attack.  For example, an early version of the Microsoft Network client would 
read and transmit the user’s directory structure [Risks95].  While most users would be unaware 
that this is occurring, and would not be overtly damaged by it (other than losing bandwidth that 
could have been used for transmitting useful data), many would consider it a privacy violation. 

Countermeasures for Trojan horses are similar to those for viruses, except that more precise 
policies may be needed.  Although it would be difficult to monitor the information sent over the 
network by the Microsoft Network client, it would be possible to detect suspicious transmissions 
and alert the user.  A more reasonable policy would ignore the actual transmitted data but place 
restrictions on which files, directories and registry entries could be examined, thereby limiting the 
information available to the program. 

Faulty programs 

Program bugs pose two different kinds of security threats – an attacker may deliberately exploit 
them or they may accidentally cause harm directly.  The security advisories recorded by CERT 
[CERT99a] are rife with examples of buggy programs leading to exploitable security 
vulnerabilities.  Of the 71 advisories posted between January 1996 and May 1999, 60 are directly 
attributable to specific program bugs (of these, 13 are the direct result of buffer overflows).  A 
particularly vulnerable program is sendmail.  Attackers have exploited various bugs in sendmail 
to gain root access [CERT96a, CERT96b], execute programs with group permissions of another 
user [CERT96c], and to execute arbitrary commands with root privileges [CERT97]. 

Other program bugs cause harm unintentionally.  One notorious example is the Therac-25, a 
device for administering radiation to cancer patients [Leveson93].  Because of software bugs, it 
would occasionally administer a lethal dose of radiation and several patients died as a result.  
Although the system software had ad hoc safety checks, they were obviously not sufficient.3  
Because they were ad hoc, operators and doctors could not examine them and decide if the device 
was trustworthy.   

The best way to obtain protection from exploitable or harmful program bugs would be to produce 
bug-free programs.  Despite progress in software development and validation techniques, it is 

                                                      

3 The Therac-25 disaster was the result of numerous factors ranging from flawed hardware design to poor 
regulation procedures.  Although code safety mechanisms could be part of the solution, designing safety-
critical systems involves far more than just code safety. 
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inconceivable that this will be accomplished in the foreseeable future.  Since programs will 
inevitably contain bugs, code safety systems should be used to limit the damage resulting from 
buggy programs. 

As with Trojan horses, the expected behavior of the program is known so it is reasonable to 
enforce a precise policy that limits what it can do.  The difference is that the software vendor 
should be an ally in protecting the user from bugs, unlike a malicious attack.  Security-conscious 
software vendors could include policies with their software distributions or even distribute their 
software with an integrated safety policy enforced.  Reputable vendors should be motivated to 
protect their users from damaging bugs and might be expected to devote some effort towards 
producing a suitable policy.  By separating the policy enforcement mechanisms from the 
application, they can have more confidence that the policy is enforced correctly.  In addition, 
publishing an application’s safety policy in a standard, easily understood format would give 
potential customers a chance to decide if the application is trustworthy. 

User mistakes 

Perhaps the most common way programs cause harm is unintentional mistakes by users.  Because 
of poor interfaces or ignorance, users may inadvertently destroy valuable data or unknowingly 
transmit private information.  One example is when an unsuspecting user issues the command 
tar cf * to create a new directory archive.  This command will replace the contents of the first file 
in the directory with an archive of all other files, destroying whatever happened to be the first file.  
Although the program is behaving correctly according to its documentation, this is probably not 
the behavior the user indented.  A well-designed interface lessens the risk of harmful user 
mistakes, but combining this with a user-selected and independently enforced policy is a more 
robust solution. 

1.2 Background 

Researchers have been working on limiting what programs can do since the early days of 
computing.  Early work on computer security focused on multi-user operating systems built 
around a privileged kernel.  The kernel is the only part of the system that manipulates resources 
directly.  User programs must call functions in the operating system kernel to manipulate 
resources.  The operating system limits what user programs can do to system resources by 
exposing a narrow interface and putting checks in the system calls to disallow unsafe resource 
use.  Each application process runs in a separate address space, enforced by hardware support for 
virtual memory.  A process cannot see or modify memory used by another process since it is not 
part of its virtual address space. 

The problem with using separate processes to protect memory is that the cost of creating and 
maintaining a process is high, as is the cost of communicating and sharing data between 
processes.  Switching between different processes involves a context switch, which is usually 
expensive.  Several systems have attempted to provide the isolation offered by separate processes 
within a single process by using software mechanisms.  We use low-level code safety to refer to 
security designed to isolate programs and require that all resource manipulations go through well-
defined interfaces.  It includes the control flow safety, memory safety, and stack safety needed to 
prevent programs from accessing arbitrary memory segments [Kozen98].  There are several ways 
to provide low-level code safety.  Approaches such as the Java byte code verifier and proof-
carrying code techniques statically verify that the necessary properties are satisfied.  Software 
fault isolation provides the necessary guarantees by inserting masking or checking instructions to 
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limit the targets of jumps and memory instructions.  Section 7.1 describes work in low-level code 
safety. 

Although Naccio depends on low-level code safety for the integrity of its policy enforcement 
mechanisms, the focus of this thesis is on policy-directed code safety.  Policy-directed code safety 
seeks to enforce different policies on different executions.  This can be done either by statically 
verifying the desired properties always hold, or by enforcing properties using run-time checking.  
Since it is infeasible to verify most interesting properties on arbitrary programs, most work has 
focused on run-time enforcement.   

Most run-time constraint mechanisms, including Naccio, can be viewed as reference monitors 
[Lampson71, Anderson72].  A reference monitor is a system component that enforces constraints 
on access and manipulation of a resource.  It should be invoked whenever the monitored resource 
manipulation occurs, and it should be protected from program code in a way that prevents 
bypassing or tampering.  Reference monitor systems differ in how the monitors are invoked.  
They could be called explicitly by the operating system kernel, called by a separate watchdog 
process, or integrated directly into program code.  Naccio integrates reference monitors directly 
into code, but takes advantage of system library interfaces to limit the code that must be altered. 

Reference monitors also differ in how checking code is defined.  Some possibilities include 
access matrices, finite automata, or general code.  In a reference monitor security system, policies 
are limited by where reference monitor calls can be placed and what system state they may 
observe.  There is usually a tradeoff between supporting a large class of policies and the 
performance and complexity of the system.  Naccio security is based on reference monitors that 
can be flexibly introduced into programs at different points.  This allows for a large class of 
policies to be enforced, but avoids the overhead necessary to support many reference monitors 
when a simple policy is enforced. 

One example of a reference monitor is the SecurityManager used for high-level code safety in the 
Java virtual machine.  API functions limit what programs can do by using the SecurityManager 
class.  It acts as a reference monitor, enforcing a particular security policy by controlling access to 
system calls.  The Java approach limits the policies that can be enforced since the only places 
reference monitors can be invoked are those defined as check methods in the SecurityManager.  
Developers can write a SecurityManager subclass that performs the desired checking for the 
given check methods, but cannot change the places where the API routines call check methods.   
For instance, the constructor for FileOutputStream calls the SecurityManager.checkWrite method 
before opening a file, but the write method that writes bytes to an open file does not check any 
SecurityManager method.  Hence, one can implement an arbitrary security policy on what files 
may be written by writing code for the checkWrite method, but can place no constraints on the 
amount of data that may be written to a file once it has been opened.  Other reference monitor 
systems are described in Section 7.3.    

1.3 Design Goals 

Naccio is intended to be a code safety system suitable for users in low and medium security 
environments.  Although its mechanisms should be reliable enough for use in a high security 
environment, users in high-security environments should avoid untrustworthy code and rely on 
redundant mechanisms to avoid disasters.  Further, high security users are willing to accept more 
obtrusive code safety mechanisms than would be acceptable in a less security-critical 
environment.  Naccio could be useful as one of the pieces in a security system for a high-security 
environment, but would not be sufficient on its own.   
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We consider a low security user to be someone who is unsophisticated in security matters and 
who uses the Internet for web browsing and email.  Low security users occasionally conduct 
transactions using the Internet and send and receive business-related email, but are not using their 
computer as a critical part of a business.  The vast majority of current Internet users fit into this 
category.  Medium security users are somewhat more sophisticated regarding security and have 
more to lose if there is a security breach.  This category includes people running servers for small 
businesses and those with a substantial stake in their on-line reputation.  

Some contexts where Naccio should be useful include: 

• Executing remote code such as Java applets or ActiveX controls in a web browser.  Typical 
low-security users allow their browser to run ActiveX controls with no constraints and Java 
applets with default constraints on what files may be read and written and what network 
connections may be made.  This is reasonably acceptable today, since the damage an attacker 
could inflict on a typical user is low.  This is changing though, and will continue to worsen as 
even typical users increasingly have a substantial stake in their on-line identity and store 
financial and personal information on their computer.  Most medium-security users today 
configure their browser to disable ActiveX controls and either disable Java applets or allow 
them to run but worry that existing security measures are inadequate.  While disabling remote 
code addresses the security issues, it sacrifices some of the richness of the web.  More precise 
policies that can constrain a greater range of behavior should allow medium-security users to 
comfortably run remote code with assurances that it will not exhibit harmful behavior. 

• Executing code in mail attachments.  Most modern email programs support attachments that 
may be data files containing executable code (such as a Microsoft Word document) or a plain 
executable file.  Two well-publicized recent attacks propagated using email attachments – the 
Melissa macro virus [Pethia99] propagates using a Word document attached to an email 
message and the Worm.ExploreZip virus [Cnet99a] propagates by attaching an executable 
file to an email message.  Until these scares were widely publicized, typical low-security 
users would run mail attachments without reservations.  Today, most are at least aware of the 
risks and will be reluctant to run attachments in messages coming from untrusted sources.  
Since the viruses mentioned above appear to be sent by people the user knows, however, this 
is not sufficient protection.  A code safety system could solve the problem by allowing 
attachments to run, but enforce a policy that places constraints on their behavior.   

• Uploadable code.  Consider an auction site operator who wants to support programs 
submitted by clients that can access the server database, do some computation, place bids on 
behalf of its owner, and send messages to its owner.  The site operator needs to limit the 
behavior of the client program including what files it can access and what network 
connections it may open, as well as place bounds on the server resources it may consume 
such as network bandwidth and database connections.  Support for uploadable code is one of 
the largely unsatisfied promises of the web.  The security concerns of site operators is part of 
the reason so few sites support uploadable code. 

• Stand-alone applications.  Today a user installing a stand-alone application (usually 
distributed on CD-ROMs or as Internet download) either chooses to trust the application 
completely or chooses not to install the application.  Security conscious users decide whether 
an application is trustworthy enough to be installed and executed based on the reputation of 
its provider.  Large companies are more likely to be trustworthy than individuals or small 
companies.  Today, most applications are shipped in forms (e.g., Windows executables) that 
are not supported by most code safety systems.  Efforts to convince program vendors to ship 
programs in a form that is more amenable to current code safety systems (e.g., source code or 
Java byte codes) are unlikely to be successful.  Instead, we need code safety systems that can 



  

 16  

efficiently and conveniently enforce policies on applications as they are commonly 
distributed. 

• Constraining security-critical programs.  A system administrator installing security-critical 
programs such as a remote login shell, an ftp server, a mail server, or a web server should be 
able to enforce specific constraints on their behavior.  Although many of these programs do 
provide security configuration options (for example, a web server can be configured to allow 
access only to certain types of files), it would be useful to have an independent system that 
enforces these constraints as well as additional constraints.  Using a separate code safety tool 
would have the advantage that the system administrator can use the same system to configure 
security constraints on different programs and to configure global constraints that apply to all 
programs.  In addition, a code safety system independent of an application is not vulnerable 
to application bugs.  There may be bugs in the code safety system, but if it is simple and 
extensively used, it is likely to have fewer security vulnerabilities than an application-specific 
mechanism.   

In order to be useful in these contexts, Naccio implementations should securely enforce safety 
policies, and should be versatile enough to support a wide range of precise policies encompassing 
useful constraints on program behavior.  Those policies should be defined in a way that makes 
them easy to define, understand and modify.  It should be possible to produce Naccio 
implementations with a reasonable amount of effort.  Finally, Naccio must be efficient enough so 
that even users without critical security needs will be willing to use it.  These goals are often 
conflicting.  Naccio seeks to expand the scope and precision of policies that can be enforced, as 
well as improve the policy-definition mechanisms, without substantially compromising security 
or efficiency and convenience. 

1.3.1 Security 

Security is an essential property of any code safety system.  A secure code safety system correctly 
enforces the selected policy, even in the presence of motivated and knowledgeable attackers.  
Every system has vulnerabilities, but security systems should strive to eliminate known 
vulnerabilities and reduce the likelihood that attackers can find and exploit unknown 
vulnerabilities.   

While proving a system is secure is generally infeasible for any non-trivial system, there are 
design approaches that are more likely to lead to secure systems.  A simple design is more likely 
to be secure than a complex one, since flaws in a simple design are more likely to be detected and 
corrected.  Further, it is more likely that a simple design can be implemented correctly than a 
complex design.  A corollary to the simplicity goal is to have a small trusted computing base.  If 
the security-critical part of the system can be isolated and kept small, it may be possible to verify 
its correctness or at least to carefully review the code. 

1.3.2 Versatility 

To be useful, a code safety system must be able to enforce useful policies.  The ideal policy 
would prevent every behavior the user considers harmful but never issue a violation for behavior 
the user considers desirable.  No such universal policy exists since it is impossible to perfectly 
distinguish harmful and desirable behavior.  Indeed, behavior that is desirable for one program 
(such as rm deleting a file) would be considered harmful for other programs. 
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Supporting a wide range of policies means that policies can be defined to constrain many 
different program behaviors.  For example, a system that does not provide any way to constrain 
thread creation cannot prevent denial-of-service attacks that create a huge number of threads.4  A 
system that allows constraints on what files may be opened for reading or writing, but does not 
support any way of constraining what may be done with those files after they are opened must 
either prohibit writing entirely or allow attacks that fill up the local disk. 

The other aspect of policy precision is the generality of the policy definition mechanisms.  Some 
systems support policy checking based on setting a fixed set of parameters such as a list of 
readable and writeable files or an upper bound on network usage.  This excludes a wide class of 
useful policies where the constraints are more dynamic or depend on other factors.  For example, 
a useful policy might constrain what files may be written based on the command line or the 
history of user interactions; another policy might make the network usage bound a function of the 
number of keystrokes pressed by the user. 

A completely general system would support policy checking using a universal programming 
language and with access to the entire state and history of the program execution.  Such 
generality leads to complication in both policy definition and enforcement, and is probably not 
necessary for most practical policies.  Instead, successful systems will make compromises based 
on providing sufficient generality to define most useful policies but enough limitations to make 
efficient and reliable enforcement feasible. 

1.3.3 Ease of Use 

A code safety system is useful only if it can enforce policies that place useful constraints on 
program behavior.  In addition, there must be a way to define those policies.  If it is too difficult 
or cumbersome to define policies, only predefined policies will be available to typical users.  
Only the most sophisticated experts will be able to create new policies, and obtaining a 
customized policy will be an expensive and time-consuming proposition. 

Defining a policy requires good understanding of security requirements, but should not require 
extensive understanding of the execution platform.  A policy definition mechanism that defines 
policies in terms of system calls on a particular platform can only be used by an elite group of 
platform experts.  It is easy for even experts to forget about obscure system calls that can be used 
to manipulate resources leading to exploitable vulnerabilities.  Naccio seeks to simplify policy 
definition by expressing policies in terms of manipulations of abstract resources that are not tied 
to a particular platform implementation, but correspond to things users understand like files and 
network connections. 

1.3.4 Ease of Implementation 

Since we hope that many implementations of Naccio will be developed, it is important that a 
Naccio implementation for a new platform can be produced with a reasonable amount of effort.  
Although some work will inevitably be required to support a new platform, Naccio’s design 
should maximize reusability across platforms.  It should also be clear what needs to be done to 
produce a Naccio implementation for a new platform, once the relevant properties of that 
platform are understood. 

                                                      

4 One such attack that has been used to crash Windows 95/98 systems [Cnet99b]. 
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1.3.5 Efficiency 

The normal behavior of a code safety system is to do nothing noticeable to the user.  A code 
safety system should be apparent only in the unusual situation where a program is about to violate 
the policy.  This means the time and effort required to prepare a program to run with a selected 
policy enforced should be minimal.  Most users will not even select the policy themselves, but 
rely on predefined policy settings established by their operating system or system administrator. 

A code safety mechanism should also be transparent when a program runs, unless the policy is 
violated.  It should not unduly affect the performance of the execution.  The costs of enforcing a 
policy should be directly related to the complexity and ubiquity of the policy.  It is reasonable that 
there be a significant overhead associated with enforcing a policy that monitors every byte written 
to files, but unreasonable for there to be any noticeable overhead for a policy that limits what 
directories can be read.  Typical access control policies should be enforced with negligible 
overhead. 

1.4 Contributions 

This thesis presents a novel solution to the problem of constraining the behavior of program 
executions.  We focus on addressing the limited class of policies supported by traditional code 
safety systems and the inadequate mechanisms they provide for defining policies.   

Several other recent research projects have also attempted to expand the class of policies that a 
code safety system can enforce, most notably Ariel [Pandey98] and SASI [Erlingsson99].  Like 
Naccio, Ariel and SASI enforce policies by transforming programs.  Naccio, Ariel and SASI can 
all enforce similar classes of policies.  The key differences between Naccio and these and other 
projects are: 

• Naccio is the first code safety system that defines safety policies in terms of abstract 
resource manipulations.  This makes safety policies easier to write and understand, and 
means the same policy can be enforced on different platforms. 

• Naccio is the first code safety system to use a two-stage process where policy 
compilation is separate from program transformation.  This allows time-consuming 
optimizations that improve execution performance to be performed at policy compilation 
time, while allowing a policy to be enforced on an execution of a new program with low 
overhead. 

Section 7.3 describes Ariel and SASI in more detail and clarifies the subtle differences in the 
classes of policies they can define. 

Much was learned by building two Naccio prototype implementations and using them to define 
policies and enforce them on executions.  Some specific contributions resulting from this 
experience include: 

• We showed that it is possible to obtain the benefits of a large class of enforceable policies 
without sacrificing run-time performance when simple policies are enforced. 

• We devised a specialization of dead code elimination that can be used to eliminate 
unnecessary checking code in code safety systems.  This helps achieve our goal of only 
paying overhead for security checking when useful checking is being done. 

• We gained an understanding of the tradeoffs involved in enforcing policies at different 
levels (for example, at the level of system calls or the level of machine instructions).  The 
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Naccio architecture provides a clear framework for understanding what is lost or gained 
by selecting a particular level where policies are enforced. 

• We clarified what properties must be guaranteed to ensure the integrity of wrapper-based 
checking mechanisms and designed mechanisms that provide these guarantees on the 
JavaVM and Win32 platforms. 

• We introduced language features for creating groups of related resource operations.  
These groups can be used to define safety policies more easily and robustly. 

• We introduced new mechanisms for combining safety properties based on intersection 
and weakening.  These mechanisms are sufficiently powerful to enable easy expression 
of a wide class of policies, but simple enough to be readily understood and efficiently 
implemented. 

• We developed a framework that can be reused to produce Naccio implementations for 
additional platforms with reduced effort. 

Although the policy enforcement architecture is designed with the policy definition mechanisms 
in mind, they are separable.  It would be reasonable to use different enforcement mechanisms to 
enforce policies defined using Naccio’s definition mechanisms.  Conversely, Naccio’s 
enforcement architecture could be used to enforce policies defined in some other way. 

1.5 Overview of Thesis 

Chapter 2 introduces the Naccio architecture, describes its components and presents an example 
that shows how a policy is defined, compiled and enforced on a program execution.  Chapter 3 
describes how safety policies are defined.  Chapter 4 describes how a platform is described in 
terms of its resource manipulations and how the platform interface can be altered to expand the 
class of policies that can be defined. 

The next two chapters describe issues relating to enforcing policies in general as well as 
implementation issues involved in the two prototype implementations.  Chapter 5 discusses what 
is done to compile a policy irrespective of the target application.  Chapter 6 explains what is done 
to enforce a policy on a particular program execution. 

Chapter 7 describes related work in code safety and program transformation.  Chapter 8 evaluates 
Naccio’s potential and examines vulnerabilities in the architecture generally, and in the prototype 
implementations specifically.  Chapter 9 suggests future work and Chapter 10 summarizes the 
thesis and draws conclusions. 
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Chapter 2 
Naccio Architecture5 

Naccio is a system architecture for defining safety policies and enforcing those policies on 
executions.  Conceptually, Naccio takes a program and a description of a safety policy, and 
produces a new program that behaves like the original program except that it is constrained by the 
safety policy.  The Naccio architecture includes platform-independent languages for describing 
resources, general languages for specifying a safety policy in terms of constraints on those 
resources, and a family of platform-dependent languages for describing system calls in terms of 
how they manipulate resources.  It also provides a framework for implementing policy 
enforcement mechanisms by transforming programs.  This chapter provides an overview of the 
architecture.  Chapters 3 and 4 describe how safety policies are defined.  Chapters 5 and 6 
describe issues involved in implementing the architecture and relate experience from building the 
two prototype implementations.   

2.1 Overview 

Suppose we wish to enforce a policy that limits the total number of bytes an execution may write 
to files.  An implementation will need to maintain a state variable that keeps track of the total 
number of bytes written so far.  Before every operation that writes to a file, we need to check that 
the limit will not be exceeded.  One way to enforce such a property would be to rewrite the 
system libraries to maintain the necessary state and do the required checking.  This would require 
access to the source code of the system libraries, and we would need to rewrite them each time 
we wanted to enforce a different policy.  If the operating system were upgraded, the policy would 
need to be rewritten. 

Instead, we could write wrapper functions that perform the necessary checks and then call the 
original system functions.  To enforce the policy, we would modify target programs to call the 
wrapper functions instead of the protected system calls.  Though wrappers are a reasonable 
implementation technique, they are not an appropriate way to describe safety policies since 
creating or understanding them requires intimate knowledge of the underlying system.  To 
implement a policy that places a limit on the total number of bytes that may be written to files, 
one would need to identify and understand every system call that may write to a file.  For even a 

                                                      

5 Parts of this chapter are based on [Evans99]. 
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supposedly simple platform like the Java API, this involves dozens of different routines.  
Changing the policy would require editing the wrappers, and there would be no way to use the 
same policy on other platforms. 

Naccio’s solution is to express safety policies at a more abstract level and to provide a tool that 
compiles these policies into the wrappers needed to enforce a policy on a particular platform.  
Safety policies are defined by associating checking code with abstract resource manipulations.  A 
platform is characterized by how its system calls manipulate resources.  

Figure 1 shows the Naccio system architecture.  It is divided into a policy compiler and a 
program transformer.  The policy compiler is run once per policy-platform pair.  The policy 
compiler takes a definition of a resource use policy and a platform interface that describe an 
execution platform and produces a policy-enforcing platform library and a policy description file 
that encodes the transformations the program transformed must do to produce a program altered 
to enforce the policy.  Since policy compilation is a relatively infrequent task, we trade off 
execution time of the policy compiler to make program transformation fast and to reduce the run-
time overhead associated with safety checks.  Once a policy has been compiled, the resulting 
policy-enforcing platform library and policy description file can be reused for each application on 
which we want to enforce the policy.  Section 2.2 discusses the inputs and outputs of the policy 
compiler, and Chapter 5 provides details on how the policy compiler works. 

The program transformer is run for each application-policy pair.  It reads the policy description 
file produced by the policy compiler to determine what transformations need to be done to 
enforce the policy on an execution, and rewrites the program accordingly.  The transformations 
typically include replacing calls to a platform library with calls to a policy-enforcing platform 
library produced by the policy compiler.  In addition, the program transformer must ensure the 
necessary low-level code safety properties to prevent malicious programs from being able to 
tamper with the safety checking.  Once the transformed program has been produced, it can be run 
normally and the policy will be enforced on the resulting execution.  Section 2.3 discusses what 
the program transformer must do to enforce a policy, and Chapter 6 provides details on how this 
is done. 

Policy 
description file

Program
Transformer

Program

Version of program that:
• Uses policy-enforcing platform library
• Satisfies low-level code safety

Per application/policy/platform

Policy 
Compiler

Resource Use Policy

Policy-enforcing 
platform library

Per policy/platform pair

Resource Descriptions

Platform Interface

Platform Library

 

Figure 1.  Naccio Architecture. 

The left side of the figure depicts what a policy author does to generate a new 
policy.  The right side shows what happens the first time a user elects to execute a 
given program enforcing that policy.  The program transformer is run with an 
argument that identifies the policy description file to use. 
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An implementation of Naccio is characterized by the kind of program it transforms; the format 
and content of the platform libraries it uses; and the level of its platform interface, which 
determines the level at which it must transform the platform libraries and programs.  We have 
built two Naccio prototype implementations: Naccio/JavaVM that enforces safety policies on 
JavaVM classes and Naccio/Win32 that enforces safety policies on Win32 executables.  Although 
the design is intended to be general enough to apply to most modern platforms, the details and 
results in this thesis are derived from experience with these prototype implementations.   

2.2 Policy Compiler 

The policy compiler takes files describing a safety policy and an execution platform, and 
produces what is needed to enforce the policy.  The input files consist of resource descriptions 
that provide a way to refer to resource manipulations abstractly; a platform interface that 
describes a particular execution platform in terms of those resource descriptions; a platform 
library, the unaltered code provided by the platform implementation (for example the Java API 
classes or Win32 system DLLs), and a resource use policy that specifies the constraints on 
program behavior to be enforced.  For most policies, the resource descriptions and platform 
interface are treated as a fixed part of the implementation and the policy author writes a resource 
use policy.   

A resource description defines a resource object and a list of resource operations that identify 
different ways of manipulating that resource object.  For example, a resource description for a file 
system has a resource operation corresponding to writing bytes to a file.  A resource use policy 
defines a safety policy by attaching checking code to these resource operations.  Safety policies 
can be written and understood by looking solely at the resource descriptions and resource use 
policy.  Naccio defines a standard set of resources that must be provided by any Naccio 
implementation.  Policies defined in terms of those resources are portable and can be enforced 
without any extra effort on any platform for which a Naccio implementation is available.  Policies 
defined in terms of the standard resources are known as standard safety polices.  A challenge in 
designing Naccio is to choose a set of standard resource descriptions that can be used to define 
most typical safety policies, but that correspond precisely to the way actual resources are 
manipulated on different platforms.  Chapter 3 describes how safety policies are defined, 
summarizes the contents of the standard resource library, and discusses the range of policies that 
may be expressed as standard safety policies. 

A platform interface provides an operation specification of an execution platform in terms of a set 
of resource descriptions.  The platform interface is a collection of wrappers that map concrete 
operations in a particular platform to the abstract resource manipulations described by the 
resource descriptions.  The platform interface hides platform details from a policy author who 
need only look at the resource descriptions.  A platform interface may be defined at different 
levels ranging from hardware traps to machine instructions to the system API to an application-
specific library.  For the most part, we focus on platform interfaces at the level of the system API 
since it is usually a well-defined interface and it provides a convenient place to interpose 
checking code.  Platform interfaces at lower levels would be necessary to support policies that 
involve resource manipulations that are not visible through API calls.  Platform interfaces at 
higher levels may be useful if we wish to support policies that apply to library or application level 
resources.  If a policy author wishes to express a policy that cannot be defined in terms of the 
available resource descriptions, new resource operations can be defined by altering the platform 
interface.  Chapter 4 describes the platform interface, and illustrates how the platform interface 
can be altered to define safety policies that cannot be expressed using the standard resource 
descriptions. 
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The policy compiler analyzes the resource use policy, resource descriptions and platform 
interface and produces a policy-enforcing platform library.  If the platform interface is at the level 
of a system API, the policy compiler may also read and analyze the platform library object code, 
such as the Win32 API DLLs or the Java API classes.  This is used to produce a new version of 
the platform library that includes checking code necessary to enforce the policy but otherwise 
behaves identically to the original platform library.   

The policy-enforcing platform library makes calls to resource implementations, routines that 
correspond to the resource operations.  The resource implementations do checking as directed by 
the resource use policy.  The resource use policy defines checking code associated with resource 
operations.  The policy compiler translates the code from the resource use policy and turns these 
resource operations into routines that can be called by the policy-enforcing platform library.  
Much of the work of the policy compiler is platform-independent.  It parses the resource 
descriptions and resource use policy into intermediate languages and weaves the checking code 
into the appropriate resource operations.  The resource operations are then implemented using a 
platform-specific back end that translates the intermediate language into executable code that 
performs the necessary checking. 

The platform interface specifies how system calls need to be wrapped to call the appropriate 
resource operations.  If run-time performance were not a concern, Naccio could generate the 
platform interface wrappers once and switch which resource implementations are used to enforce 
different policies.  However, this would mean the overhead of going through a wrapper for a 
system call that manipulates constrainable resources would always be required regardless of 
whether or not the policy in effect constrains those resource manipulations.  Instead, the policy 
compiler generates a new wrapped platform library for every policy.  This means wrappers need 
only be generated for system calls that manipulate constrained resources.  Generating a policy-
specific version of the platform interface wrappers also allows for other optimizations to be 
performed, as described in Section 5.5.   

The other output of the policy compiler is a policy description file that contains a compact 
representation of the transformations the program transformer must carry out to enforce the 
policy.  The policy description file identifies the location of the policy-enforcing platform library 
so the application transformer can make the necessary changes.  In addition, it may include rules 
to rename routines to call wrappers in place of system calls.  This may be necessary in certain 
cases (such as wrapping native methods in Java) where the policy compiler cannot replace the 
routine in the policy-enforcing library.  Other rules list resource operations that must be called at 
the beginning of execution (initializers) and resource operations must be called immediately 
before execution completes (terminators).  

2.3 Program Transformer 

The program transformer is run when a user elects to enforce a particular policy on an application 
for the first time.  In a typical deployment, a web browser or application installer would run it 
transparently before a new program is executed based on a user’s security settings. 

The program transformer reads a policy description file and a target program and performs the 
directed transformations to produce a version of the program that is guaranteed to satisfy the 
safety policy.  For each program and selected policy, we need to run the program transformer 
once.  Afterwards, the resulting program can be executed normally.  The type of program 
transformed depends on the particular Naccio implementation.  It could be source code or object 
code, although implementations of Naccio that support object code are more likely to be useful 
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since many vendors are unwilling to ship source code.  The prototype implementations handle 
programs that are JavaVM classes and Win32 executables.   

The program transformer makes two main changes to the program: it replaces the standard 
platform library with the policy-enforcing platform library produced by the policy compiler, and 
it modifies the program to ensure that the resulting program satisfies the low-level code safety 
properties necessary to prevent malicious programs from circumventing or altering the policy 
checking mechanisms.  Both changes are platform-dependent, and as a result not much of the 
program transformer can be reused across different Naccio implementations.  In addition, if the 
policy requires calls to initializers or terminators, the program transformer inserts these calls. 

Switching the library is usually fairly simple on most modern platforms in which the platform 
library is linked dynamically.  For Naccio/JavaVM it involves changing the CLASSPATH or 
replacing class names; for Naccio/Win32 it involves replacing file names in the import table.  
Guaranteeing the integrity of policy checks is more complicated.  Naccio implementations must 
prevent programs from writing to storage or code used in safety checking or manipulating 
resources without going through the policy-enforcing platform library.  Useful techniques for 
doing this include statically verifying that the necessary properties hold, performing low-level 
transformations on the application code to guarantee the necessary properties, and using platform 
interface wrappers so that the necessary properties are enforced by all policies.  Section 6.2 
discusses what must be protected and how this is done in Naccio implementations.  

Figure 2 shows a sample wrapped system call sequence in a transformed program.  Instead of 
calling the system call in the platform library directly, the transformed program calls the wrapped 
version of the system call in the policy-enforcing platform library that was produced by the policy 
compiler.  This routine calls resource operations as directed by the platform interface.  It may also 
need to do some bookkeeping to determine the correct arguments to pass to the resource 
operations.  For the example, the wrapper for WriteFile must convert the file handle into an 
abstract resource object that identifies the corresponding file.  The resource operations implement 
the checking specified by the resource use policy.  If the policy would be violated by the system 
call, the resource implementation calls a Naccio library routine that reports the policy violation 
and gives the user the option to terminate or alter the execution.  If not, the original system call in  

WriteFile (fHandle, bytes)

Original Program

WriteFile (fHandle, bytes)

Policy-Enforcing Platform Library

Transformed Program

Platform Library

Resource 
Implementations

Disk

Platform Library

Disk

RFileSystem.write 
(rfile, nbytes)

violation

 
Figure 2.  Wrapped system call sequence. 
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the platform library is called and the execution continues normally.  Additional resource 
operations may be called after the system call returns.  Depending on the Naccio implementation, 
the wrapper code may be embedded directly in the policy-enforcing platform library or kept as a 
separate library. 

2.4 Walkthrough Example 

This section walks through all the steps necessary to define and enforce a policy.  It is not 
intended to be comprehensive, but to give the reader an idea of how all the pieces fit together.  
Chapters 3 through 6 describe each step in more detail.  For this example, we consider using 
Naccio/JavaVM to enforce the LimitBytesWritten policy, which sets a limit of one million on the 
number of bytes that may be written to the file system on an execution of an application 
comprised of a set of Java class files.  These steps would be substantially similar for 
Naccio/Win32 and implementations of Naccio for other platforms, but for simplicity this example 
is limited to Naccio/JavaVM. 

This policy is expressed formally using Naccio’s policy definition languages.  We maintain a 
state variable that keeps track of the number of bytes written to the file system.  We do this by 
declaring a new field named bytes_written that is associated with the RFileSystem resource object 
that represents the file system.  This resource object is global over an execution, so the value of 
RFileSystem.bytes_written is maintained across the execution.  This value needs to be 
incremented every time bytes are written to the file systems.  The RFileSystem.postWrite 
resource operation corresponds to the point immediately after bytes were written to the file 
system, and we can maintain the value by attaching code that increments bytes_written to this 
resource operation.  The bytes_written field declaration and updating code are encapsulated in a 
state block that can be reused by other safety policies. 

To enforce the limit, we need to check that the limit will not be exceeded before allowing a write 
to proceed.  We do this by attaching checking code to the RFileSystem.preWrite resource 
operation that corresponds to the point immediately before bytes will be written to the file system.  
This checking code compares the sum of the number of bytes already written (as recorded in the 
RFileSystem.bytes_written state variable) and the number of bytes about to be written to the limit 
enforced by the policy.  If the limit would be exceeded, it issues a violation and gives the user an 
opportunity to terminate the execution.  The code used to define this policy is shown in Figure 6 
in Section 3.2. 

The policy must be compiled before it can be enforced on an application execution.  To compile a 
policy, we need an operation specification of the execution platform known as a platform 
interface.  The platform interface describes concrete events in terms of the abstract resource 
descriptions used to define the policy.  Naccio/JavaVM uses a platform interface at the level of 
the Java API (the java. classes).  The Java API platform interface describes each method in the 
Java API by calling resource operations at the execution points defined by the resource 
descriptions.  For example, the description of the RFileSystem.preWrite operation documents that 
it should be called before every write to the file system with a parameter that gives an upper 
bound on the number of bytes about to be written.  The platform interface wrapper for the 
java.io.FileOutputStream.write(byte[]) method indicates that RFileSystem.preWrite should be 
called before the write method is called, and RFileSystem.postWrite should be called after the 
write method returns.  The policy compiler produces a new version of the 
java.io.FileOutputStream class that replaces the write method with a wrapper that calls the 
resource operations as described by the platform interface around the original method.  The 
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Naccio/JavaVM platform interface wrapper for the java.io.FileOutputStream class is shown in 
Figure 11 and discussed in Section 4.2. 

The policy compiler also generates implementations corresponding to the abstract resource 
operations that are called by the generated wrapper classes.  Naccio/JavaVM implements each 
resource using a Java class with a method that corresponds to each resource operation.  Code 
from the resource use policy is woven into the resource implementations and translated to Java 
code.  Section 5.3 explains how the policy compiler generates a resource implementation class. 

A policy author or system administrator runs the policy compiler, and its output can be used to 
enforce the policy on any JavaVM program.  The generated wrapper classes and resource 
implementations are stored in a protected directory and the policy compiler generates a policy 
description file that encodes the transformations needed to enforce the policy on an execution.  
When a user elects to enforce the policy on a program execution, the application classes are 
transformed according to the rules in the policy description file.  For Naccio/JavaVM, this can 
involve simply setting the CLASSPATH so that the generated wrapper classes are found before 
the standard Java API classes.  After this has been done, the application can be executed normally 
with the safety policy enforced on its execution.  Chapter 6 describes the program transformer. 

Figure 3 shows what happens at run-time to enforce the LimitBytesWritten policy on an 
application that creates a java.io.FileOutputStream and writes an array of bytes to it.  The original 
FileOutputStream class is replaced with a policy-enforcing wrapper version of the class, shown in 
the figure as lbw.FileOutputStream.  The constructor for this class constructs an RFile object that 
is an abstract resource corresponding to the file associated with this output stream.  This object is 
stored in an instance variable of the lbw.FileOutputStream object, and will be passed to resource 
operations like RFileSystem.preWrite.  After constructing this object, the original constructor 
executes normally and stores the RFile object in a new instance variable.  Unlike the RFile object, 
the RFileSystem is a global resource so there is only one RFileSystem object for the entire 
execution.  When the execution calls java.io.FileOutputStream.write(byte[]), the wrapper for this 
method will call the resource operation RFileSystem.preWrite, passing in the RFile object 
associated with this FileOutputStream and the size of the array.  The RFileSystem.preWrite 
implementation contains the checking code from the policy, and will issue a violation if the 
policy would be violated by the write method call.  Otherwise, it returns and the original write 
method is executed.  After it completes, RFileSystem.postWrite is called.  This method contains 
the code that increments bytes_written. 

anAppMain aFileOutputStream

new

write(byte[])

anAppMain albw.FileOutputStream

new

write(byte[])

Original Execution Transformed Execution

anRFile anRFileSystem

new

preWrite

postWrite

o_write

orig new

Figure 3.  Interaction diagram for enforcing LimitBytesWritten. 

For an explanation of the interaction diagram notation see [Gamma95].  The gray objects are 
classes modified by Naccio.  The black objects are classes generated by Naccio.
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Chapter 3 
Defining Safety Policies 

This chapter describes how Naccio is used to define safety policies.  For standard policies, we 
consider the resource descriptions and platform interface to be a fixed part of the system and 
express a policy only in terms of resource use constraints.  Standard polices are portable across 
Naccio implementation platforms.  The standard resources are chosen so that many useful safety 
policies can be defined as standard safety policies.  This includes policies that place access 
constraints on system resources such as reading and writing files and opening network 
connections, and policies that place limits on consumption such as the number of files that may 
be touched or the number of bytes that may be written to the file system.  This chapter discusses 
resource descriptions, specifying safety policies that constraint resource manipulations, the 
contents of the standard resource library and the limits on expressiveness for standard safety 
policies.  In the next chapter, we discuss how a platform interface is used to specify a platform in 
terms of how it manipulates resources and consider policies that can be expressed by changing 
the platform interface. 

3.1 Resource Descriptions 

A program runs by executing a sequence of instructions.  Those instructions modify the state of 
the processor and may affect devices attached to the machine such as its hard drive, network 
connection and display.  We can view everything a program can manipulate as a resource.  A 
safety policy imposes constraints on how a program manipulates resources.  In order to define a 
safety policy, we need a precise way of referring to resource manipulations. 

Resource descriptions provide a way to identify resources and describe ways they are 
manipulated.  Examples of resources include files, network connections, threads and displays; 
examples of manipulations are writing ten bytes to a file, opening a network connection to port 80 
on naccio.lcs.mit.edu, increasing the priority of a thread, or opening a window.  Resource 
descriptions are written in a platform-independent language, but they may describe platform-
specific resources such as the Windows registry.  Naccio includes a set of standard resource 
descriptions that encompass the resource manipulations that are common on nearly all platforms 
and are relevant for many security policies. 

We describe resources by listing their operations.  Typical resource descriptions have no state or 
implementation.  They are merely hooks for use in defining safety policies.  Resource 
descriptions may use primitive types including int, float and immutable Strings.  These types are 
defined by Naccio to have the expected semantics.  The meaning of a resource operation is 
indicated by informal documentation.  This documentation should be clear and precise to the 
policy author, but is not sufficiently formal to be processed by a machine. 
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Policy authors read resource descriptions, but do not need to modify them for typical policies.  A 
policy is expressed by associating checking code with resource operations.  The essential promise 
is that a transformed program will invoke the related resource operation with the correct 
arguments whenever a particular event occurs. It is up to the policy compiler and platform 
interface to ensure that this is the case.  

Figure 4 shows two resource descriptions related to the file system.  It declares the RFileSystem 
resource object that represents to the file system as a whole, and the RFile resource object that 
identifies a single file or directory.  The RFileSystem resource has operations that correspond to 
manipulating files and directories.  The RFile resource only contains a constructor for creating a 
resource object that identifies a particular file.  The global modifier indicates that only one 
RFileSystem instance exists for an execution6.  Resources declared without a global modifier are 
associated with a particular run-time object.  Most of the RFileSystem operations take an RFile 
parameter to identify a particular file.  Dividing a resource into a global resource for the actual 
manipulations and instance resources for identifying resources is a common paradigm.  This 
division makes it easy to write policies that constrain system-wide resource use (for example, the 
total number of files that are opened), but provides an abstract way to identify specific objects 
such as files. 

3.1.1 Resource Operations 

The body of a resource description is a list of operations and groups.  Each operation corresponds 
to a particular way of manipulating a resource.  For example, the openRead operation 
corresponds to opening a particular file for reading.  Its documentation prescribes that openRead 
is called before a file is opened for reading.  It takes a parameter of type RFile that represents the 
file being opened.   

The documentation associated with each resource operation must be precise enough so that policy 
authors can write policies that behave as expected.  However, it should not be over specified in 
ways that prevent it from being applicable on different platforms.  For example, what it means to 
open a file is a platform-specific notion.  The essence of the open operations is given by the 
documentation for the read and write operations that indicate the relevant open operation must be 
called first.  Platform-specific documentation may be necessary in some cases to clarify what 
resource operations mean.  Given reasonable choices, however, policies can be reused across 
platforms with their intended meaning. 

Resource manipulations may be split into more than one resource operation.  For example, 
reading is split into the preRead and postRead operations.  This division allows more precise 
safety policies to be expressed.  Pre-operations allow necessary safety checks to be performed 
before the action takes place, while post-operations can be used to maintain state and perform 
additional checks after the action has been completed and more information is available.  For this 
example, the actual number of bytes read may not be known until after the system call that does 
the read has completed. 

 

                                                      

6 For now, we consider an execution to be all activity within a process, so that all applets running within a 
Java virtual machine are treated as part of the same execution by global resources.  Section 9.3 discusses 
how deployments might define the scope of a resource differently. 



  

 31  

global resource RFileSystem  
  operations 
 initialize ()              Called when execution starts. 
 terminate ()             Called immediately before execution ends. 

 openRead (file: RFile)         Called before file is opened for reading. 
 openAppend (file: RFile)        Called before file is opened for appending. 
 openCreate (file: RFile)         Called before file is created for writing.  At this point in the 
                   execution, file must not exist.. 
  openOverwrite (file: RFile)        Called before file is opened for writing.  At this point in the  
                   execution, file exists. 
 close (file: RFile)            Called before file is closed. 

 preDelete (file: RFile)          Called before file is deleted. 
 postDelete (file: RFile)         Called after file is deleted. 

 renameNew (file: RFile, newfile: RFile)   Called before file is renamed to new file newfile.  At this  
                   point in the exection, newfile must not exist. 
 renameReplace (file: RFile, newfile: RFile)  Called before file is renamed to existing file newfile. 

  makeDirectory (file: RFile)        Called before creating new directory file. 

 preWrite (file: RFile, n: int)        Called before up to n bytes are written to file; file must have 
                   previously been passed to openCreate, openOverwrite  
                   or  openAppend. 
 postWrite (file: RFile, n: int)       Called after exactly n bytes were written to file.  

 preRead (file: RFile, n: int)        Called before up to n bytes are read from file; file must  
                   have previously been passed to openRead. 
 postRead (file: RFile, n: int)       Called after exactly n bytes were read from file. 
 
 observeExists (file: RFile)        Called before revealing if file exists. 
 observeWriteable (file: RFile)       Called before revealing if file is writeable.  
 observeCreationTime (file: RFile)     Called before revealing creation time of file. 
  observeList (file: RFile)         Called before revealing files in directory file. 
     … // other similar observe<X> operations elided 

 setCreationTime (file: RFile)       Called before changing creation time of file. 
     … // other similar set<X> operations elided 
 
 group modifyExistingFile (file: RFile)    Called before contents of any existing file are modified. 
  openOverwrite, openAppend, preDelete, 
  renameNew (file: RFile, newfile: RFile): modifyExistingFile (file), 
  renameReplace (file: RFile, newfile: RFile): modifyExistingFile (file), 
  renameReplace (file: RFile, newfile: RFile): modifyExistingFile (newfile); 
 
 group modifyFile (file: RFile)        Called before any file is altered or created. 
  modifyExistingFile, openCreate,  
  renameNew (file: RFile, newfile: RFile): modifyFile (newfile); 

 group observeProperty (file: RFile)     Called before any property of file is revealed. 
  observeExists, observeWriteable, observeCreationTime, …; 

 … // Other groups elided. 
 
resource RFile 
 operations 
     RFile (pathname: String)       Constructs object corresponding to pathname.  Pathname 
                   is a canonical string that identifies a file. 
 

Figure 4.  File System Resources. 
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The RFile resource has only one operation, a constructor.  It takes a string parameter that 
identifies a file in some platform-dependent way.  The RFile resource objects have no state or 
operations provided to obtain information about what actual file a particular RFile object 
represents.  Policies can add the necessary state and operations to determine properties of an 
RFile.  Section 3.2.1 illustrates how this is done. 

Two special resource operations are not associated with resource manipulations but represent the 
beginning and ending of executions.  The initialize operation is called at the beginning of 
execution, before any program-directed file manipulation is done (file manipulations done by 
system initialization code may occur before initialize is called).  The terminate operation is called 
after all program-directed file manipulations have completed.  Most global resources provide 
initialize and terminate operations.  They provide useful places to attach checking code or to 
initialize state associated with checking. 

3.1.2 Resource Groups 

Resource operations may also be grouped to make it easier to write safety policies.  A resource 
group is a set of resource operations and other resource groups that correspond to similar 
manipulations.  Grouping operations makes it easier to define policies that do not depend on 
specific manipulations.  For example, the observeProperty group encompasses all resource 
operations that correspond to observing properties of a file.  It includes the observeExists 
operation that is called before revealing if the given file exists and several other operations 
associated with observing properties of a file.  Since some policies need to distinguish between 
observing whether a file exists and observing the size of a file, the RFileSystem resource 
description should have separate operations corresponding to each manipulation.  Since many 
policies do not need to distinguish between the different ways of observing file properties, it is 
also useful to define a group that encompasses all the file observation operations. 

A resource group is defined by listing the operations and groups it contains.  All members in a 
resource group must map to the parameters of the group.  The mapping is given by a function-call 
like syntax that calls the group name.  Conceptually, the resource operation calls the group in the 
way given by the function call.  For example, in the modifyExistingFile group list we use 

 
   renameNew (file: RFile, newfile: RFile) : modifyExistingFile (file),  

to map rename, which takes two parameters, into the modifyExistingFile group, which takes a 
single RFile parameter.  Since the only existing file modified by renameNew is the file 
corresponding to its first parameter, the group mapping passes this parameter to 
modifyExistingFile.  For renameReplace, both the file and newfile already exist so two existing 
files are modified by the corresponding resource manipulation.  The group definition for 
modifyExistingFile lists renameReplace twice with different mappings corresponding to each file 
modification. 

If the group parameters and the member parameters match exactly, listing the operation name 
assumes the implicit mapping where the parameters correspond directly.  For example, the 
observeExists resource operation and observeFile resource group both take one parameter of type 
RFile, so listing observeExists is sufficient.   
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3.2 Safety Properties 

A safety property attaches checking code to resource operations or groups.  The simplest safety 
property specifies that a particular resource manipulation is not permitted.  For example, 
 

property NoDeleting { 
 check RFileSystem.preDelete (file: RFile) { 
  violation (“File deletion prohibited.”); 
 } 
} 

defines a property that issues a violation before an application would delete a file.  The 
documentation given in the RFileSystem resource description shown in Figure 4 indicates that the 
preDelete operation is called before a file is deleted.  The body of the check clause calls the 
violation function provided by the Naccio library.  It will display a dialog box containing the text 
of the violation and information on the safety property that is about to be violated.  The user is 
presented with the option to terminate the execution, or to ignore the violation and allow 
execution to continue. 

As it is defined, the NoDeleting property is probably not satisfactory.  It prevents explicit deletion 
of existing files, but does not prevent deleting a file by overwriting its contents or renaming 
another file to its name.  A more comprehensive property that prevents any modification of 
existing files could be defined as: 

 
property NoBashingFiles { 
 check  RFileSystem.openOverwrite (file: RFile), 
    RFileSystem.openAppend (file: RFile), 
    RFileSystem.preDelete (file: RFile),  
    RFileSystem.renameNew (file: RFile, newfile: RFile), 

    RFileSystem.renameReplace (file: RFile, newfile: RFile) { 
  violation (“Destructive file manipulation prohibited.”); 
 } 

} 

A simpler definition would use the modifyExistingFile group that groups all resource operations 
that alter the contents of existing files: 

 
property NoBashingFiles { 
 check RFileSystem.modifyExistingFile (file: RFile) { 
  violation (“Destructive file manipulation prohibited.”)  
 } 
} 

Using resource groups makes the property more concise and easier to understand.  It also means 
the property will not need to be changed if new resource operations are added as long as the 
modifyExistingFile group is appropriately amended. 

3.2.1 Adding State 

One problem with these properties is that the violation text provides no useful information about 
what file is being manipulated.  The user cannot tell the difference between an execution that is 
about to alter a junk file and one that is about to alter an important file.  As is, it is impossible to 
do this by modifying only the check action since the RFile object passed to the resource 
operations does not contain any information about the file it corresponds to. 
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In order to track this information, state must be added to the RFile resource.  Naccio supports this 
using a state block: 

 
stateblock FileNames augments RFile { 
 addfield name: String; 
 
   precode RFile (pathname: String) { 
    name = pathname; 
  } 
 
 helper getName () returns String { 
  return name; 
 } 
} 

This augments the RFile object with name, a String field representing the name of the file.  The 
precode block associated with the RFile constructor sets name to the value of its parameter, a 
String that canonically identifies a particular file.  This constructor is called to create an RFile 
object before any operation that requires it is called.  Since all RFile objects are created using this 
constructor, the name is available wherever an RFile object is used.  Safety properties can refer to 
the name of an RFile object rfile, using rfile.name or by calling the helper method getName.  It is 
useful to keep the state maintenance and safety property checking code separate, since many 
safety properties use the same state. 

Figure 5 shows the NoBashingFiles property modified to use the file name information to produce 
a more helpful violation message.  The requires clause identifies the state block that defined 
RFile.getName.  The state block is defined in a separate file that is found using a naming 
convention.  Properties can include multiple state blocks as long as multiple state blocks do not 
use the same field or helper routine name. 

 
property NoBashingFiles { 
 requires FileNames; 
 check RFileSystem.modifyExistingFile (file: RFile) { 
  violation (“Destructive manipulation of file:” + file.getName ()); 
 } 
} 

Figure 5.  NoBashingFiles property. 

3.2.2 Use Limits 
State can be also be used to make policies more precise.  For example, a property based on 
NoBashingFiles could do a test on the file name to allow modification of files in the /tmp/ 
directory but prohibit all other modifications of existing files.  State can also be used to define 
policies that place limits on the amount of a resource that may be used over the course of an 
execution.  For example, the LimitBytesWritten property shown in Figure 6 places a limit on the 
total number of bytes that may be written to the file system. 
 
To enforce a limit on the number of bytes that may be written, the property must keep track of the 
total number of bytes written.  The TrackBytesWritten state block does this by adding a field to 
the RFileSystem resource and defining a postcode action for the write operation.  The body of the 
postcode action will happen after all checking code associated with the resource operation.  
Hence, when bytes_written is used in the check action of LimitBytesWritten, its value is the total 
number of bytes written already not including the upcoming call.  After all the checking code has 
executed, the value is updated to account for the upcoming write. 
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stateblock TrackBytesWritten augments RFileSystem { 
 addfield bytes_written: int = 0; 
 postcode postWrite (file: RFile, n: int) { 
  bytes_written += n; 
 } 
} 
 
property LimitBytesWritten (limit: int) {  
 requires TrackBytesWritten, FileNames; 
 check RFileSystem.preWrite (file: RFile, n: int) { 
  if (bytes_written + n > limit)  
   violation ("Attempt to write more than " + limit + " bytes. Already written " +  
    bytes_written + " bytes, writing up to " + n + " more to " + file.getName () + "."); 
  }   
} 

Figure 6.  LimitBytesWritten Safety Property. 

3.2.3 Composing Properties 

This simplest way to combine properties is to intersect them using the & operator.  The 
intersection of two safety policies allows an execution only if both policies allow the execution.  
That is to say, the intersection of one or more safety properties issues a violation whenever any of 
the individual properties would issue a violation.  If more than one of the properties would issue a 
violation for the same resource operation, the violation reported by the first property appears first.  
Intersecting safety properties is equivalent to merging all the check clauses into one property in 
the same order they were intersected.  

Another way to combine two safety properties is to weaken a property with permissions that 
override violations.  All the previous properties have been expressed negatively, in terms of 
issuing violations before a prohibited manipulation is about to happen and implicitly allowing 
everything else.  An alternative way of defining properties is to assume nothing is allowed unless 
it is explicitly permitted.  This has the advantage that is it less likely for a policy author to 
accidentally allow something dangerous.  Conversely, it is more likely that a policy author will 
forget to allow something that is needed by a harmless program.  To avoid arguments about 
which approach is preferable, Naccio supports both and provides rich enough property 
combination mechanisms to allow both positive and negative properties to be used.   

A permission uses allow to indicate that the given resource manipulation is permitted.  For 
example, 

  
permission AllowModifyDir (path: String) { 
 requires FileNames; 
 check RFileSystem.modifyExistingFile (file: RFile) { 
  if (NCheck.inDirectory (file.getName (), path)) allow (); 
 } 
} 

allows files in the directory identified by path to be modified.  The inDirectory library function 
does a comparison to determine if the file is contained within the directory identified by path.  A 
property cannot use both allow and violation. 

By default, Naccio policies assume everything is allowed.  Hence, a permission only makes sense 
when it is combined with a negative property.  The universal negative policy would associate a 
check clause with every resource operation that simply issues a violation (this is what the 
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DisallowAll policy used in Section 8.4 does).  Defining policies in terms of permissions that 
override the universal negative policy would satisfy the principle of fail safety that recommends 
disallowing all security-relevant behavior that is not explicitly allowed [Saltzer75].  This 
approach makes sense when there is a small, fixed set of security-relevant behavior, but becomes 
cumbersome when the class of behavior considered to be security-relevant is large and flexible.  
It would be undesirable if all policies had to be rewritten when a new resource is added.  Since 
this is expected to be fairly common with Naccio, Naccio’s default is to allow everything that is 
not explicitly prohibited. 

Hence, permissions are only useful in a context where some manipulations are already prohibited.  
When a property is weakened by a permission, violations in the property are overridden by 
allowances in the permission.  For example, 

property NoBashingExceptTmp { 
 (NoBashingFiles weaken AllowModifyDir (“/tmp/”)) weaken AllowModifyDir (“/u/evs/tmp/”) 
} 

defines a property that issues a violation whenever a file not in the /tmp/ or /u/evs/tmp/ directories 
is modified.  The allowances in a positive property override violations in a negative property.  If 
the weakening property calls allow on a particular invocation of a resource operation, no 
violations will be issued from that resource operation.  Another way to express the same property 
would be to compose the positive properties first: 

property NoBashingExceptTmp { 
 NoBashingFiles weaken (AllowModifyDir (“/tmp/”) & AllowModifyDir (“/u/evs/tmp/”)) 
} 

Weakening is useful for combining new policies with standard policies that describe commonly 
allowed behavior.  For example, JDKFilePermissions is a standard set of permissions that allow 
files loaded by the JDK initializations and AWT to be read.  A new safety policy that prevents 
reading files except those loaded by the JDK initializations can be expressed easily by writing a 
no reading property that disallows all file reading and weakening it with JDKFilePermissions. 

In order to enforce a policy on an execution, all parameters must be bound to real values.  This is 
done by instantiating all parameterized properties with parameters.  We call a property in which 
all parameters are bound a resource use policy.  All parameters must be manifest constants.  
Figure 7 shows the LimitWrite resource use policy that disallows modification of any existing file 
or writing more than one million bytes to the file system.  Properties that have no parameters can 
also be used directly as resource use policies.   

policy LimitWrite { 
 NoBashingFiles & LimitBytesWritten (1000000) 
} 

Figure 7.  LimitWrite resource use policy. 

3.3 Standard Resource Library 

The standard resource library is a set of resource descriptions that correspond to the security-
relevant resource manipulations that are common to most modern platforms.  The standard 
resource library does not attempt to exhaustively cover all possible ways of manipulating 
resources, but instead is designed to include the manipulations commonly used in security 
policies that are universal enough to apply to most platforms.  Since all Naccio implementations 
provide the same standard resource library, policies written in terms of these resources are 
portable across different platforms.   



  

 37  

The standard resource library includes the RFile and RFileSystem resources introduced in Section 
3.1, as well as resources corresponding to the network, the display, system threads, audio devices, 
and the system environment.  It contains a total of 122 resource operations in thirteen resource 
descriptions.  Additional resources may be needed as new devices are attached to the system.  For 
example, if a camera is used a corresponding resource should provide operations that correspond 
to taking and transmitting pictures.  There may also be resources that are unique to a particular 
platform.  For example, Naccio/Win32 includes a resource representing the Windows registry.   

Network 

In most modern operating systems, the network can be used in three distinct ways:  a persistent 
connection can be created to a remote host, and data sent and received through it; a server socket 
can be created to listen for incoming connections; and individual datagram packets may be sent or 
received without a persistent connection.  Since policies should be able to distinguish between 
each type of network use, we provide different resource objects for identifying them.  Conversely, 
the network operations should make it easy to write network use policies that place restrictions on 
the remote hosts that may be contacted and limits on the number of bytes transmitted.  To support 
easy definition of both kinds of policies, the network resources provide operations corresponding 
to the different types of network connections, but also groups operations so policies that do not 
depend on the type of network connection can be defined concisely. 

The network resources are shown in Figure 8.  Unlike the file system resources, the 
RNetConnection resource maintains some state and provides an observer.  An observer is a 
routine that reveals some information about a resource but does not modify anything.  The 
RNetConnection stores the local and remote addresses of the connection in state variables when 
an RNetConnection is constructed.  The observers make these values available through a function 
call. 

The observers can be used in resource group member lists to map members to the group 
operation.  This is done in the definition of the connectRemoteAddress resource group that takes 
an RNetAddress parameter representing the remote address.  To make the preOpenConnection 
resource operation match the parameter types of the connectionRemoteAddress group, we need 
to convert its RNetConnection parameter into the appropriate RNetAddress object corresponding 
to the remote address.  We do this by calling the getRemoteAddress observer defined by the 
RNetConnection resource. 

Display 

The display is represented by the RDisplay global resource, and RWindow resource objects 
identify individual windows.  The main security threats involving the display are denial of service 
annoyance attacks that take over the screen with superfluous windows.  A more serious threat is 
attacks that create rogue windows that appear to be part of a legitimate application and trick the 
user into providing trusted information (such as a password) to a malicious program.  This threat 
can be mitigated by a policy that requires that all windows created from untrusted programs have 
a distinctive appearance that distinguishes them from trustworthy windows. 

The RDisplay resource includes operations for creating new windows and for setting properties of 
windows or manipulating existing windows.  It also contains operations that correspond to 
enabling a window to receive events from the mouse or keyboard and receiving those events.  
These could instead be treated as separate resources, but since events are usually directed at a 
window it is convenient to include them with the display.  By using a state block to track user 
input events, policies can determine if a resource manipulation is permitted based on the history 
of user activity.  Since windowing systems are likely to vary more across platforms than other  
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global resource RNetwork 
 operations 
  initialize ()             Called at the beginning of an execution. 

 terminate ()            Called immediately before execution terminates. 
 
  preOpenConnection (connection: RNetConnection)  Called before opening connection. 
  postOpenConnection (connection: RNetConnection)   Called after opening connection. 
  closeConnection (connection: RNetConnection)       Called after closing connection. 

  preOpenListener (listener: RNetListener)  Called before opening listener for server connections. 
  postOpenListener (listener: RNetListener) Called after opening listener for server connections. 
  preAccept (listener: RNetListener)    Called before accepting a connection using listener. 
  postAccept (listener: RNetListener, connection: RNetConnection) 
                  Called after accepting connection using listener. 
  closeListener (listener: RNetListener)   Called after closing listener. 

  openDatagramPort (port: RNetListener)  Called before opening port for datagrams. 
  closeDatagramPort (port: RNetListener)  Called before closing port. 
 
  preSendDatagram (local: RNetAddress, remote: RNetAddress, nbytes: int) 
   Called before up to nbytes are sent from local to remote using a datagram. 
     preSendConnection (connection: RNetConnection, nbytes: int) 
       Called before up to nbytes are sent through connection. 

  preReceiveDatagram (local: RNetAddress, nbytes: int) 
   Called before a datagram may be received at local. 
  postReceiveDatagram (local: RNetAddress, remote: RNetAddress, nbytes: int) 
   Called after nbytes are received from remote to local. 

  ... // other operations for postSend, preReceive and postReceive for datagrams and connections elided 

  group connectRemoteAddress (address: RNetAddress)  Called before any contact with address.  
   preOpenConnection (connection: RNetConnection) 
    : connectRemoteAddress (connection.getRemoteAddress ()), 
   postAccept (listener: RNetListener, connection: RNetConnection) 
    : connectRemoteAddress (connection.getRemoteAddress ()), 
   preSendDatagram (local: RNetAddress, remote: RNetAddress, nbytes: int) 
    : connectRemoteAddress (remote), 
   postReceiveDatagram (local: RNetAddress, remote: RNetAddress, nbytes: int) 
    : connectRemoteAddress (remote);  // can’t know remote before receive, must check after 
 
  group preSend (remote: RNetAddress, nbytes: int)  
          preSendDatagram (local: RNetAddress, remote: RNetAddress, nbytes: int)  
    : preSend (remote, nbytes), 
   preSendConnection (connection: RNetConnection, nbytes: int) 
    : preSend (connection.getRemoteAddress (), nbytes); 
 
  … // similar groups for postSend, preReceive and postReceive elided 
  … // operations related to multicasting and revealing hostnames elided. 
 
resource RNetConnection 
 state local, remote: RNetAddress; // Identfy the local and remote addresses for this connection. 
 operations 
  RNetConnection (l: RNetAddress, r: RNetAddress) 

Constructs an RNetConnection object for communication between l and r.  
   { local = l; remote = r; } 
 observers 
  getLocalAddress () returns RNetAddress   { return local; } 
  getRemoteAddress () returns RNetAddress  { return remote; } 

 
// RNetAddress and RNetListener not shown. 

Figure 8.  Network Resources. 
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resources, it is likely that Naccio implementations will add additional operations to the RDisplay 
resource to include platform-specific operations that provide more precise ways of constraining 
display use. 

Threads 

The RSystemThreads global resource provides operations corresponding to manipulating threads.  
It includes operations for creating new threads or thread groups, starting and destroying threads, 
suspending and resuming threads, changing the priority of a thread, and revealing information 
about a thread or thread group.  The RThread and RThreadGroup resources are used to identify 
threads and groups of related threads.

Audio 

The speaker can be used in an annoyance attack.  To support policies that constrain its use, the 
RAudio global resource contains operations corresponding to ringing the system bell and playing 
audio files. 

System Environment 

The RSystem resource is used to collect operations that do not correspond well to a conceptual 
resource.  It includes operations for observing and setting environment variables, and is often 
extended with platform-specific system operations. 

The RSystem resource also includes special initialize and terminate operations that are called at 
the beginning of an execution.  The RSystem initializer is called before any other global resource 
initializers.  The RSystem terminator is called after every other global resource terminator.  The 
RSystem initializer is also unique in that it has an argument that passes in the command-line 
arguments.  A policy can use a state block that attaches checking code to RSystem.initialize to 
record these values, and then use the value of the command-line arguments to determine if a 
resource manipulation is permitted. 

3.4 Policy Expressiveness 

In standard safety policies, the effects of checking code are limited to raising violations, 
modifying internal state, and doing computations that are invisible to the user.  The policy has no 
noticeable effect on an execution (other than a performance penalty) unless a violation is 
detected.  We can view a Naccio standard safety policy as a predicate on an execution – it is true 
if no violation is issued, and false if a violation is issued. 

Schneider defines Class EM, a class of enforcement mechanisms that work by monitoring a target 
system and terminating any execution that is about to violate the policy [Schneider98].  Security 
kernels, reference monitors, and nearly all run-time based enforcement mechanisms are in Class 
EM.  The set of policies that can be enforced by mechanisms in Class EM is defined as those 
policies that can be expressed as predicates on execution prefixes.   

A security policy is defined as a predicate on a set of executions.  A program satisfies a security 
policy if the predicate is satisfied by the set of all possible executions it can produce.  Policies 
like information flow require knowledge of more than one execution, since it is not clear whether 
a particular execution of a program reveals information without knowing what other executions 
do.  Hence, these policies cannot be enforced by mechanisms in Class EM.  Enforcing these 
policies requires static analysis of the program text. 
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Those security policies that can be defined as a predicate on a single execution are known as 
security properties.  Not all security properties, however, are in Class EM, since they may depend 
on knowing the future.  For example, liveness properties depend on knowing something must 
happen at some future point in an execution.  Class EM mechanisms cannot enforce liveness 
properties since they can only probe what has already happened. 

The subset of security properties that can be defined by looking only at the past and present are 
defined to be safety properties.  A safety property is a predicate on an execution prefix.  If it is 
false at some point in an execution, it is false for all following execution points.   

The policies that can be enforced using an enforcement mechanism in Class EM are a subset of 
safety properties.  The subset is defined by how much information the enforcement mechanism 
can probe.  An enforcement mechanism that can probe all system information after every 
instruction could enforce all safety properties. 

To satisfy the requirements of class EM, the probe should have no effect on the system and 
should be completely unnoticeable by the executing program.  This is not possible if the probe is 
implemented in software running on the same machine as the program it is probing.  At a 
minimum, it uses CPU cycles that would otherwise be available to the execution.  In some cases, 
it may need to manipulate resource also.  For example, to enforce the NoBashingFiles property 
introduced in Section 3.2 using Naccio/JavaVM, it may be necessary to examine the file system 
to determine if a file already exists (Section 4.2.2 shows how the platform interface is written to 
do this).  We consider resource manipulations done by the checking code to be separate from the 
behavior of the program.  These manipulations are done without any checking enforced.  This 
means policy authors must be wary that an attacker cannot exploit code introduced to do 
checking. 

Aside from the side effects introduced by probing, Naccio standard safety policies are in Class 
EM.  They observe the behavior of an execution through resource operations and issue a violation 
to terminate execution when a policy violation is about to occur.  The subset of safety properties 
that can be defined as Naccio standard safety properties is defined by the resource operations 
defined by the standard resource library.  Naccio can detect violations and observe and modify 
state only at execution points corresponding to resource operations, and can only observe system 
information available through parameters to resource operations (as well as some global system 
information that can be observed through calls to Naccio library functions). 

Certain safety properties cannot be defined using the standard resources.  For example, since 
RFileSystem.preWrite takes an integer parameter revealing the number of bytes to be written but 
does not have a parameter corresponding to the actual data written, we cannot write a policy that 
constrains the actual values of bytes that may be written.  In the next chapter, we describe how 
resource operations are given meaning using a platform interface and how new resource 
operations and safety policies can be defined by altering the platform interface.  In addition, by 
removing some of the restrictions placed on standard safety policies, Naccio can be used to define 
and enforce policies that alter program behavior.  Because these policies do not simply probe 
system information and decide to terminate an execution, they do not fit Schneider’s definition of 
a security policy.  As a result, Naccio is not strictly in Class EM. 
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Chapter 4 
Describing Platforms 

The previous chapter showed how a safety policy is defined in terms of resource descriptions.  To 
have meaning, there must be a way of viewing the way a particular platform manipulates actual 
resources in terms of those abstract resource descriptions.  This is done using a platform interface, 
an operational specification of a platform in terms of its resource manipulations.  Naccio 
implementations include a platform interface that describes the platform in terms of the standard 
resource library.  Changing the platform interface allows new resource operations to be defined 
and more safety policies to be described and enforced.  We call policies that are defined by 
altering the platform interface extended safety policies. 

4.1 Platform Interfaces 

In order to enforce a policy defined in terms of abstract resources, we need a way to model an 
execution in terms of those resources.  The platform interface provides an operational 
specification of a concrete execution platform in terms of a set of resource descriptions.  A 
different platform interface is needed for each execution platform and each set of resource 
descriptions.  The platform interface provides a way to map events during a program execution to 
abstract resource manipulations.  Since the specification is operational, it is easy for the policy 
compiler to convert it to code that calls the resource operations in the appropriate way.  

We can view the platform interface as a probe that can see certain system events.  Based on those 
events, it can execute bookkeeping code and call abstract resource operations that perform the 
checking necessary to enforce a policy.  A Naccio implementation determines what events are 
visible to the probe, and where in the execution chain it sees them.  The events visible determine 
what resource operations can be defined and this limits the class of policies that can be expressed 
and enforced.  For example, if the platform interface can only see manipulations of the file system 
then resource operations relating to manipulating the network cannot be defined.  If the platform 
interface can see the entire state of the machine before and after every instruction, then all 
policies in class EM can be enforced.  Policies defined using a platform interface that can see all 
system events, however, are likely to be cumbersome and expensive to enforce.  Instead, the 
platform interface is defined at a level that allows only certain events to be seen.  For example, a 
platform interface might be defined in terms of calls in the system API.  This would make the 
platform interface easier to create and understand, and would simplify the work of the policy 
compiler and program transformer.  It would not support the definition or enforcement of policies 
that constrain resources that can be manipulated without going through system API calls, such as 
referencing a memory location.   

A Naccio implementation must also determine where in the execution chain the platform 
interface probe is done.  This level determines the trust boundary between what is described by 
the platform interface and what is considered part of the program.  Operations below the level 
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described by the platform interface execute without safety checking and are assumed to 
manipulate resources in the way specified by the platform interface.  Operations above the level 
described by the platform interface are transformed to perform the safety checking defined by the 
resource use policy.  The lowest conceivable place for the platform interface is at the level of 
physical hardware devices.  For example, a disk drive controller could be designed to call a 
resource operation before writing a bit to the disk or a firewall could monitor network traffic and 
call appropriate resource operations.  This would require hardware support not readily available 
today.  If it were available, however, this would allow safety policies to be enforced without 
trusting anything other than the hardware controllers.  The difficulty would be mapping these 
events to resource operations.  The disk controller can provide information about which segment 
on the disk is being written, but probably cannot convert that to a meaningful pathname.  This 
requires operating system support, and would expand the trusted computing base to include the 
relevant system code.  Another difficulty with a hardware-level platform interface is the problem 
of associating a particular manipulation with the program that caused it.  Again, the hardware 
traps will need to rely on operating system level code to map requested actions to the program 
instigating them and the appropriate safety policy.  This would require substantial run-time 
overhead.  Since the effective policy is not known until the application is determined, the 
overhead is required even for simple policies or unconstrained executions.  For most situations, 
hardware-level safety checking is not practical or appropriate.  There are situations, however, 
where safety is crucial enough that it is desirable to place the safety checking at as low a level as 
possible so that bugs in the system library do not lead to policy violations.  For example, it would 
be appropriate for medical devices (such as the Therac-25 mentioned in Section 1.1) with custom 
hardware and control software. 

The next level to consider for the platform interface is at the level of machine instructions.  A 
platform interface at this level would allow any instruction to be mapped to resource operations.  
Trust would be confined to the behavior of individual machine instructions, although as with the 
hardware-level checking, it is likely that some information provided by the operating system 
would be necessary in mapping instructions to meaningful objects.  The main problem with 
defining a platform interface at the level of machine instructions is that it would be hard to 
produce and understand.  Recognizing all sequences of instructions that represent a function call, 
and defining a platform interface in terms of those instruction sequences is likely to be a 
cumbersome and error-prone task.   

Above the individual machine instructions, we can consider a platform interface at the level of the 
system API.  Typical modern operating systems have a protected kernel, and allow programs to 
manipulate most resources only through calls to routines provided by that kernel.  The system 
API provides a convenient place for the platform interface since it is usually well documented 
and structured to provide an abstract way to manipulate resources.  Placing the platform interface 
at this level has other advantages in implementing the policy enforcement mechanisms.  Unlike 
lower-level platform interfaces that would require correspondingly low-level transformations of 
both the program code and system API code to enforce a policy, a policy defined at the level of 
the system API can be enforced by interposing checking code at system call boundaries.  This 
requires that the execution platform provides a clear distinction between the system API and 
application code, and that this interface be maintained securely.  One disadvantage of placing the 
platform interface at this level are that certain resource manipulations, such as allocating or 
referencing memory, may not be visible through calls to the system API.  Another problem is that 
we must trust to system API implementation to manipulate resources in the way described by the 
platform interface.  This makes the system API part of the trusted computing base and means 
attackers can exploit bugs in the system API to circumvent the safety policy.  The other issue with 
a platform interface at the level of the system API is that it is necessary to ensure that programs 
cannot manipulate constrained resources without using the standard system API.  Despite these 
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disadvantages, the system API seems to be the best place for the platform interface for most 
Naccio implementations.  Both of our prototype implementations use platform interfaces at the 
level of a system API.  Naccio/JavaVM uses a platform interface that describes the Java API 
(classes in the java. packages) and Naccio/Win32 uses a platform interface at the level of the 
Win32 API.  Sections 4.2 and 4.3 describe these platform interfaces. 

We can also consider platform interfaces at a higher level.  A platform interface could describe a 
commonly used library such as Microsoft Foundation Classes (MFC) that is implemented using 
the Win32 API.  This would support more higher-level distinctions (and hence, more precise 
policies) than could be written with a platform interface at a lower level.  For example, we could 
use a platform interface at the level of MFC to define different resource operations corresponding 
to opening a file selected by the user using a standard dialog box and opening a file without user 
prompting.  Providing a similar distinction at a lower level would be possible, but very awkward.  
It would be necessary to examine the properties of the window to see if it looks like a standard 
file request dialog and the input from the user to determine what file was selected.  Another 
option would be to write a platform interface that describes application level events.  This would 
allow policies to be defined in terms of objects that are meaningful at the application level but not 
at the system such as application data structures.  The problem with higher-level platform 
interfaces is that they only work for a subset of programs that use those higher-level libraries.  
Programs that manipulate constrained resources in other ways must be disallowed.  This could be 
done by a static analysis that the code never uses system API calls directly.  It would summarily 
reject many harmless programs, however, simply because they were not written using the higher-
level library. 

4.2 Java API Platform Interface 

Naccio/JavaVM enforces safety policies on executions of Java programs that are collections of 
JavaVM classes.  To enforce Naccio policies on Java classes, we need a platform interface that 
maps a Java execution to a sequence of abstract resource operations. 

4.2.1 Platform Interface Level 

Naccio/JavaVM uses a platform interface at the level of the Java API.  Another reasonable option 
would be to put the platform interface at the level of individual byte code instructions.  This 
would allow for resources to be described that correspond to manipulations done below the level 
of the Java API, such as memory references.  All high-level system resources including the file 
system, network, and display are accessible to Java programs only through native methods.  If an 
untrusted program is not permitted to install its own native methods or call native methods 
installed by other programs, the only way it can manipulate these resources is through calls to the 
Java API.  Placing the platform interface at the level of the Java API allows nearly all security-
relevant manipulations to be constrained and allows the platform interface to be described at a 
well-documented and well-defined level.  Further, a platform interface at the level of the Java 
API provides a convenient place to introduce wrappers. 

To define the platform interface, we could examine the API specification and write a wrapper for 
each API routine that describes its resource usage.  This would involve substantial work, and 
depend on the API specification being correct and describing resource usage of all routines in 
sufficient detail.  We can simplify the task of writing a Java API platform interface, however, by 
noting that all relevant resource manipulations must eventually be done by native methods.  This 
means a platform interface for the Java API could describe the resource manipulations done by 
native methods explicitly, and determine the resource manipulations done by other routines based 
on their code (either statically or at run-time).  This would limit the amount of work necessary to 
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write the platform interface to describing the native methods in a particular Java API library 
implementation.7 

A problem with this approach is that it ties the platform interface closely to a particular API 
implementation, instead of to the specification of the Java API.  Since we must describe private 
native methods, the same platform interface could not be reused with a different implementation 
of the Java API.  The other problem with specifying the platform interface at the level of native 
methods is that it may be difficult to determine enough information about the context of a call to 
pass appropriate information to the resource operations.   

Instead, the Naccio/JavaVM platform interface describes only the specified parts of the Java API. 
It does not describe any private API methods since the Java API does not specify these.  It does, 
however, support a pass-through semantics so that not every API routine needs to be described 
explicitly.  For routines that are not explicitly described, the routines they call are checked as if 
they were called directly by the untrusted program.  We can use implicit specifications only for 
routines that do not directly or indirectly call any native methods whose behavior is not explicitly 
described.  Hence, the platform interface must explicitly describe any API routine that has a 
native implementation, that calls a private native method directly, or that calls a private native 
method indirectly through calls to other routines that are not explicitly specified (these routines 
must be private, otherwise they would have be explicitly specified).  Other API routines may be 
described implicitly by passing checking through to the routines they call.  This limits the size of 
the platform interface since most routines can be described implicitly.  It does, unfortunately, tie 
our platform interface to a particular implementation of the API.  It should be easy to adapt it to a 
different implementation, however.  All that is required is to write wrappers for any routines that 
are specified implicitly in the old implementation but implemented using native methods or 
indirect calls to unspecified native methods in the new implementation.  This is preferable to 
requiring that the platform interface explicitly describe every routine of the Java API.   

The code body of member wrappers is written in a simple Java-like language.  This code may call 
resource operations, call Naccio library routines, use and set wrapper state, and do computation 
using that state, parameters, and local variables.  It may use if-else statements to control flow, but 
not while or for loops.  When a wrapper calls a resource operation, the necessary safety checking 
is performed.  If the policy would be violated, the user has the opportunity to terminate execution.  
The hash token (#) marks the execution point where the original routine is called.  Hence, 
resource operations that correspond to events that occur before the described resource 
manipulation must be called before the hash mark and resource operations that correspond to 
events that occur after the described resource manipulation must be called after the hash mark.  
The return value of the call to the original routine is stored in a local variable named result and 
may be used in the remainder of the wrapper body.  For example, the wrapper for 
java.io.File.delete is defined by: 

 
 wrapper boolean delete () { 
  RFileSystem.preDelete (rfile); 
  #; 
  if (result) { RFileSystem.postDelete (rfile); } 
 } 

It calls preDelete before the delete method executes.  The rfile argument is an instance variable of 
type RFile introduced by the platform interface.  If the checking code associated with preDelete 

                                                      

7 In fact, Sun’s implementation of the JDK 1.1.6 API uses 567 native methods. 
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issues a violation and the user chooses to terminate the execution, the actual delete method is 
never executed.  Otherwise, the delete method is executed and its boolean return value is 
identified by the local variable result.  If the call returned true (meaning the deletion completed 
successfully), the postDelete operation is called.  If this completes without issuing a violation, the 
result is returned and execution continues normally after the call.  

4.2.2 File Classes 

Figure 9 shows the platform interface wrapper for the java.io.File class.  For each visible routine 
defined by java.io.File, the class wrapper either provides a wrapper that describes the behavior of 
the member in terms of its effects on abstract resources, or declares the member to be a 
passwrapper.  The resource use of the passwrapper routines is accounted for implicitly by the 
routines their implementation calls.  Checking is done for these routines as though they were 
called from the application directly. 

The java.io.File wrapper adds a state variable, rfile, of type RFile that will be associated with each 
java.io.File object.  This state is used to map a java.io.File object to a resource object that 
identifies the corresponding actual file.  It is up to the member wrappers to maintain this state.  
Hence, each constructor initializes it to an RFile object.  Instead of constructing a new object 
directly, RFile objects are maintained using the RFileMap helper class (shown in Figure 10).  This 
ensures that the same RFile object is used for all manipulations on the same concrete file even if 
there are multiple java.io.File or java.io.FileDescriptor objects that refer to that file.  Storing the 
rfile state is not strictly necessary, since the wrappers could use the file map to obtain the 
appropriate RFile object every time it is needed.  Keeping the rfile in an instance variable, 
however, is likely to have better performance that repeatedly looking it up in the file map. 

Routines that are implemented without calling native methods are declared as passwrappers.  
This avoids the need to understand the behavior of these members in detail, but means the 
platform interface is tied to a particular Java API implementation (in this case, Sun’s JDK 1.1.6).  
If another implementation used a native method to implement getAbsolutePath or called an 
unwrapped native method in its implementation, the platform interface would need to be modified 
to explicitly describe how it manipulates resources.  When Naccio/JavaVM processes a platform 
interface, it issues warnings if a passwrapper member relies on an unwrapped native method 
(either by calling it directly, or by calling unwrapped non-native methods that indirectly call an 
unwrapped native method).  Since all visible native methods must have wrappers, this is only 
possible if the implementation of a passwrapper member calls a private native method directly or 
through calls to other unwrapped routines. 

The declaration of the java.io.File wrapper uses requiredif clauses.  These clauses are not 
necessary for correctness but are used by the policy compiler to eliminate unnecessary wrappers 
to reduce run-time checking overhead.  The clause requiredif RFile, RFileSystem in the 
declaration of the java.io.File wrapper indicates that the wrapper is only necessary if either the 
RFile or RFileSystem resources have meaningful checking.  Without this clause, the policy 
compiler would not be able to determine this automatically and would generate a policy-
enforcing library that requires more run-time overhead than should be necessary.  Section 5.2 
describes how the policy compiler analyzes the platform interface in conjunction with the 
resource use policy to determine which wrappers are necessary. 
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wrapper java.io.File  
    requiredif RFile, RFileSystem { 
 requires RFileMap; 
 state RFile rfile; 

 wrapper File (String path) { 
  #; rfile = RFileMap.lookupAdd (this); 
 } 

 wrapper File (String path, String name) { 
  #; rfile = RFileMap.lookupAdd (this); 
 } 

 wrapper File (java.io.File dir, String name) { 
  #; rfile = RFileMap.lookupAdd (this); 
 } 
    
 passwrapper String getAbsolutePath(); 
 passwrapper String getCanonicalPath(); 
 passwrapper String getParent(); 

 wrapper boolean exists () { 
  RFileSystem.observeExists (rfile); #; 
 } 

 wrapper boolean canWrite () { 
  RFileSystem.observeWriteable (rfile); #; 
 } 

 wrapper boolean canRead () { 
  RFileSystem.observeReadable (rfile); #; 
 } 

 wrapper boolean isFile () { 
  RFileSystem.observeIsFile (rfile); #; 
 } 

 wrapper boolean isDirectory () { 
  RFileSystem.observeIsFile (rfile); #; 
 } 

 
wrapper long lastModified () { 
 RFileSystem.observeLastModifiedTime (rfile);  
 #; 
} 

wrapper long length () { 
 RFileSystem.observeLength (rfile); #; 
} 

wrapper boolean mkdir () { 
 RFileSystem.makeDirectory (rfile); #; 
} 

passwrapper boolean mkdirs (); 

wrapper boolean renameTo (java.io.File dest) { 
 if (dest.exists ())  
  RFileSystem.renameReplace 
   (rfile, dest.rfile); 
 else  
  RFileSystem.renameNew 
   (rfile, dest.rfile); 
 #; 
} 

wrapper String[] list() { 
 RFileSystem.observeList (rfile); #; 
} 

passwrapper String[]  
 list (java.io.FilenameFilter filter);  

wrapper boolean delete () { 
  RFileSystem.preDelete (rfile); #; 
 if (result) RFileSystem.postDelete (rfile); 
} 

}

 
Figure 9.  Platform interface wrapper for java.io.File class. 

helper class RFileMap { // Mapping between java.io.File and java.io.FileDescriptor objects and RFile  
 static private Hashtable fmap = new Hashtable (); 
  
 public static RFile add (java.io.File f) { 
  RFile rf = new RFile (path);  
  fmap.put (f.getAbsolutePath (), rf); 
  return rf; 
 } 

 public static void addReference (java.io.FileDescriptor d, RFile f) { fmap.put (d, f); } 
 public static RFile lookup (Object f) { return (RFile) fmap.get (f); } 

 public static RFile lookupAdd (Object f) { 
  RFile rf = lookup (f); 
  if (rf == null)  
   if (f instanceof java.io.File) rf = add ((java.io.File) f); 
   else if (f instanceof java.io.FileDescriptor)  
    … // Treat file descriptors specially (standard streams are null).  
  return rf; 
 } 
} 

Figure 10.  RFileMap helper class. 
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wrapper java.io.FileOutputStream requiredif RFile, RFileSystem { 
 requires java.io.RFileMap; 
 state RFile rfile; 
 
 helper void doOpen (java.io.File file) { 
  rfile = RFileMap.lookupAdd (file); 
  if (file.exists ()) RFileSystem.openOverwrite (rfile); 
  else RFileSystem.openCreate (rfile); 
 } 
 
 wrapper FileOutputStream (java.io.File file)  { doOpen (file); #; } 
 wrapper FileOutputStream (String file)    { doOpen (new java.io.File (file)); #; } 
 
 wrapper FileOutputStream (java.io.FileDescriptor file) { 
        rfile = RFileMap.lookup (file); 
  if (rfile != null) RFileSystem.openOverwrite (rfile); // File must already exist since its a descriptor 
        #; 
 } 
 
 wrapper FileOutputStream (String file, boolean append) { 
  File tmp = new File (file); 
  if (append) { 
   rflile = RFileMap.lookupAdd (tmp); 
   RFileSystem.openAppend (rfile); 
   } else 
   doOpen (tmp); 
   #; 
 } 
 
 wrapper void write (int b) {  
  // Although Java int’s are four bytes, write only writes the low order byte. 
  if (rfile != null) RFileSystem.preWrite (rfile, 1); 
  #; 
   if (rfile != null) RFileSystem.postWrite (rfile, 1); 
 } 
 
 wrapper void write (byte data[]) {  
  if (rfile != null) RFileSystem.preWrite (rfile, data.length); 
   #; 
   if (rfile != null) RFileSystem.postWrite (rfile, data.length); 
 } 
 
 wrapper void write (byte b[], int off, int len) { 
  if (rfile != null) RFileSystem.preWrite (rfile, len);  
  #; 
  if (rfile != null) RFileSystem.postWrite (rfile, len); 
 } 
 
 wrapper void close () { 
  if (rfile != null) RFileSystem.close (rfile); #; 
 } 
 
 wrapper java.io.FileDescriptor getFD () { 
  #; RFileMap.addReference (result, rfile); 
 } 
} 

Figure 11.  Platform Interface wrapper for java.io.FileOutputStream class. 
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Other Java API classes that manipulate files have wrappers that describe their behavior in terms 
of the RFileSystem resource.  One example is the java.io.FileOutputStream class, shown in Figure 
11.  As with java.io.File, the wrapper for java.io.FileOutputStream maintains an RFile object 
representing the actual file corresponding to this output stream.  This state can be null, if the 
FileOutputStream does not correspond to a file (for example, if it is the standard output stream). 

Because the RFileSystem resource provides different resource operations for overwriting an 
existing file and creating a new file, the FileOutputStream constructors must distinguish between 
opening existing and new files.  This is done by the doOpen helper method.  It calls 
java.io.File.exists to determine whether to call the openOverwrite or openCreate resource 
operation.  Internal routine calls in platform interface wrappers always call the unwrapped 
versions of routines.  Hence, the call to exists bypasses the wrapper and does no safety checking. 

4.2.3 Network Classes 

The platform interface for the network classes is less straightforward than it was for the file 
classes, since the network resource is manipulated in several different ways and socket 
transmissions are done using generic input and output stream classes.   
 
wrapper java.net.Socket { 
 requires NRegulatedNetworkInputStream, NRegulatedNetworkOutputStream, SocketHelp; 
 state RNetConnection rnc; 
 
 wrapper Socket (String host, int port) { 
  rnc = new RNetConnection (new RNetAddress (SocketHelp.getLocalAddress (), 
              new RNetAddress (SocketHelp.absoluteName (host), port)); 
  #; 
  rnc.getLocalAddress ().setPort (getLocalPort ()); // Local port is not known until after constructor. 
  RNetwork.postOpenConnection (rnc); 
   } 
 
 … // Other constructors similar. 
 
   wrapper InputStream getInputStream()  
  // Only necessary if preReceive or postReceive does checking. 
   requiredif RNetwork.preReceive (RNetAddress, RNetAddress, int),  
       RNetwork.preReceive (RNetConnection, int), 
       RNetwork.postReceive (RNetAddress, RNetAddress, int), 
       RNetwork.postReceive (RNetConnection, int) { 
      #; 
  result = new NCheckedNetworkInputStream (result, rnc); 
 } 
 
   wrapper OutputStream getOutputStream () 
   requiredif RNetwork.preSend (RNetAddress, RNetAddress, int),  
       RNetwork.preSend (RNetConnection, int), 
       RNetwork.postSend (RNetAddress, RNetAddress, int), 
       RNetwork.postSend (RNetConnection, int) { 
      #; 
      result = new NCheckedNetworkOutputStream (result, rnc); 
 } 
 
 … // other methods elided 
} 

Figure 12.  Platform interface for java.net.Socket. 
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helper class NCheckedNetworkOutputStream extends java.io.FilterOutputStream { 
 RNetConnection rnc; 
 
 public NCheckedNetworkOutputStream (OutputStream os, RNetConnection r) { 
  super (os); 
  rnc = r;   
 } 
 
 public void write (int b) throws IOException { 
  RNetwork.preSend (rnc,1); 
   super.write (b); 
      RNetwork.postSend (rnc, 1); 
   } 
 
 // Other write methods overrided similarly. 
} 

Figure 13.  NCheckedNetworkOutputStream helper class. 

Figure 12 shows the java.net.Socket platform interface.  The getInputStream and 
getOutputStream methods return stream objects used for sending and receiving data through a 
socket.  Since the RNetwork resource provides operations corresponding to sending or receiving 
bits over the network, the platform interface must ensure that the appropriate resource operations 
are invoked when these streams are used.  The wrappers for the get stream methods accomplish 
this by returning a subclass of InputStream or OutputStream constructed using the result of the 
original method and the RNetConnection object.  These subclasses call resource operations when 
data is received or sent through a network connection.  Figure 13 shows excerpts from the 
NCheckedNetworkOutputStream helper class; NCheckedNetworkInputStream is similar. 

In addition to the persistent stream used by java.net.Socket, the network may be manipulated by 
sending or receiving datagram packets and by using server sockets that listen for incoming 
connections.  The platform interfaces for java.net.DatagramSocket and java.net.ServerSocket 
describe the Java API classes corresponding to these manipulations.  Other classes such as 
java.net.URLConnection also provide routines that can be used to manipulate network 
connections, and are described appropriately by the platform interface. 

4.2.4 Extended Safety Policies 

This section demonstrates how a policy that cannot be defined using the standard resources can 
be defined by using an altered platform interface.  First, we introduce a standard policy that 
places a limit on the rate of network usage.  This policy is then improved by modifying the 
platform interface. 

A safety property that limits the total amount of data sent or received over the network can be 
written similarly to the LimitBytesWritten property introduced in Figure 6.  Instead of tracking 
bytes written to files, this policy would track bytes sent over the network using the RNetwork 
preSend and postSend operations.  Such a policy would be useful in detecting obviously bad 
behavior from programs that are permitted to use the network but not expected to send or receive 
a large amount of data.  A more generally useful policy would allow for a limit to be placed on 
the rate of network usage instead of the total amount.  Writing such a policy depends on dividing 
time into quanta and keeping track of the number of bytes sent during the current time quantum.  
Figure 14 shows a policy that limits the rate of network transmissions by delaying sending.  It 



  

 50  

prevents the application from sending more than maxBytes bytes over the network in an ms 
millisecond time period.8   

Although this policy constrains network bandwidth as desired, it is far from satisfactory.  If the 
preSend operation is called with a higher number of bytes than maxBytes, it leads to a violation 
since there is no way to alter the send to conform to the rate.  Further, if the number of bytes 
doesn’t exceed the quantum limit but is slightly higher than the number allowed in the remaining 
time quantum, it stalls until the current time quantum completes instead of sending part of the 
transmission right away.  Without changing the platform interface, there is no way to fix these 
problems since the resource operation has no control over the system call it is constraining.  By 
modifying the platform interface, however, and integrating it with the policy information, we can 
change the way network transmissions are done to improve the policy.   
 
 
stateblock TrackSendRate (timeQuantum: int) augments RNetwork { 
 addfield bytesSent: int = 0; 
 addfield timeStart: int; 

 helper updateTimer () { 
  if (naccio.library.Time.getCurrentTime () - timeStart > timeQuantum) { 
   // The current time quantum is finished, reset. Ignores numeric wrap around. 
   bytesSent = 0; timeStart = naccio.library.Time.getCurrentTime (); 
        } 
    } 

 helper waitForQuantum () { 
  if (naccio.library.Time.getCurrentTime () - timeStart < timeQuantum) { 
            naccio.library.Time.sleep (timeQuantum - (naccio.library.Time.getCurrentTime () - timeStart)); 
  } 
  updateTimer (); 
  assert (bytesSent == 0); // check a new quantum was started 
    } 

 precode postSend (connection: RNetConnection, nbytes: int) { 
  updateTimer (); bytesSent += nbytes; 
 } 
} 

property NetLimitSendRate (maxBytes: int, ms: int) { 
 // Send up to maxBytes in time ms 
 requires TrackSendRate (ms); 
 precheck RNetwork.preSend (connection: RNetConnection, nbytes: int) { 
  updateTimer (); 
  if (bytesSent + nbytes > maxBytes) { 
            if (nbytes <= maxBytes) waitForQuantum (); 
   else  
                violation ("Network send rate exceeded.  Maximum of " + maxBytes + " bytes per " + ms 
        + "ms. Already sent " + bytesSent + " this quantum; attempting to send "  
        +  nbytes + " bytes."); 
  } 
 } 
} 

Figure 14.  Policy that limits network send rate by delaying transmissions. 

                                                      

8 To be more precise, since all the sending in one checking quantum could occur at the end, and all the 
sending in the next occurs at the beginning, it is possible that there is some quantum-length time slice in 
which nearly 2 * maxBytes are transmitted.  More generally, for n adjacent time slices, the total number of 
bytes sent is not greater than (n + 1) * maxBytes. 
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Figure 15 shows a policy that splits and delays network sends to conform to a requested 
bandwidth usage.9  The SoftSendLimit property includes an alterinterface clause that modifies the 
platform interface using the alternate wrapper for java.net.Socket shown in Figure 16 (a similar 
wrapper for java.net.DatagramSocket is not shown).  It replaces the wrapper for getOutputStream 
to construct and return an NRegulatedOutputStream object instead of the 
NCheckedNetworkOutputStream returned by the standard wrapper. 

Excerpts from the definition of NRegulatedOutputStream are shown in Figure 17.  It loops until 
the entire array of bytes is transmitted.  Each iteration calls RNetwork.quantumSendAvailable 
(defined by the SoftSendCounter state block) to find out how much bandwidth is remaining in the 
current time quantum.  Since quantumSendAvailable is defined to stall until the end of the time 
quantum if no more bandwidth use is allowed, it always returns a positive value.  It then calls the 
RNetwork.preSend resource operation for the actual send, calls write to send the data, and then 
calls the RNetwork.postSend resource operation.   
 
 
stateblock SoftSendCounter (sendLimit: int, timeQuantum: int) augments RNetwork { 
 requires TrackSendRate (timeQuantum); 
 
 helper quantumSendAvailable () returns int { // Number of bytes more that can be sent this quantum 
  updateTimer (); 
  if (bytesSent >= sendLimit) waitForQuantum (); 
  return (sendLimit - bytesSent); 
    } 
} 
 
property SoftSendLimit (limit: int, tq: int) { 
 requires SoftSendCounter (limit, tq); 
 alterinterface java.net.Socket: RegulatedSendSocket, 
        java.net.DatagramSocket: RegulatedSendDatagramSocket; 
 
 precode RNetwork.preSend (connection: RNetConnection, nbytes: int) { 
  // No checking necessary, but use assertion to make sure platform interface is doing the right thing. 
  assert (nbytes + bytesSent <= sendLimit);  
 }  
} 

Figure 15.  Policy that limits bandwidth by splitting up and delaying network sends. 

 
 
alter wrapper java.net.Socket { 
 requires java.net.NRegulatedOutputStream; 
 
 replace wrapper OutputStream getOutputStream () { 
  #; 
  result = new NRegulatedOutputStream (result, rnc); 
 } 
} 

Figure 16.  RegulatedSendSocket wrapper modification code. 

                                                      

9 We assume the application does not depend on how sends are packaged.  This is not necessarily true, and 
some applications will fail if network sends are split.  
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helper class NRegulatedOutputStream extends java.io.FilterOutputStream { 
 RNetConnection rnc; 
 
 public void write (byte b[]) throws IOException { 
  long offset = 0; 
  
  do { 
       long avail = RNetwork.quantumSendAvailable (); 
   if (avail + offset > b.length) avail = b.length - offset; // Can send the rest 
 
   // Assumes no other threads send since call to quantumSendAvailable. 
   RNetwork.preSend (rnc, avail); 
   out.write (b, offset, avail); 
   RNetwork.postSend (rnc, avail); 
 
   offset += avail; 
  } while (offset < b.length);  
    } 
 
 … // Other methods elided. 
}  

Figure 17.  NRegulatedOutputStream helper class (excerpted).  

For simplicity, this implementation assumes there are no other program threads that may send 
data over the network between the call to quantumSendAvailable and the call to postSend.  If this 
were to happen, two threads could attempt to use the same available bandwidth leading to a 
failure of the assertion defined in the check body for RNetwork.preSend in the SoftSendLimit 
property.  To prevent this, an implementation could use a semaphore to lock the RNetwork 
resource when quantumSendAvailable is called and release it after calling postSend. While 
locked, future calls to quantumSendAvailable would stall until the lock is released. 
 
In addition to altering existing wrappers, policy authors can replace wrappers completely, remove 
existing wrappers, or add new wrappers.  This can be done to provide fine control over behavior 
in ways that is not possible in checking code itself.  It can also be done to define new resource 
operations that can be used like standard resource operations in defining safety policies. 

4.3 Win32 Platform Interface10 

Naccio/Win32 is intended to provide code safety on a variety of Windows operating system 
platforms.  The Win32 API is used by many Windows-based operating systems including 
Windows 95, Windows 98, Windows NT, Windows CE and Windows 2000.  Although 
Naccio/Win32 is intended to support many Win32-based operating systems, this discussion 
focuses on Windows NT (which is believed to be the basis for all future Windows operating 
systems including Windows 2000).   

Like most modern operating systems, Windows NT has a protected kernel that provides system 
calls that can be used to manipulate the hardware and control basic operating system functions.  
Application processes are confined to their own virtual address space but can make calls to kernel 

                                                      

10 For more details on the Win32 platform interface, see [Twyman99].  This section is largely based on that 
document. 
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code by executing a trap instruction.  On top of the kernel, NT provides several OS environments 
including Win32, Posix and MS-DOS.  Each OS environment is implemented by a protected 
subsystem – a user-level process that receives requests from client process using Local Procedure 
Call (LPC) messages.  All OS environments in Windows NT are implemented using the Win32 
subsystem, which makes direct calls to the kernel.  Since programming using LPC messages 
would be tedious, the Win32 subsystem provides an application program interface (API) that 
allows programs to access the Win32 subsystem using function calls.  All Windows 
implementations implement this API using a dynamic link library (DLL).  DLLs are linked when 
a program is loaded or during execution, but are not statically linked into an executable. 

4.3.1 Platform Interface Level 

There are several options for the level of the Naccio/Win32 platform interface.  The lowest level 
would be at the level of machine instructions for a particular machine architecture, such as Intel 
x86.  This would mean alternate machine architectures (such as the DEC Alpha) could not be 
supported without writing a new platform interface.  Further, enforcing policies at that level 
would require modifying the NT kernel and involve substantial complexity.  Since using a 
different version of the kernel for programs that enforce different policies is not readily possible 
within the Windows architecture, it would be necessary to integrate the checking hooks into the 
standard kernel and determine at run-time which policy should be enforced.  As a result, most of 
the overhead of the most expensive safety policy needs to be incurred for even trusted programs 
running with no policy constraints. 

The next possible level for the platform interface is the NT kernel.  The platform interface could 
describe calls provided by the NT kernel and enforce policies by interposing checking code 
around calls to the kernel.  This would require modifying the protected subsystems.  Since 
Windows 95/98 does not use protected subsystems, one disadvantage of this approach is that it 
would only work for Windows NT.  Another problem with trying to write a platform interface at 
the level of the NT kernel is that there is no definitive documentation available for the kernel 
calls, and platform interface authors would need to rely on guesswork to describe their behavior 
correctly. 

The most appropriate choice is to put the platform interface at the level of the Win32 API.  This is 
the lowest level that is standardized and well documented.  It is shared across Windows operating 
systems and machine architectures.  Selecting a platform interface at the level of the Win32 API 
restricts the target programs to those written to the Win32 API, so programs written for the 
Win16, MS-DOS or Posix subsystems are not supported.  Importantly, though, it means that a 
single platform interface can be used across all Win32 systems, and as a result, much of the 
policy compiler and program transformer can be reused across all Win32 systems.  Placing the 
platform interface at the level of the Win32 API offers several advantages in the ease of creating 
an implementation and its efficiency at both transformation and execution time.  The Win32 API 
is encapsulated entirely in DLLs.  This provides a clear interface where the platform interface 
wrappers can be interposed.  A disadvantage of placing the platform interface at this level is that 
Naccio/Win32 must ensure that programs cannot circumvent safety checking by manipulating 
resources without using the Win32 API, for example, by making direct kernel calls.  Section 6.2.2 
discusses what must be done to provide the necessary assurances. 

Placing the platform interface at a higher level would be likely to exclude too many programs.  
One option would be writing a platform interface for the Microsoft Foundation Classes (MFC).  
Many Win32 programs are written using MFC, a C++ library that provides object-oriented 
abstractions of the Win32 API.  A platform interface at this level would support policies that 
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could take advantage of information that is readily available in MFC calls but harder to extract 
from Win32 API calls.  For example, it could treat opening a file selected by the user from a 
standard dialog box differently from normal file opening.  If the only platform interface available 
describes MFC, it would be necessary to prevent the application from making direct calls to the 
Win32 API.  Another problem is that MFC may be linked either statically or dynamically.  If it is 
linked statically, the MFC calls cannot easily be securely detected and replaced with wrappers.  
On the other hand, combining a Win32 API platform interface with an MFC platform interface 
would be a viable option.  This would allow polices to be enforced on programs that call the 
Win32 API directly, but allow more permissive policies to allow additional resource 
manipulations from programs that use MFC.  The Naccio prototypes do not support multiple level 
platform interfaces, although it is a clear extension of the architecture.  Section 9.2 discusses 
extensions to Naccio that would be necessary to support this. 

4.3.2 Prototype Platform Interface 

Several compromises were made to make creating the platform interface for the Naccio/Win32 
prototype manageable.  Because of the size and complexity of the Win32 API, the Win32 
platform interface only describes a small subset of the API, focusing on the simple file 
manipulation calls.  Hence, only policies defined using only the RFile and RFileSystem resources 
can be enforced. 

The other major compromise taken to make Naccio/Win32 manageable is to express the platform 
interface using stylized C code that can be compiled directly using the macro definitions 
generated for the resource implementations.  This eliminates the need for the policy compiler to 
parse and analyze the platform interface.  It also removes the possibility to optimize out 
unnecessary wrappers, and means that the overhead required for simple policies is substantially 
more than would be the case if some simple optimizations were done.  This was viewed as 
acceptable considering the proof-of-concept nature of the Naccio/Win32 prototype. 

Figure 18 shows an excerpt from the Naccio/Win32 platform interface for the DeleteFileA system 
call.  Since the platform interface is designed to be C code that can be compiled directly, it uses a 
naming convention to invoke resource operations.  A resource operation is called by the resource 
type name followed by an underscore and the resource operation name.  The policy compiler will 
define macros corresponding to these names that do the actual resource invocation.  The wrapper 
calls RFileMap_addRFileByName to obtain an RFile object corresponding to the pathname.  Since 
Win32 programs are not garbage collected, we use reference counting to manage object memory.  
When the returned RFile is no longer needed, the wrapper code calls RFile_release to indicate 
that the object reference is no longer needed. 

BOOL wrapper__DeleteFileA (LPCTSTR pathname) { 
 BOOL result; 
 RFile rf = RFileMap_addRFileByName (pathname); 
 
 RFileSystem_preDelete (rf); 
 RFileSystem_observeExists (rf); 
 result = DeleteFileA (pathname);  
     
 if (result) RFileSystem_postDelete (rf); 
 RFile_release (rf); 
  
 return result; 
} 

Figure 18.  Naccio/Win32 platform interface wrapper for DeleteFileA. 
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4.4 Expressiveness 

The platform interface defines a set of resource operations by providing an operational 
specification for a system in terms of those resource operations.  Altering the platform interface 
allows new resource operations to be defined.  Hence, the range and precision of policies that can 
be defined is no longer limited by a standard set of resource descriptions.  We can define new 
resource operations that correspond to any manipulation visible to the platform interface.  The 
level of the platform interface limits what manipulations are visible, and thus the scope of policies 
that can be defined.   

If the platform interface is at the level of a system API, we can define resource operations that 
correspond to any manipulation done through API calls.  In the case of Naccio/JavaVM, the 
platform interface is at the level of the Java API.  This means we can define a resource operation 
corresponding to any routine in the Java API.  Since all manipulations of files, the network, 
display, threads, and the system environment are done through calls to the Java API, this supports 
a large class of policies.  Some resources, however, are not manipulated through Java API 
routines, and cannot be defined using a platform interface at this level.  For example, memory use 
is not done using the Java API.  Some memory use is visible through Java API constructor calls, 
but memory use resulting from allocating arrays and constructing objects without using Java API 
constructors is not visible through Java API calls.  If we wish to support policies defined using a 
memory resource, a lower level platform interface is required.  This could be done either using 
callbacks from a modified virtual machine or by inserting resource operation calls that represent 
memory use into the application. 

The platform interface also places fewer constraints on what can be done around a constrained 
event.  In both the Naccio/JavaVM and Naccio/Win32 platform interface languages, there are no 
restrictions on the code that may be used in a wrapper.  This means the behavior of the program 
may be changed in radical ways at any execution point visible to the platform interface.  For 
example, we could write a wrapper for the java.net.Socket constructors that opens a window that 
plays Tetris and requires the user to accumulate a certain number of points before a socket is 
opened.  More practical policies that take advantage of the extensibility of the platform interface 
might log all network transmissions to a secure audit file or make all windows created by an 
untrusted program appear with a red title bar. 
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Chapter 5 
Compiling Policies 

All policies that can be defined using the Naccio definition mechanisms can be enforced on 
executions.  Policy enforcement mechanisms are divided into two phases – policy compilation 
prepares what is needed to enforce a policy on any program, and program transformation prepares 
a modified version of a target program that is constrained by a policy.  This chapter discusses the 
policy compilation phase. 

The policy compiler takes a policy description consisting of resource descriptions, a platform 
interface, and a resource use policy, and produces a policy description file that compactly 
specifies what transformations are needed to enforce the policy, as well as supplementary files 
used in those transformations.  Those supplementary files include implementations of the 
resource operations that perform the checking specified by the policy.  For platform interfaces at 
the level of a system API, they also include a modified system library that calls the relevant 
resource operations as directed by the platform interface.   

Policy compilation is divided into three steps:  

1. Processing the resource use policy to weave checking code into an intermediate 
representation of the resource operations (described in Section 5.1),  

2. Reading the platform interface and analyzing it in conjunction with the resource 
operations (described in Section 5.2), and  

3. Generating output files from the intermediate representations.  For platform interface at 
the level of a system library, the output files comprise a policy-enforcing library that can 
be used in place of the standard system library to enforce a safety policy on an execution.  
The policy-enforcing library consists of implementations of the resources that incorporate 
checking code defined by the policy (described in Section 5.3), and a wrapped version of 
the standard library that calls routines that correspond to the abstract resource operations 
(described in Section 5.4).   

Section 5.5 discusses some opportunities for optimizations involving both the resource 
implementations and library wrappers. The final output of the policy compiler is a policy 
description file that encodes the transformations needed to enforce the policy on a particular 
program (described in Section 5.6). 

5.1 Processing the Resource Use Policy 

The first step in compiling a policy is to parse the resource descriptions and resource use policy 
and produce an intermediate language representation of the checking code.  This step is 
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independent of the target platform and platform interface level.  Hence, it can be reused by all 
Naccio implementations. 

For the prototype implementations, the intermediate language is an abstract syntax tree similar to 
the Java programming language.  This makes parsing the resource descriptions and resource use 
policy straightforward, and makes it easy to generate Java implementations from the intermediate 
representation.  The disadvantage of using such a high level intermediate representation is that it 
may be harder to do certain optimizations at this level.  For an industrial implementation, it may 
be better to use a lower-level intermediate representation or run an optimizer on the generated 
code. 

Once the resource descriptions and resource use policy have been parsed, each safety property is 
instantiated with the constant arguments given in the resource use policy.  These values are bound 
in the code by textually replacing instances of the parameter in the code with the actual 
parameter.  If the same safety property is instantiated more than once in the policy with different 
arguments, multiple copies of the property will exist for each with different values bound to the 
parameters.  Once the properties have been instantiated, the checking code associated with each 
safety property and required state block is integrated into the appropriate resource operations.  
State block helpers are merged into the resource class as methods.  A copy of the checking code 
is inserted into the code body of each resource operation or group listed in the check clause.  The 
code must be located in the body according to its type: all precode blocks in state blocks must be 
executed before any other checking code; all check clauses in permissions must be before safety 
property check classes since the allowance must overrides a violation by calling allow before the 
violation is reached; and all postcode blocks in state blocks must be executed after all checking 
code.  To support this, the policy compiler maintains four separate code blocks for each resource 
operations corresponding to code from precode blocks, code from permission check clauses, code 
from safety property check clauses, and code from postcode blocks.  Once all the safety 
properties have been processed, the code from each of these blocks is merged into a single block.  
Checking code preserves information about the property it came from.  This information is used 
in the code generation phase so that violation messages can be produced that include information 
about the property that produced a violation.  

Next, a relaxation algorithm is use to determine which resource operations, helpers and groups do 
meaningful work.  Since a policy may require generic state blocks, but not use all state 
maintained by the block in checking, it is possible that some resource operations do not need to 
be implemented.  This analysis is also a useful test that the policy means what the policy author 
intends as Naccio provides information on what resource operations are implemented.  For 
example, if a policy is designed to restrict access to files but the policy compiler reports that it 
does not need to implement RFileSystem.openRead, the policy author should suspect something 
is wrong with the policy definition. 

The policy compiler determines which resource operations are unnecessary using a specialization 
of standard compiler optimization for dead code elimination [Aho86, p. 595].  Because the 
definition of useful code in a safety policy is narrow, we can eliminate more code then could be 
eliminated by a generic compiler.  A resource member does meaningful work if any of the 
following are true: 

1. It could issue a violation.  This is assumed to be the case if its body calls the violation 
command or calls a helper method that could issue a violation.  A more involved analysis 
could attempt to determine if the violation could ever in fact be issued by analyzing the 
code logic more deeply.  Resource operations and constructors that only call the allow 
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command do not need to be implemented, since this is only meaningful if a violation 
could be issued.  Resource helpers that call the allow command need to be implemented if 
they are called by a resource operation that could issue a violation.  

2. It sets the value of some resource state that is meaningful.  State is meaningful if its value 
is used in a meaningful resource member. 

3. It is contained in the group list of a meaningful resource group. 

The relaxation works by first assuming all resource state and members are meaningless, and 
iterating the definition of meaningful work through each resource member.  The iteration 
continues until no new meaningful resource members are marked.  It is guaranteed to terminate 
since each iteration either marks no new resource members as meaningful and leads to 
termination or marks a previously meaningless resource member as meaningful.  The number of 
resource members is an upper bound on the number of iterations.  In practice, only a few 
iterations are needed for most policies.   

5.2 Processing the Platform Interface 

The platform interface is defined using a platform-specific variant of the platform interface 
specification language.  Hence, each Naccio implementation must provide a platform-specific 
parser that converts the platform interface to an intermediate representation.  The platform 
interface intermediate representation is similar to that used for resource implementations.  This 
allows much of the analysis code to be reused.  Each platform interface wrapper is associated 
with some concrete system event and contains wrapper code for that event.  For platform 
interfaces at the level of a system API, each wrapper is associated with a call to a system API 
routine. 

A wrapper is considered to be a normal form wrapper if it always invokes the original wrapped 
operation exactly once and all wrapper code is limited to calling resource operations, setting 
wrapper state, doing side-effect free computation that is guaranteed to terminate, and calling 
helper functions and Naccio library routines that satisfy these properties.  It is likely that there are 
many unnecessary platform interface wrappers, since the platform interface is written to support a 
large class of policies. 

As with resource operations, the policy compiler uses a specialization of the standard compiler 
optimization for dead-code elimination to eliminate unnecessary normal form wrappers.  A 
normal form wrapper is necessary if it either: 

1. Calls a meaningful resource operation (as was determined by processing the resource use 
policy), or 

2. Sets some meaningful wrapper state.  Wrapper state is meaningful if it is read in a 
necessary wrapper. 

Which wrappers are necessary is determined by a relaxation analysis similar to that used to 
determine which resource members are meaningful.  Within a necessary wrapper, calls to 
resource operations that are not meaningful are removed. 

In addition to what can be determined by the analysis, the policy compiler uses requiredif clauses 
to eliminate wrappers that could not otherwise be determined to be unnecessary.  The policy 
compiler trusts the requiredif clause, and will eliminate a wrapper that has a requiredif clause if 
none of the resource operations listed do meaningful work.  This also allows wrappers that are not 
expressed in normal form to be eliminated.  Naccio cannot eliminate wrappers that are not normal 
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form wrappers since determining that they use no meaningful resource operation and set no 
meaningful state is not sufficient.  Non-normal form wrappers can also change the return value, 
call routines that alter the behavior of the program, or prevent the original routine call from 
occurring.  Hence, wrappers that are not normal form are never eliminated except when permitted 
by an explicit requiredif clause.   

One example is the checked stream classes used in the Java API platform interface for 
java.net.Socket.  The wrapper for getOutputStream creates a new 
NCheckedNetworkOutputStream object that extends the result from the original method and 
overrides the write methods to perform checking code before calling the superclass method.  All 
this work is unnecessary unless the RNetwork.preSend or RNetwork.postSend operation does 
meaningful work.  Because the wrapper has a requiredif clause that indicates this, Naccio/JavaVM 
can eliminate the wrapper and the helper class if the RNetwork.preSend and RNetwork.postSend 
operations are not meaningful. 

5.3 Generating Resource Implementations 

The intermediate representations of the processed resource operations need to be converted to 
implementations that perform the actual checking.  A resource implementation must be produced 
for every resource that contains a meaningful resource member.  The code produced depends on 
the target platform, but some platform-independent transformations can be done on the 
intermediate representation first. 

The violation and allow commands in safety policy bodies are replaced with calls to Naccio library 
routines.  The library routines take extra arguments giving the names of the policy and property 
that issued the violation and information on where it is defined.  For certain policies, the violation 
and allow library routines also need an extra argument that encodes the violation status code.  
This is necessary if the policy uses weaken to combine permissions and negative properties since 
violation codes are used by allow command to override future violation commands.  If violation 
codes are necessary, a parameter of type ViolationCode is added to all resource members that call 
the violation or allow command.  The Naccio library defines the ViolationCode type.  It encodes 
whether an allow command was issued that should suppress violations detected in this resource 
operation.  A ViolationCode object is created in the wrapper routing and passed to resource 
operations.  The policy compiler adds parameters to declarations and inserts them at call sites as 
necessary.  The ViolationCode object is passed to the allow and violation library methods.  The 
allow method sets it to record a permission, and the violation method uses it to suppress violations 
that have been overridden by permissions. 

The other preparation step is to handle resource groups.  For each resource group, there are two 
implementation options: we can implement it as a method helper and add calls from the group 
members, or we can inline the checking code directly into group members.  We must pay 
attention, however, to the appropriate ordering of checking code.  In the worst case, this means a 
resource group implementation is divided into four separate helper routines corresponding to the 
precode actions, the permission (allow) bodies, the negative check bodies, and the postcode 
actions.  Group members must call each of these at the corresponding point in their own check 
body.  Fortunately, for most resource groups only one or two of the routines are necessary.  
Implementing resource groups as methods saves code duplication, but involves the overhead of 
up to four additional method calls for each group member.  The group member list gives the 
arguments necessary to call the resource group.  This is converted into the intermediate 
representation of the equivalent method call.  An alternative is to inline the group code directly 
into the member bodies.  For simplicity, this is only done for resource members that match the 
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group parameters exactly.  It could be done for other members, but this would require binding the 
group parameters to new local variables. 

A further improvement is possible if the individual group member has no checking code other 
than that given by the resource group.  For group members that have no checking code other than 
that done by the resource group, we can directly replace the member with the group and avoid the 
overhead of either extra implementation or method calls.  We simply implement the resource 
group as if it were an operation, and replace calls to the resource operation in the platform 
interface with calls to the group. 

Finally, a platform-specific implementation of the resources is generated.  The actual 
implementation depends on the particular target platform, but generating resource 
implementations from the intermediate representation should be relatively straightforward for 
most platforms.  The next two subsections discuss how each prototype implementation generates 
resource implementations. 

5.3.1 Naccio/JavaVM 

Naccio/JavaVM generates a Java class corresponding to each resource.  Java source code is 
produced and compiled using a standard Java compiler.  Since the intermediate representation is 
similar to Java source code, producing source code for the corresponding Java class is 
straightforward. 

Figure 19 shows the resource class for the RFileSystem resource description from Figure 4 that 
was generated by Naccio/JavaVM to enforce the LimitWrite policy introduced in Figure 7.  This 
file is placed in a newly created output directory corresponding to a new package holding all the 
resource implementations for this policy.  Because RFileSystem is declared as a global resource, 
all class variables and routines are static.  The bytes_written field introduced by 
TrackBytesWritten is implemented by adding a class variable to RFileSystem.11 

The modifyExistingFile method corresponds to the group with the same name and contains code 
from the NoBashingFiles property.  The violation command has been converted to a call to the 
NCheck.policyViolation library method, and additional arguments are passed so a helpful error 
message can be produced.  Since none of the members of the modifyExistingFile group have their 
own checking code, modifyExistingFile can be implemented as a method if calls to group 
members in the platform interface are replaced in the generated platform interface wrappers with 
calls to modifyExistingFile.  The preWrite and postWrite methods contain code from the 
LimitBytesWritten safety property.  The limit parameter of LimitBytesWritten has been bound to the 
value of 1000000 passed in by the LimitWrite property. 

The implementation shown does not pass violation codes since the policy did not use 
permissions.  If violation codes were necessary, each resource routine would have an additional 
parameter of type naccio.library.ViolationCode and would pass this parameter on to the 
policyViolation library method and a similar method corresponding to allow. 

                                                      

11 The type of bytes_written is long.  Strictly, it should be a Naccio library type with the semantics for the 
int type defined for use in safety properties.  For simplicity, the Naccio/JavaVM implementation ignores 
issues of precise number semantics (such as integer overflow), and assumes using a long to represent 
unbounded integers is sufficient.   
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package lw; // Note: actually a longer, unique package name is used.  For readability we shorten it here. 
import naccio.library.*; 
 
public class RFileSystem { 
 static long bytes_written = 0; // from TrackBytesWritten 
 final public static void modifyExistingFile (lw.RFile file)  { 
  naccio.library.NCheck.policyViolation (“LimitWrite”, "NoBashingFiles",   
                 "Destructive manipulation of file: “ + file.getName ()); 
 } 
 
 final public static void preWrite (lw.RFile file, long n) { 
  if (bytes_written + n > 1000000) 
   naccio.library.NCheck.policyViolation (“LimitWrite”, "LimitBytesWritten",  
    "Attempt to write more than " + 1000000 + " bytes. Already written " + bytes_written +  
    " bytes, writing " + n + " more to " + file.getName () + "."); 
 } 
  
 final public static void postWrite (lw.RFile file, long n) { 
  bytes_written += n; 
 } 
} 

Figure 19.  Resource class generated by Naccio/JavaVM. 

The generated Java source files are compiled by running a standard Java compiler.  The resulting 
class files are then transformed to replace calls to wrapped API routines with calls to the 
corresponding unwrapped API routines.  This is done using the same transformation engine and 
similar transformations as is used to produce the platform interface (see Section 5.4).  The calls to 
wrapped API routines are rewritten so that checking is not done for API calls made in the 
resource implementations. 

5.3.2 Naccio/Win3212 

Naccio/Win32 generates resource operations as ANSI C source code that is compiled into a DLL.  
ANSI C is chosen as the implementation language instead of C++ because of portability issues 
and simplicity, and over other languages because of efficiency and the ease with which a DLL 
can be produced from C source code.  Since C is not object-oriented, a naming convention is used 
to group routines associated with a particular resource and the associated resource object is 
passed explicitly.  Macros are used to hide these implementation details from the platform 
interface. 

Naccio/Win32 produces both a header file and source file containing all the resource 
implementations.  The header file contains type definitions, variable and function declarations, 
and macro definitions that are used in the platform interface implementation.  Both the resource 
source file and the platform interface implementation source file include this header file. 

The resource header generated by Naccio/Win32 for the LimitWrite policy is shown in Figure 20.  
The types for RFileSystem and RFile are defined as pointers to structures containing fields that 
correspond to the resource state.  Since RFileSystem is a global resource, the resource header file 
also declares the variable RFileSystem_state of type RFileSystem to represent the global 
RFileSystem object.  This simplifies the implementation of resource operations, since it allows 

                                                      

12 This section is based on [Twyman99], which contains additional information on how resource 
implementations are generated by Naccio/Win32. 



  

 63  

global and non-global resource operations to be implemented identically except the global state 
object is passed instead of the this object.  For an industrial implementation, it would make more 
sense to put the state associated with global resources in stand-alone variables instead of structure 
types would save the overhead of passing an extra pointer and performing an extra indirection. 

The header file defines empty macros for the resource operations that do no useful work.  Since 
macros are expanded at compilation time, this means the resource calls can be left in the platform 
interface with no run-time overhead.  The header file also defines macros for the 
modifyExistingFile group member operations that call RFileSystem_modifyExistingFile with the 
appropriate argument.  For resource operations that do useful work, the resource header file 
includes macro definitions that automatically pass the global state to the actual resource operation 
implementation.   
 
#ifndef _INSIDE_RESOURCE_DLL_ 
#define NACCIO_RESOURCE DLLIMPORT 
#else 
#define NACCIO_RESOURCE DLLEXPORT 
#endif 
 
typedef struct _RFileSystem { long bytes_written;} *RFileSystem; 
typedef struct _RFile { String name; } *RFile; 
 
NACCIO_RESOURCE extern RFileSystem RFileSystem_state; 
NACCIO_RESOURCE RFileSystem RFileSystem_new(); 
 
#define RFileSystem_initialize()     /* empty macro body */ 
#define RFileSystem_terminate()    /* empty macro body */ 
#define RFileSystem_openRead(p_a0) /* empty macro body */ 
… /* Similar no-op’s for other resource operations elided */ 
 
#define RFileSystem_openOverwrite(p_a0)  RFileSystem_modifyExistingFile (p_a0)  
#define RFileSystem_openAppend(p_a0)   RFileSystem_modifyExistingFile (p_a0)  
#define RFileSystem_preDelete(p_a0)    RFileSystem_modifyExistingFile (p_a0)  
#define RFileSystem_rename(p_a0,p_a1)   RFileSystem_modifyExistingFile (p_a0)  
 
NACCIO_RESOURCE void RFileSystem_op_preWrite(RFileSystem p_this, RFile p_file, long p_n); 
#define RFileSystem_preWrite(p_a0,p_a1) \ 
    RFileSystem_op_preWrite (RFileSystem_state, p_a0, p_a1) 
 
NACCIO_RESOURCE void RFileSystem_op_postWrite(RFileSystem p_this, RFile p_file, long p_n); 
#define RFileSystem_postWrite(p_a0,p_a1) \ 
    RFileSystem_op_postWrite (RFileSystem_state, p_a0, p_a1) 
 
NACCIO_RESOURCE void RFileSystem_op_modifyExistingFile(RFileSystem p_this, RFile p_file); 
#define RFileSystem_modifyExistingFile(p_a0) \ 
    RFileSystem_op_modifyExistingFile (RFileSystem_state, p_a0) 
 
NACCIO_RESOURCE RFile RFile_new(String p_pathname); 
NACCIO_RESOURCE void RFile_delete(RFile p_this); 
NACCIO_RESOURCE String RFile_getName(RFile p_this); 

Figure 20.  Resource headers file generated by Naccio/Win32. 
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#include <naccplat.h> 
#define _INSIDE_RESOURCE_DLL_ 
#include "resource.h" 

NACCIO_RESOURCE  RFileSystem RFileSystem_state; 

NACCIO_RESOURCE RFileSystem RFileSystem_new () { 
 RFileSystem p_this = nAlloc (sizeof (struct _RFileSystem)); 
 p_this->bytes_written = 0; 
    return (p_this); 
} 

NACCIO_RESOURCE void RFileSystem_op_modifyExistingFile (RFileSystem p_this, RFile file) { 
   String tempstr_0 = NULL, tempstr_1 = NULL, tempstr_2 = NULL, tempstr_3 = NULL; 
   Check_policyViolation (String_fromlit (&tempstr_0, "LimitWrite"),  
   String_fromlit (&tempstr_1, "NoBashingFiles"), 
   String_concat (String_concat (String_empty (&tempstr_2),  
              String_fromlit (&tempstr_3, "Destructive manipulation of file:")), 
          RFile_getName(file)));      
 String_delete(tempstr_0); String_delete(tempstr_1); String_delete(tempstr_2); String_delete(tempstr_3); 
} 

NACCIO_RESOURCE void RFileSystem_op_preWrite (RFileSystem p_this, RFile file,  long n) {   
 if (RFileSystem_state->bytes_written + n > 1000000) { 
  Check_policyViolation (…); // Lots of ugly string manipulation code elided 
 } 
} 

NACCIO_RESOURCE void RFileSystem_op_postWrite (RFileSystem p_this, RFile file, long n) { 
 RFileSystem_state->bytes_written += n;       
} 

… // Construction and destruction functions for RFile elided. 

BOOL APIENTRY DllMain (HANDLE hMod, DWORD ul_reason_for_call, LPVOID lpRes) { 
 switch (ul_reason_for_call) { 
  case DLL_PROCESS_ATTACH:  RFileSystem_state = RFileSystem_new (); 
               RFileSystem_initialize (); break; 
  case DLL_PROCESS_DETACH:  RFileSystem_terminate (); break; 
    }  
 return (TRUE); 
} 

Figure 21.  Implementation resource.c generated by Naccio/Win32 for LimitWrite. 

The policy compiler produces implementations in a source file, resource.c, shown in Figure 21.  
This file includes the resource.h header file.  Implementations of resource operations are 
generated from the intermediate representations.  The main complication is dealing with the 
library String type, since C does not provide a useful string datatype.  The generated code 
declares temporary string variables for use in concatenating strings.  The strings must be passed 
to String_delete before the function returns to reclaim memory used by the string. 

This file also defines the DllMain function, which is called when the DLL is attached or detached 
from a process.  Since the resource DLL is implicitly linked by the API wrapper DLL, this 
function will be called at the beginning of execution.  When the DLL is attached, it initializes 
RFileSystem_state to a new RFileSystem object and calls the RFileSystem_initialize operation.  
When the program shuts down, it calls detach for each implicitly linked DLL.  This will call the 
terminators in the DLL_PROCESS_DETACH case of DllMain. 
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5.4 Generating Platform Interface Wrappers 

In addition to the resource implementations, the policy compiler must produce an implementation 
of the platform interface.  What is involved depends on the level of the platform interface.  For a 
hardware-level platform interface, it would involve building traps into the hardware device’s 
system software and writing support code necessary to obtain enough information to call the 
appropriate resource operation.  For a platform-interface at the level of machine instructions it 
involves performing low-level transformations on the object files to introduce platform interface 
wrapper code where appropriate.  A different approach would be to write an interpreter that 
executes the program and runs the relevant wrapper before interpreting a wrapped instruction.  
Our focus is on platform interfaces at the level of a system API, and for the remainder of this 
section we assume the platform interface is at that level. 

Most of the platform interface generation is platform specific, but some work is done processing 
the intermediate representation first.  If the policy needs violation codes, the intermediate 
representations are modified to introduce them.  A single ViolationCode object should be 
maintained throughout the wrapper body and passed to each resource operation.  A local variable 
declaration is inserted at the beginning of the wrapper to store this object, and it is assigned to the 
result of a library creation routine.  This object is inserted at the beginning of the parameter list 
for calls to resource operations.  Between resource operations, its value is reset since allowances 
do not carry over resource operations.  At the end of the wrapper routine, the library 
ViolationCode.release routine is called.  This supports the possibility for handling ViolationCode 
objects on a platform that does not support garbage collection, such as Naccio/Win32.  It is also 
useful since in conjunction with the creation routines it allows ViolationCode objects to be reused 
and avoids the costs associated with creating many objects with short lifetimes. 

Once the intermediate representations of the wrappers have been produced the next step is to 
convert them to a form that can be easily integrated into a program to enforce the policy.  There 
are two approaches: modifying the system API itself or interposing wrapper code between the 
program and the system API.  The first approach offers more flexibility in controlling the 
interactions between wrapper and system code but requires lower-level manipulations of object 
files.  Naccio/JavaVM modifies system API code while Naccio/Win32 uses an interposition layer 
that performs the necessary checking. 

5.4.1 Naccio/JavaVM 

Platform interface wrappers for Naccio/JavaVM are implemented by rewriting Java API class 
files.  For each policy, Naccio/JavaVM creates a (possibly partial) copy of the Java API classes 
that are altered to implement the platform interface wrappers.  The transformation engine is based 
on JOIE, a toolkit for manipulating Java class files [Cohen98].  Information on JOIE and other 
transformation engines is found in Section 7.4. 

Java binary compatibility 

Rewriting classes depends on being able to run the original program with modified library classes 
without recompiling.  The Java Language Specification [Gosling96, Chapter 13] describes 
changes that can be made to class files without breaking link compatibility in conforming Java 
virtual machines.  Compatible changes include adding new fields, methods or constructors to an 
existing class or interface and changing the implementation of existing methods, constructors and 
initializers.  All the class modifications done by Naccio/JavaVM are designed to preserve binary 
compatibility. 
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 Java binary compatibility is not guaranteed in the presence of native methods and Java 
implementations are expected to describe binary compatibility of native methods.13  This poses a 
problem for Naccio/JavaVM, since it may need to modify classes used by native methods and 
does not necessarily have access to the source code for the native method.  As a result, supporting 
binary compatibility across native methods depends on a particular JavaVM implementation.  The 
prototype Naccio/JavaVM implementation assumes that binary compatibility holds for inserting 
fields, methods and constructors and replacing routine implementations even in the presence of 
native methods.  This is in fact not the case for Sun’s JDK 1.1 Java implementations, since adding 
new fields can interfere with field referencing.14  It is believed that JDK 1.2 and future 
implementations will not have this problem, although no formal claims about binary 
compatibility across native methods are made by the JDK 1.2 documentation [Kramer99]. 

Wrapping classes 

To produce a wrapped version of an API class, the policy compiler alters the class byte codes to 
reflect the state and wrappers defined by the platform interface.  State defined in the platform 
interface wrapper is implemented by adding fields to the class.  These fields are declared private, 
since they may only be used in the platform interface wrappers.   

To wrap a method, the wrapper code from the platform interface is translated from the 
intermediate representation into Java byte codes and inserted into the class file in place of the 
original method.  The original method is renamed by adding a prefix (o_) to the method name.  
Since no methods in the Java API start with o_, this always produces a unique name.  Renaming 
the original method implementation allows the wrapped version of the method and other routines 
in the class library to call the original method.   

The hash marker in the platform interface wrapper is replaced with a call to the original method.  
If it has a return value, the result is stored in a new frame location that corresponds to the result 
local variable in the platform interface wrapper.  At exit points of the wrapper, this result is 
returned.  Note that exceptions produced in the original method call will propagate directly 
through the wrapper code.  This means the checking code after the hash marker will not execute if 
the original method call throws an exception.  For most of the Java API, this is probably the 
correct semantics since the resource manipulation does not occur if the API method throws an 
exception.  In some cases, some API methods will do partial resource manipulations before 
throwing an exception.  Platform interface authors can use a catch statement around the hash 
mark to implement appropriate resource calls after the exception, and then re-throw the 
exception. 

Constructors and native methods introduce a few complications.  Since the class determines the 
names of constructors, we cannot rename them.  Instead, we add an extra argument to distinguish 
the original constructor from any other constructors.  This means when Naccio transforms 
wrapped routines to call the unwrapped version of a wrapped constructor, it must push an extra 

                                                      

13 According to the Java language specification, “The impact of changes to Java types on preexisting native 
methods that are not recompiled is beyond the scope of this specification and should be provided with the 
description of an implementation of Java. Implementations are encouraged, but not required, to implement 
native methods in a way that limits such impact.”   

14 This was discovered through experimentation and code analysis.  There is in fact no documentation that 
describes the binary compatibility rules for Sun’s JDK implementations. 
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argument on the stack and change the type descriptor of the constructor it calls.  Adding the extra 
argument to distinguish the original constructor simplifies the work that will be needed to 
transform an application to call the wrapped constructors.  The type of the extra argument is 
chosen so that the new constructor does not conflict with any existing constructor.  Since 
application code always calls the wrapped constructor, there is no need for the program 
transformer to alter constructor calls in application classes. 

For native methods, we cannot change the method name since the JavaVM will not be able to find 
the corresponding native method implementation.  Instead, we introduce a new method (named 
w_method) that implements the wrapper and calls the original native method.  This means the 
program transformer will need to replace calls to wrapped native methods in the application with 
calls to the corresponding w_method.  An alternative would be to rename the native method and 
modify the VM so that it can still map the new name to the correct native method.  This would 
eliminate the need to change wrapped native method names in application classes, but would not 
be portable across different VM implementations.  Using a new name for wrappers for native 
methods means we need to replace calls to the native method in application and unwrapped 
library code with calls to the new wrapped method instead.  We could handle all methods this 
way and rename non-native methods also.  This would make the policy compilation and 
transformation process simpler and more consistent.  This is not done, however, since it would 
involve extra work at transformation time since applications must be modified to call the 
w_methods instead of the unwrapped methods.  Since program transformation is done much more 
frequently than policy compilation, we prefer to add a little complexity to the policy compiler to 
reduce the time required to transform an application. 

Pass-through checking 

The tricky part of rewriting the library classes is supporting the pass-through semantics correctly.  
The semantics required by the Naccio/JavaVM platform interface are: 

• Calls to Java API routines in the bodies of pass-through routines should call the wrapped 
versions of those routines.   

• Calls to Java API routines in the bodies of regular wrapped routines should call the 
unwrapped versions of those routines.   

Wrappers must pass through recursively – if a wrapped routine calls an API routine that has no 
explicit platform interface wrapper, but that calls a wrapped API routine we must ensure that it 
calls the unwrapped version.   

Consider the simple dependency graph shown in Figure 22a.  The body of method M1 calls 
method M2 and the body of M2 calls M3.  Figure 22b depicts the situation where M1 has a regular 
wrapper.  Naccio/JavaVM produces a copy of M1 named o_M1 that is the original 
implementation of M1 and replaces M1 with a new M1 method that implements the wrapper code 
and calls o_M1.   

Figure 22c shows the scenario where M2 has a wrapper also.  As before, Naccio/JavaVM 
produces o_M2 as the unwrapped version of M2.  Since the regular wrapper for M1 is intended to 
account for all meaningful resource manipulations done by M1, it should call the unwrapped 
version of M2.  After wrapper generation, the transformation engine replaces the call to M2 in the 
body of o_M1 with a call to o_M2. 
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     M1   M1   M1   M1    
    o_M1   o_M1   o_M1 
     
     M2   M2   M2   M2 
       o_M2   o_M2 
 
     M3   M3   M3   M3 
          o_M3 

  a) No wrappers b) M1 wrapped  c) M1 and M2 wrapped d) M1 and M3 wrapped 

Figure 22.  Pass-through semantics. 

Wrapped methods are shown in italics, original methods are renamed o_M. 

In Figure 22d, M1 and M3 have wrappers but M2 does not.  We need to ensure that the indirect 
call to M3 from the wrapped M1 calls the unwrapped o_M3 instead of the wrapped M3.  
Otherwise, the wrapper checking code associated with M3 would be executed when o_M1 calls 
M2, which then calls M3.  To provide the necessary semantics, an internal version of M2, o_M2, is 
introduced for M2.  It contains a copy of the M2 code, but calls to M3 are replaced with calls to 
o_M3.  This allows implementations of wrapped routines to call the unwrapped versions of nested 
routines.  An internal version of a routine is necessary if it calls a wrapped routine and it is called 
by a wrapped routine.  Direct calls to M2 pass through checking normally, since it calls the 
wrapped M3 method normally. 

Superclass methods 

Another situation Naccio/JavaVM must deal with is where a platform interface wrapper is 
provided for a subclass method that overrides a (possibly abstract) method in a superclass.  For 
example, consider the situation if there is a wrapper for java.io.FileOutputStream.write.  The class 
FileOutputStream is a subclass of OutputStream, and OutputStream declares write as an abstract 
method.  We must ensure that application calls to OutputStream.write on objects that are 
FileOutputStream types call the wrapped version of write, but calls on objects that are not of type 
FileOutputStream call the appropriate unwrapped write method.  Since FileOutputStream.write is 
a native method, the wrapper method w_write is added to FileOutputStream.  We need to provide 
a w_write method for OutputStream also, so application classes can be rewritten to call w_write 
on OutputStream objects that are not necessarily FileOutputStream objects.  The policy compiler 
inserts the w_write method into OutputStream.  Its body simply calls write with the same 
arguments.  If the w_write is called on a FileOutputStream object, it will dispatch to the subclass 
method that is the wrapped version of write.  If it is called on an OutputStream object of a type 
that does not wrap write, the w_write method added to OutputStream will call the regular write 
method.   

Similarly, if a non-native subclass method overrides an unwrapped method and renames the 
original method o_method, Naccio/JavaVM adds an o_method to the superclass.  Its 
implementation calls method with the original arguments.  This allows calls in wrapped API 
methods that should call the unwrapped version of the method, to call o_method regardless of the 
subtype. 

Renaming classes 

There are two different ways to generate the policy-enforcing wrapper classes.  The simplest way 
is to write the modified class files in a new directory and use the Java CLASSPATH to select the 
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policy-enforcing library when an application constrained by the policy runs.  If we wish to 
support multiple policies in the same Java VM, we need a way to identify the API classes of each 
policy-enforcing library at run-time.  This is done by globally renaming all classes in the policy-
enforcing version of the API to include a unique package name so that they can be identified 
(e.g., java.io.File becomes policy_lw.java.io.File).  To rename classes consistently, all classes in 
the API must be renamed.  All references to the API classes are replaced with the policy-
enforcing class names. 

Stripping SecurityManager calls 

In addition to inserting the Naccio checking calls, the policy compiler can be used to remove calls 
to the JDK SecurityManager.  Note that this is done only because the JDK security mechanisms 
are built into the Java API.  To remove the run-time overhead associated with them to enable the 
performance analysis in Section 8.4 the policy compiler can be directed to strip these calls from 
the API classes.  In the Sun JDK 1.1 implementation, all security manager calls involve either 
calling System.getSecurityManager method to obtain the security manager or using the private 
security instance variable in the java.lang.System class.  This is followed by a comparison to null 
with a branch that calls a security manager check method.  The policy compiler can recognize the 
sequence and remove the code associated with obtaining a security manager, testing if it is null, 
and calling a check method.     

Example 

Figure 23 shows the policy-enforcing library class generated for java.io.FileOutputStream by 
Naccio/JavaVM to enforce the LimitWrite policy.  The actual contents of the class files are 
simplified for readability, but are essentially what is shown here.   

The top of each class file shows the visible declarations in the class.  The policy-enforcing 
version contains an extra field declaration corresponding to the rfile state defined in the platform 
interface for java.io.FileOutputStream (see Figure 11).  The rewritten class defines several 
methods and constructors not defined in the original class.  Because the LimitWrite policy attaches 
checking code to the resource operation associated with overwriting an existing file, and every 
constructor in FileOutputStream may open a file for overwriting, every constructor needs a 
wrapper.  Hence, for every constructor there is a new constructor declaration with a dummy 
argument added to distinguish it from the original.  This argument can be any type that does not 
lead to a conflict with an existing constructor.  In this case, none of the constructors have 
arguments of type short and Naccio/JavaVM uses short for the type of the dummy argument. 

The code for the constructor taking a java.io.File object is shown.  In the original class, it calls the 
constructor taking a String, passing in the absolute path of the file object.  In the rewritten class, 
there are two versions of the constructor.  The unwrapped version takes an extra parameter of 
type short to distinguish it from the wrapper version.  Its body is copied from the body of the 
original constructor, except that the call to the String constructor is replaced with a call to its 
unwrapped version by adding a dummy argument.  Otherwise, the wrapper would call the 
wrapped version of the constructor and execute inappropriate checking code.  The wrapped 
version of the constructor incorporates the code from the platform interface.  It calls the doOpen 
helper method, then calls the unwrapped version of the constructor, and finally stores the RFile 
object in the rfile instance variable.  The implementation of doOpen is based on its code in the 
platform interface.  The call to RFileSystem.openOverwrite has been replaced with a call to the 
resource group method RFileSystem.modifyExistingFile.  This can be done since openOverwrite 
has no checking associated with it except for what is done by the modifyExistingFile group.  The  
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public class FileOutputStream  
     extends OutputStream { 
 
    public FileOutputStream(String); 
 
    public FileOutputStream (String,boolean); 
 
    public FileOutputStream(File); 
 
    public FileOutputStream(FileDescriptor); 
 
    public native void write(int); 
 
    public void write(byte[]); 
 
    public void write(byte[], int, int); 
 
    public native void close(); 
    public final FileDescriptor getFD(); 
 
    protected void finalize(); 
} 
 
 
Method FileOutputStream(File) 
 FileOutputStream(getPath <arg 1>) 
 
 
 
 
 
 
 
 
 
 
 
 
Method void write(byte[]) 
 writeBytes (<arg 1>, 0, <arg1>.length) 
 
 
 
 
 
 
 
 
 
// no code for native void write (int); 

public class FileOutputStream  
     extends OutputStream { 
 private lw.RFile rfile;   
    public FileOutputStream(String); 
    public FileOutputStream(String,short); 
    public FileOutputStream(String,boolean); 
    public FileOutputStream(String,boolean,short); 
    public FileOutputStream(File); 
    public FileOutputStream(File,short); 
    public FileOutputStream(FileDescriptor); 
    public FileOutputStream(FileDescriptor,short); 
    public native void write(int); 
    public void w_write(int); 
    public void write(byte[]); 
    public void o_write(byte[]); 
    public void write(byte[], int, int); 
 public void o_write(byte[], int, int); 
    public native void close(); 
    public FileDescriptor getFD(); 
    public final FileDescriptor o_getFD(); 
    protected void finalize(); 
    public static lw.RFile doOpen(File); 
} 
 
Method FileOutputStream(File,short) 
 FileOutputStream (getPath <arg 1>, 0) 
 
static Method lw.RFile doOpen(File) 
 <local 1> :=  lw.RFileMap.lookupAdd (<arg 1>) 
 if o_exists(<arg 1>) 
  lw.RFileSystem.modifyExistingFile (<local 1>) 
 areturn <local 1> 
 
Method FileOutputStream(File) 
 <local 1> := doOpen(<arg 1>) 
 FileOutputStream(<arg 1>, 0) 
 rfile := <local 1> 
 
Method void o_write(byte[]) 
 writeBytes (<arg 1>, 0, <arg1>.length) 
 
Method void write(byte[]) 
 if rfile != null 
  lw.RFileSystem.preWrite (rfile, <arg 1>.length) 
 o_write (<arg 1>) 
 if rfile != null 
  lw.RFileSystem.postWrite (rfile, <arg 1>.length) 
 
 
Method void w_write(int) 
 if rfile != null  
  lw.RFileSystem.preWrite (rfile, 1) 
 write(<arg 1>) 
 if rfile != null 
  lw.RFileSystem.postWrite (rfile, 1) 

Figure 23.  Generated policy-enforcing library class for java.io.FileOutputStream. 

Left side shows the original API class.  Right side shows the rewritten class file using the 
LimitWrite safety policy.  Classes are simplified and excerpted for clarity.  Renamed 
original routine declarations are shown in italics, wrappers are shown in bold.  
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call to RFileSystem.openCreate in the branch for creating a new file has been removed since 
there is no checking associated with the openCreate operation for the LimitWrite policy. 

The figure also shows two write methods, one that writes an array of bytes and one that writes a 
single byte.  The array of bytes method illustrates what is done for a normal wrapper.  The 
rewritten class contains a method o_write(byte[]) that contains the original method body.  The 
wrapped version uses the unmodified name and contains a body compiled from the platform 
interface.  Its body calls o_write where the original method call marker was.  Since the write(int) 
method is a native method, the original class contains no implementation for it.  Renaming native 
methods is not possible, so the wrapper for write is named w_write.  It body calls the unwrapped 
native write method.  Application classes will be modified to call w_write(int) instead of write(int). 

5.4.2 Naccio/Win32 

Generating the platform interface wrappers for Naccio/Win32 is simpler than for Naccio/JavaVM 
since pass-through semantics are not supported.  Further, the Win32 platform interface is written 
as a stylized C file that can be compiled directly.  Once the resource header file has been 
generated, all that is necessary it to compile the platform interface file in a directory containing 
this header file.  The compiler is run with the appropriate linker directives to forward references 
to null wrappers to the system DLL.  The resulting DLL is renamed with a different extension so 
it can be distinguished from the system DLL by the loader.  

In addition to compiling the platform interface file, Naccio/Win32 must generate a definition 
(.DEF) file that lists every function exported by the wrapper DLL.  For a wrapped function, the 
export table contains an entry that maps the original function name to the name of the wrapper.  
For the wrapper for DeleteFileA shown in Figure 18, the corresponding export table entry is: 
DeleteFileA=wrapper__DeleteFileA.  This makes calls to DeleteFileA in programs linked with the 
wrapper DLL call the wrapper__DeleteFileA function defined by the platform interface wrapper 
instead.  Functions in the original DLL that are not wrapped can be listed as indirections in the 
import table.  These will be replaced with calls to the original DLL at load time.  Section 6.1.2 
explains how the program transformer modifies an application to use the generated wrapper DLL. 

5.5 Integrated Optimizations 

All the optimizations discussed so far are done independently on either the resource 
implementations or platform interface wrappers.  Information about which resource operations 
are meaningful is used to remove unnecessary resource operation calls from the platform 
interface, but otherwise all optimizations are done independently.  Breaking the barrier between 
resources and platform interface wrappers offers the potential for additional optimizations.  The 
prototype implementations do not perform any of the integrated optimizations discussed here, 
however they could be done by an industrial implementation that is concerned with the run-time 
performance of the transformed code. 

Without integrated optimizations, users suffer the run-time overhead associated with policies 
being expressed at an abstract level.  This includes the overhead associated with creating abstract 
resource objects and carrying out extra routine calls.  The solution is to inline both routines and 
state.  Inlining routines is a standard compiler optimization and can be done straightforwardly.  
Code from the resource operation can be moved into the wrapper.  Since the resource code is 
usually small and most resource operations are only called a few times in the platform interface, 
inlining resource operations is almost always worth doing. 
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Inlining state is less traditional, since it depends on the limited semantics supported by the 
resource use policy.  In certain situations that are quite common in typical platform interfaces, we 
can move resource state into the platform interface.  This eliminates the need for resource objects 
and saves the overhead required to create, store and garbage collect resource objects as well as 
the overhead necessary to reference object fields.  Inlining state can be done only if the identity of 
resource objects is irrelevant.  If the resource objects are shared or compared as objects, inlining 
state would change the meaning of the platform interface.  As it happens, most state fields in 
resource objects are immutable objects used only to store values.  These fields can be safely 
inlined into the platform interface class that uses the resource object.  Inlining resource objects 
would involve removing the resource objects and moving their instance variables directly into the 
associated application level object.  

Further opportunities for integrated optimizations are possible if the application is analyzed also.  
Since this is likely to take a long time, it only makes sense for performance-critical applications 
that will be run frequently.  Static analysis of the program text in conjunction with the safety 
policy analyses can be used to remove safety checking that is determined to never lead to a 
violation.  For example, if the policy prohibits network connections except to hosts in a particular 
trusted domain, a static analysis could attempt to determine the remote address of all network 
connections opened by the program.  If all addresses can be determined statically, and all are in 
the trusted domain, the checking code associated with opening network connections can be 
removed.  After this is done, the relaxation analysis of the resource operations should be repeated 
since removing the checking code may have rendered more resource operations and state 
unnecessary. 

The other optimization that can be done through static analysis of the program text is batching 
checking.  For example, if there is checking code associated with the RNetwork.preSend 
operation and the program contains a loop that sends one byte at a time, then each send requires 
the overhead of calling a wrapper routine, calling the preSend operation, and executing its body 
code which does some checking and increments a state value.  If the number of loop executions 
can be determined, the checking code can be moved out of the loop and preSend called once with 
a parameter that accounts for all network sends that will be done in the loop.  If this call issues no 
violations, the entire loop can be executed without checking the send calls.  This kind of 
optimization depends on knowing that calling preSend (connection, n1) and preSend 
(connection, n2) is the same as calling preSend (connection, n1 + n2).  This depends on the 
policy code associated with preSend.  While it is unlikely that the policy compiler could 
determine this automatically, if Naccio were extended to support descriptive annotations a policy 
author could add annotations to document that this is the case and thereby enable the 
optimization. 

It is expected that in most situations the run-time benefits of application-integrated policy 
optimization would not outweigh the substantial analysis time necessary to analyze an application 
and perform application-integrated policy optimizations.  These optimizations are also complex 
and the potential for flaws in the analyses introduces new vulnerabilities.  They may be more 
useful in conjunction with a proof-carrying code system (see Section 7.1) where the code 
distributor does the optimizations.  The distributor would ship an optimized version of the 
program constrained by a published policy along with a condensed proof that the distributed 
program satisfies the policy, and the receiver would use a (hopefully) small and simple system to 
verify that the policy is satisfied.  This only works if the receiver agrees to a standard policy used 
by the distributor, although the receiver could enforce additional properties on the code. 
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5.6 Policy Description File 

The final output of the policy generator is the policy description file.  This file contains 
transformation rules that compactly describe the changes the program transformer must perform.  
It contains a rule that identifies the location of the policy-enforcing library.  Rules may also direct 
the program transformer to rename specific system calls (for example, Naccio/JavaVM must 
rename wrapped native methods), and to modify the application to call resource initializers before 
execution begins and to call terminators before execution terminates.  The format of the policy 
description file is platform-independent, although its contents are likely to be highly dependent on 
the particular platform and Naccio implementation. 
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Chapter 6 
Transforming Programs 

The program transformer takes a policy description file and a program and produces a new 
program that behaves like the original program except it is guaranteed to satisfy the safety policy 
used to produce the policy description file.  The level of the platform interface establishes the 
extent of the program that is handled by the program transformer.  The policy compiler is 
responsible for parts of the program described by the platform interface; the program transformer 
handles everything that is not described by the platform interface.  For this chapter, we assume 
the platform interface is at the level of a system API.   

In the modified program, calls to system API functions are replaced by calls to the appropriate 
policy-enforcing wrappers.  For platforms where the system API is linked dynamically, it is often 
possible to do this by making some simple changes to the program executable or by setting 
parameters to the execution environment.  Section 6.1 describes how Naccio/JavaVM and 
Naccio/Win32 replace system calls with calls to policy-enforcing wrappers. 

In addition, the program transformer must ensure the integrity of the checking code either by 
modifying the program or by verifying that the necessary properties are satisfied.  What actually 
must be done depends on the execution platform and on how the platform interface wrappers and 
resource implementations are implemented.  At a minimum, the program transformer must ensure 
that hostile programs cannot circumvent safety checking by manipulating resources without going 
through the appropriate platform interface wrapper or by modifying checking code or data.  
Section 6.2 discusses what is necessary to guarantee the integrity of the checking for the JavaVM 
and Win32 platforms. 

6.1 Replacing System Calls 

Replacing system calls involves determining what code is part of the application program and 
altering the system calls it makes so the policy-enforcing wrappers are called instead.  This can be 
done by renaming libraries, classes or routines, or by changing the execution environment.  Since 
the system API is accessed differently depending on the execution platform, the solutions for 
Naccio/JavaVM and Naccio/Win32 are different.  Both involve switching which API 
implementations are linked with the program. 

6.1.1 Naccio/JavaVM 

Naccio/JavaVM provides two different alternatives for replacing Java API classes.  One option is 
to leave the application unchanged and set the CLASSPATH so that the modified classes are 
found before the standard Java API.  An application request for an API class will transparently 
load the policy-enforcing version of that class.  This approach works only if all applications 
running in a VM are using the same policy.   
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If multiple policies must be enforced, we need a way of distinguishing between versions of the 
API that enforce different policies.  Naccio/JavaVM does this by statically renaming classes.  The 
Java class file format makes renaming classes simple and efficient.  All class names are given in 
the constant table found at the beginning of the class file.  We replace class names of library files 
with the corresponding policy-enforcing library class name.  The Naccio/JavaVM program 
transformer examines an application class to determine which classes it uses, and recursively 
examines those classes to determine all class dependencies.  Classes that are not part of the Java 
API (that is, they are not described by the platform interface) are added to the classes to be 
transformed.  The transformed classes are renamed and written into a new directory, preserving 
the original classes.   

An alternative approach would be to select the API library classes at run-time.  Wallach et al. 
describe how the Java ClassLoader could be modified to use namespace management to hide 
system classes or interpose implementations with extra security checking [Wallach97].  A similar 
approach could be used to select the appropriate policy-enforcing API class.  The class loader 
would need to be written so that a request to load an API class would return a different policy-
enforcing version of that class depending on the application calling the loader.  This information 
is available by examining the class loader associated with the calling context.  The static class 
renaming approach used by Naccio/JavaVM has the advantage that once the application has been 
modified it can be run repeatedly without further modification.  Also, it means we are not tied to a 
particular Java environment.  If applications that enforce different policies share objects that are 
instances of API classes, a type error will result.  The problem of sharing objects between 
applications enforcing different policies is a complex one and is not addressed by the current 
design.  Section 9.2 suggests some possible ways to support sharing objects across policies. 

The other transformations that may be required in a policy description file are renaming native 
methods and inserting calls to initializers and terminators.  For wrapped native methods, 
Naccio/JavaVM must replace the name of the method call with the wrapper name (e.g., w_write 
replaces write).  JavaVM classes call methods by using a constant pool entry of type MethodRef 
that contains a reference to the class (an index to a ClassRef constant) and a reference to the 
name and type of the method (an index to a NameAndType constant).  The NameAndType 
constant contains references to a name constant and a type descriptor, both represented by plain 
strings.  To replace all calls to the method java.io.FileOutputStream.write with calls to 
java.io.FileOutputStream.w_write, the application transformer finds the constant pool entry that 
references this method and replaces its NameAndType constant with a new NameAndType 
constant that has the same type descriptor as the original but whose name identifies a (possibly 
new) string constant with value w_write.  We cannot just replace the name in the old 
NameAndType constant, since constants that reference methods with the same name in other 
classes may reuse this constant.  If there are no other references to the old NameAndType 
constant, it should be removed from the constant pool. 

A special situation arises when an application class extends an API class with a wrapped native 
method.  The situation is analogous to what is done for superclasses in the API by the policy 
compiler (as described in Section 5.4.1).  If the subclass overrides the method, calls to the method 
for objects of the subclass type should call the subclass method.  However, if those calls were 
rewritten to call the wrapped method (named w_method), then they call the superclass method 
instead and the incorrect behavior results.  To ensure the correct behavior, the subclass must 
override w_method also.  The application transformer inserts a new method named w_method 
into the subclass.  Its implementation calls method with the original arguments. 
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If the policy requires initializers or terminators, the application transformer must modify the static 
main method of the class that will be used to start execution to call them.  Java executions begin 
by calling the main method of the application class.  This method should call each initializer at 
the beginning of execution, and each terminator before execution completes.  This involves 
inserting instructions into the code body of the main method.  If the policy requires violation 
codes, Naccio/JavaVM adds a new local variable of type naccio.library.ViolationCode and assigns 
it to the result of the newViolationCode static method.  If the RSystem initializer is required, a 
call to it (passing the command line arguments as an array of strings) is inserted.  After this, calls 
to the other initializers are appended.  The violation code value is reset between each initializer 
call.  Calling terminators is similar except it must be done immediately before each exit point.  
Exit points are the end of the code body and any return statements in the code body.  The other 
way execution can terminate is by calling the java.lang.System.exit method.  The policy compiler 
inserts calls to the necessary terminators in the wrapper for this method.   

The other complication is that the main method may be called directly by the application.  We 
must insure that the initializers and terminators are only called in the top-level main call.  This is 
done by adding a static field named in_inner_call to the application class of type boolean that is 
initialized to false.  Code inserted at the beginning of main assigns a new local variable to the 
value of in_inner_call and then sets in_inner_call to true.  Code around the initializer and 
terminator calls tests this variable and skips the calls if it is true. 

Java applets do not use a main method to control execution, but override the start and stop 
methods of the java.applet.Applet class.  The start method is called to begin executing the applet, 
and the stop method is called when the applet should stop executing.15  When an applet is 
transformed, the transformer treats the start and stop methods similarly to the main method of an 
application class.  Initializers are called at the beginning of start and terminators are called before 
return points in stop. 

If the policy requires no initializers or terminators, no wrapped native methods, and the 
CLASSPATH is used to select the policy-enforcing library classes, then there are no changes 
necessary to the application classes.  It is not necessary to read or rewrite the application classes 
to enforce such policies.  This means there is no load time cost associated with enforcing the 
policy other than setting the CLASSPATH appropriately.  Many typical policies, including any 
policy that can be enforced using a JDK security manager, have this property.   

6.1.2 Naccio/Win32 

For Naccio/Win32, we need to alter the application executable so calls to API functions go to the 
appropriate wrapper DLL instead of the standard Windows DLL.  There are two different ways a 
DLL can be attached to a process: listing the DLL in the import address table (IAT) in the 
executable image (called implicit linking), or calling the LoadLibrary API function to load the 
DLL at run-time (called explicit linking).   

For implicitly linked DLLs, Naccio/Win32 can simply replace the DLL names in the IAT with 
those of the corresponding policy-enforcing DLL.  Since the policy-enforcing DLL names differ 

                                                      

15 It is up to the browser to decide the appropriate times to call these methods.  Most browsers call start for 
an applet when the page containing it is visited, and call stop when the browser leaves the page containing 
the browser. 
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only in their three-letter extension, this replacement can be done by replacing bits in the IAT and 
does not require any code relocation.  After the changes are made, the rewritten file must be 
rebound to ensure that function entry point addresses are updated to point to the policy-enforcing 
DLL.  This can be done using the BindImage Win32 API function. 

A wrapper for the LoadLibrary routine can be used to replace explicitly linked DLLs.  Based on 
the name of the requested DLL, the LoadLibrary wrapper either loads the policy-enforcing version 
of the DLL or transforms the application DLL according to the policy.  The policy description file 
includes a list of files used by the application transformer to determine how to handle a particular 
explicitly linked DLL. 

6.1.3 Other Platforms 

Although our experience is limited to the two prototype platforms, there are some general 
properties of the target platform and platform interface level that make it easy to interpose 
checking code.  The system calls described by the platform interface must be easily distinguished 
from user code.  In cases where they are linked dynamically, it should be fairly easy to change the 
library that is linked to interpose checking code.  The approach used by Naccio/Win32 would 
work on any platform where the system API is linked dynamically and there is a way to replace 
which file is linked. Many modern platforms use some form of dynamic linking for system code.  
Some platforms, provide even better facilities for interposing checking code.  For example, 
Solaris supports tracing of system calls using a user-defined function in a separate process.  Janus 
(see Section 7.3.2) takes advantage of these features to interpose checking code on Solaris 
applications, and Naccio could readily be implemented on Solaris using a similar approach. 

6.2 Guaranteeing Integrity 

In a non-hostile environment, replacing the system libraries might be enough to enforce a safety 
policy on an execution.  It is unlikely that a program would accidentally do something that 
circumvents or alters the checking done by the policy-enforcing library.  Hostile attackers, 
however, may be motivated to take advantage of low-level manipulations to alter or avoid the 
policy checking.  To guarantee the integrity of policy checking in these situations, Naccio 
implementations must ensure that it is not possible for hostile attackers to circumvent or alter the 
safety policy.  They must ensure malicious applications cannot: 

1. Manipulate resources in ways specified by the resource descriptions without going 
through a platform interface wrapper, for example, by jumping directly to API calls or 
using kernel traps. 

2. Modify any checking code in resource implementations or platform interface wrappers.  
If the attacker can modify checking code, violations or resource operation calls can be 
removed to eliminate policy checking. 

3. Modify the value of resource state or platform interface wrapper state.  For example, if a 
malicious attacker could change the value of RFileSystem.bytes_written the 
LimitBytesWritten property could be circumvented.  Being able to read this state is not 
considered a serious threat.  Although clever attackers may be able to get some benefit 
from reading this information, it is not likely to be dangerous unless it is used in 
conjunction with some other vulnerability.  Implementations that can prevent reading this 
state easily should do so, but it is not considered essential. 

The measures taken to guarantee these properties lead to new properties that must be guaranteed.  
For instance, if any of the guarantees depend on static analysis or modification of the application 



  

 79  

code, Naccio must also ensure that the application cannot modify its own code during its 
execution. 

What must be done to provide the necessary guarantees depends on the platform.  Providing the 
necessary guarantees for Win32 is more challenging than for JavaVM, a simpler environment 
where security was considered in the design.  In some cases, it may be necessary to disallow 
some harmless programs to provide the necessary guarantees.  For instance, it is probably not 
feasible to distinguish between self-modifying code that circumvents safety checking and 
harmless self-modifying code so providing the necessary guarantees will involve disallowing 
programs that legitimately modify their own code. 

6.2.1 Naccio/JavaVM 

Naccio/JavaVM can take advantage of the properties ensured by the Java byte code verifier to 
limit the additional work that must be done.  The Java byte code verifier [Yellin95] is designed to 
verify the low-level code safety properties required by Java.  Before loading a class, the verifier 
performs data-flow analysis on the class implementation to verify that it is type safe, stack safe 
and that all control-flow instructions jump to valid locations.  The class loader rejects classes that 
cannot be verified.  All Java source code programs satisfy the low-level code safety properties, 
and it is up to compilers to generate code that can be verified by byte code verifiers.  
Naccio/JavaVM runs the byte code verifier before transforming a class to ensure it satisfies the 
standard low-level code safety properties.16   

Hiding unwrapped methods 

The Java byte code verifier is sufficient to guarantee that all jumps are either within a method, or 
method calls and returns, but not enough to guarantee that malicious programs cannot bypass 
checking code or manipulate state associated with a safety policy.  We also need to ensure that 
the program cannot call the unwrapped versions of methods.  The modified API class contains the 
o_methods that are copies of the original method as well as originally named methods that are 
unwrapped versions of native methods.  The Java byte code verifier ensures the unwrapped 
o_methods are not called directly, since the application classes are verified using the original 
Java API libraries that do not define these methods.  The program transformer replaces names of 
unwrapped versions of wrapped native methods with the name of the corresponding wrapped 
method (w_method) to ensure that unwrapped versions of native methods cannot be accessed 
directly by the application.   

A malicious application could, however, attempt to access unwrapped versions of methods using 
the Java reflection classes.  The class java.lang.Class provides methods that return the methods 
and constructors declared by a class.  These can be used on any loaded classes, including the 
modified API classes.  The methods are returned as objects of type java.lang.reflect.Method.  The 
invoke method of this class can be used to call the returned method with chosen arguments.  The 
implementation of invoke will throw an exception if the called method violates Java access rules, 
so reflection cannot be used to access private or protected methods inappropriately.  Unwrapped 
routines, however, are declared with the same access modifier as the original routine since other 
API classes must be able to call them.  If no efforts are taken to prevent it, an attacker could use 

                                                      

16 In the prototype implementation, the verifier is run again on the transformed class.  Security does not 
depend on this, but it is an easy way to detect bugs. 
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reflection to call the unwrapped version of a routine directly and thereby bypass all policy 
checking. 

There are several feasible ways to prevent attackers from using reflection to call unwrapped 
routines.  All involve using platform interface wrappers to restrict or alter the behavior of the 
relevant reflection methods.  The simplest approach would be to disallow all the java.lang.Class 
methods that return method or constructor reflection objects.  This would involve writing 
platform interface wrappers that issue violations for getMethods and the seven other similar 
methods that return method and constructor reflection objects.  This would be an easy way to 
eliminate the threat, but it would also disallow useful programs that use reflection in a way that 
does not circumvent safety checking.  A variation would instead use wrappers for the 
java.lang.reflect.Method.invoke and java.lang.reflect.Constructor.newInstance methods that issue 
violations before the method would be called.  This would allow programs to view the unwrapped 
routines, but not allow any reflection object to be invoked.  This provides the necessary 
protection but prevents less harmless programs that disallowing the reflection methods. 

The next option is to write more complicated wrappers for the java.lang.Class methods that return 
method or constructor reflection objects.  Instead of disallowing these methods completely, they 
would call the original method and examine the result.  For non-API classes, the result should be 
returned.  For API classes, the wrapper code checks if the result contains any unwrapped versions 
of wrapped routines (identifiable by their name starting with o_, by their name matching the 
name of another method starting with w_ for wrapped native methods, or by the dummy 
parameters added to constructors), these reflection objects would be removed from the result 
array before it is returned.  This would allow programs to use reflection but prevent access to 
routines that would allow it to be used to circumvent safety checking.  The risk is that the added 
complexity leads to more opportunities for bugs in the wrapper code that can be exploited by a 
dedicated attacker. 

Naccio/JavaVM uses the first approach, using platform interface wrappers to disallow calls to the 
class reflection methods that reveal the methods and constructors.  We believe that not enough 
Java programs use reflection non-maliciously to be worth the added risk of the more complicated 
solutions.  Since reflection is a relatively new language feature, it remains to be seen if this 
solution would be adequate in an industrial implementation. 

Hiding checking code and state 

In addition to hiding the unwrapped versions of routines, Naccio/JavaVM must ensure that 
malicious attackers cannot manipulate state introduced by platform interface wrappers.  State is 
implemented using instance and class fields added to the wrapped API classes, so 
Naccio/JavaVM must ensure programs cannot modify these fields.  Since the state fields are 
declared private, application classes are not able to access these fields. 

A similar situation arises with the generated resource classes.  Programs must be prevented from 
either modifying resource state or calling resource methods.  The most reasonable way to do this 
is to prevent application code from ever getting access to a resource object or class.  As before, 
the Java byte code verifier prevents any explicit use of resource classes since they are not visible 
in the standard environment seen by the byte code verifier.  The reflection methods can be 
wrapped to prevent access to resource implementation fields and routines.  Another approach 
would be to use a platform interface wrapper to prevent java.lang.Class objects corresponding to 
resource classes from being created. 
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Dynamic class loading 

The final thing Naccio/JavaVM must prevent applications from doing is dynamically loading 
classes that have not been transformed.  If the application could load versions of the Java API 
classes that were not transformed to enforce the policy, routines from these classes could be 
called to manipulate resources without policy checking.  Further, if the application could load 
classes from outside the Java API that were not transformed according to the policy, those classes 
could call API routines that manipulate resources without policy checking. 

To prevent this, Naccio/JavaVM uses platform interface wrappers on the API routines 
(java.lang.Class.forName and several methods in java.lang.ClassLoader) that can be used to load 
a class dynamically.  The simplest thing to do would be to prevent dynamic class loading 
completely by issuing a violation when these methods are called.  This is likely to prevent too 
many harmless applications.  Instead, the wrapper can load the appropriate transformed class 
instead.  If the class to be loaded is a Java API class, the wrapper loads the renamed version of the 
class that enforces the policy.  Otherwise, it needs to either locate a transformed version of the 
class or run the program transformer to create one.  The other method that can be used to create a 
new class object is java.lang.ClassLoader.defineClass.  This method creates a class object from 
an array of bytes representing the class file.  Naccio/JavaVM could analyze the bytes to check if 
they enforce a policy, or transform the bytes directly.  This was viewed as too complicated and 
risky to be worth supporting in the prototype implementation, and instead the wrapper for 
defineClass issues a violation for all calls. 

6.2.2 Naccio/Win3217 

Providing the necessary guarantees for Naccio/Win32 involves substantially more work than for 
JavaVM since Win32 provides none of the low-level code safety guarantees provided by the Java 
byte code verifier.  Naccio/Win32 must perform protective transformations to provide the 
necessary guarantees.  The prototype implementation does not implement these protective 
transformations.  As a result, it could not be relied upon to provide code safety in a hostile 
environment.  This section presents design ideas that could be used in an industrial 
implementation to provide the necessary low-level code safety guarantees.  The program 
behaviors that must be constrained can be grouped into the three categories introduced earlier in 
this section: manipulating resources without going through platform interface wrappers, 
modifying code associated with policy checking, and modifying state associated with checking.   

Protecting resource manipulations 

There are several possible ways an attacker could attempt to circumvent platform interface 
wrappers.  One vulnerability is that applications could manipulate resources without using Win32 
API calls either by making direct kernel calls or by sending LPC messages to the Win32 
subsystem.  If the application can do either of these, it can manipulate constrained resources 
without any policy checking code being invoked.  To prevent this, a static analysis detects all 
kernel and LPC calls in the program.  Kernel calls are easily detected since they use special 
instructions to make a trap to the system kernel.  LPC calls are more difficult to detect, but can be 
detected statically.  Some calls can be determined to not manipulate a constrained resource.  All 
other LPC calls are replaced with instructions that produce a violation.  This leads to violations 
for some harmless programs, but it is uncommon for programs to use these techniques 

                                                      

17 This section is based on [Twyman99, Chapter 5]. 
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legitimately.  Hence, it seems acceptable for Naccio/Win32 to disallow suspicious kernel traps 
and LPC calls completely.  An ambitious implementation could attempt to write a platform 
interface for the kernel and LPC calls and insert calls to the necessary resource operations around 
the call.  This would require substantial effort both in writing a platform interface at a lower level 
and transforming a program to insert the necessary code. 

Another way an attacker could circumvent wrapper code is to jump to the unmodified DLL code 
directly.  Since the policy-enforcing DLLs need to call the original API functions, the original 
DLLs must be loaded into the application’s address space.  Since Win32 binaries can use 
arbitrary values as addresses and jump to them, Naccio/Win32 must ensure that it is not possible 
to jump to an address that is in the original DLL or in the middle of the wrapper code.  One 
technique for limiting the targets of jump instructions is software-based fault isolation (SFI) 
[Wahbe93].  SFI constrains the target address of jump instructions by inserting masking or 
checking instructions before the jump.  The Naccio/Win32 design uses a variant of SFI to ensure 
that jumps in the application code can only jump within the application’s code segment.  In order 
to be able to make external calls to the wrapped DLL routines, stubs that make those jumps in a 
controlled way are added to the application code segment.  Although SFI is well understood, 
actually implementing SFI on a Win32 platform involves a fair bit of complexity.  Issues 
involved in adapting SFI to Naccio/Win32 are discussed in [Twyman99].  The prototype 
implementation does not implement SFI, so it unsuitable for use in adversarial situations. 

Preventing code modifications 

Naccio/Win32 must ensure that a malicious application cannot modify the checking code.  Since 
we also depend on the static analysis and SFI transformations to prevent application code from 
making kernel or LPC calls or circumventing the wrapper code, the application must not be able 
to modify its own code or create new code.  One approach would be to use SFI to prevent writes 
to the code segment to disallow any code modifications.  The problem with this approach is doing 
SFI on every write is expensive and cumbersome. 

Instead, we can take advantage of the virtual memory protection features provided by Windows 
NT and the Naccio wrapper mechanisms.  The Win32 API provides functions for making regions 
of memory read-only or read/write.  At the beginning of the initialization code, the code segments 
are marked read-only.  This alone would offer no protection, since the application could call the 
Win32 API function to make the region read/write.  However, we can use a platform interface 
wrapper to prevent this.  The wrapper for the API function checks if the region that is being set to 
read/write is in the code segment.  If it is, a violation is issued. 

Protecting checking state 

Naccio/Win32 must also protect state associated with checking.  This includes state associated 
with resources and platform interface wrappers.  We can protect this state from modification by 
application code by keeping it in a region of memory that is marked as read-only using the same 
technique as was use to prevent code modifications.  The difference is the checking code may 
need to write to this state.  To allow this, Naccio/Win32 must insert calls to the API routines to 
make the region writeable before the checking code and return it to the read-only state before 
returning to application code. 

This works fine for single-threaded applications, but presents a vulnerability if the application has 
multiple threads.  While the memory region is writeable to allow trusted checking code to modify 
the state, another thread that may be running malicious application code can modify the state 
without any violation being detected.  This could happen either because the program is running 
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on a multiprocessor machine, or because the operating system switches threads while the region 
is writeable. 

In addition to the checking state, multiple threads also pose a threat to the local stack data for 
other threads.  In particular, the local stack of a thread running checking code may contain 
temporary values that will be used in checking such as the absolute pathname corresponding to 
the file about to be opened.  If a malicious thread is able to alter that stack data, it can disrupt the 
checking and prevent policy violations from being detected. 

Protecting memory in the context of multiple threads is a difficult problem and no completely 
satisfactory solution is known.  Twyman suggests some possible solutions [Twyman99].  Perhaps 
the most likely solution is to use SFI to protect memory writes.  Since we can control where 
checking state is stored, using SFI to prevent writes in application code from modifying this state 
should be straightforward.  Protecting local storage associated with checking code is more 
difficult since the regions that must be protected change throughout the execution.  One solution 
would be to have a table in protected storage that records the regions that currently contain local 
checking storage.  Checking code would write addresses into this table at the beginning of a 
routine, and remove them at the end.  The inserted SFI instructions would need to check the write 
address against the regions in this table before allowing the write to proceed. 
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Chapter 7 
Related Work 

This chapter surveys work related to Naccio.  The first three sections describe related work in 
code safety – Section 7.1 describes work in low-level code safety, Section 7.2 describes work in 
language-based code safety systems, and Section 7.3 describes work involving reference 
monitors.  Section 7.4 describes other work involving program transformations.  While most of 
this work was not directed towards security, the mechanisms used are similar enough to Naccio’s 
to be worth including.  

7.1 Low-Level Code Safety 

Low-level code safety comprises the universal code safety required to isolate programs.  It is 
primarily intended to protect memory references by prohibiting programs from reading, writing 
or jumping to certain segments in memory. 

Early operating systems provided the necessary isolation using processes and virtual memory.  
The Multics operating system pioneered the use of virtual memory [Saltzer75, Denning80].  
Virtual memory prevents processes from interfering with one another or the kernel by giving each 
process a separate view of the memory system.  Instead of directly accessing physical addresses, 
a process uses virtual addresses that are mapped to physical addresses by a page table.  The page 
table is in protected space and can only be modified by the kernel and the mapping is done by 
hardware on each memory reference, so there is no possibility of it being circumvented by a 
malicious program.  The operating-system kernel is the only process that can see all of physical 
memory. 

The problem with using processes for low-level code safety is that processes are expensive.  A 
context-switch that may require substantial processor time is needed to switch between processes.  
Further, sharing data between different processes involves special mechanisms.  As a result, 
researchers have sought to provide the same protections offered by hardware-level virtual 
memory by using software protections within a single process. 

Verification systems 

One way to provide code safety is to prove that the necessary properties are true about a program 
before it is allowed to run.  One advantage of static verification is that after the properties have 
been verified, the code can run normally without any run-time overhead.  The disadvantage is the 
properties that can be proved are limited by theorem proving technology and proving non-trivial 
properties typically involves substantial computation time.  In theory, verification can be used to 
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prove general code safety properties.  In practice, it has been most successfully used to verify 
low-level code safety. 

Java uses a byte-code verifier [Yellin95] to provide low-level security.  Before loading a new 
class, the verifier performs data-flow analysis on the class implementation to verify that it is type 
safe and that all control-flow instructions jump to valid locations.  Naccio/JavaVM relies on the 
Java byte-code verifier to guarantee low-level code safety.  Although the verifications done are 
relatively simple, the byte-code verifier is still complex enough to contain bugs and the bugs are 
likely to be security vulnerabilities.  

Proof-Carrying Code (PCC) [Necula96] is a more ambitions verification effort.  PCC combines a 
program with a proof that the program satisfies certain properties.  Before installing the program, 
a certifier verifies the proof.  Proof generation may be complex and time-consuming, but 
verification is simple and efficient. 

In theory, proof-carrying code techniques can be used to verify arbitrary properties about code.  
In practice, they are limited by automatic proof-generation technology, and only simple properties 
have been verified to date.  [Necula98] presents a certifying compiler that takes source code in a 
type safe subset of C and generates optimized assembly language along with a proof that verifies 
its memory and type safety.  Since all programs in the input language are guaranteed to have the 
desired properties, constructing the proof requires only that information present in the source 
code is not lost when it is compiled.  Typed assembly language is used in a proof-carrying code 
system to verify type safety [Morrisett98].  A compiler can automatically generate type safety 
proofs for arbitrary programs in System F, a language supporting polymorphic types and first-
class functions.  Efficient Code Certification [Kozen98] seeks to verify low-level code safety 
using more compact and simpler certificates than those used in typed assembly language. 

Proof-carrying code systems are limited since the producer of the code chooses the policy.  The 
proof contains information needed to verify particular properties of the program, but provides no 
easy way to verify a different property.  They may be useful for situations like operating system 
extensions when all that is required is memory and type safety, but are not able to offer sufficient 
flexibility to be useful in enforcing high-level safety policies.  Another concern with proof-
carrying code systems is the load-time overhead associated with verifying the proof. 

The possibilities for combining verification with transformation-based run-time security are 
encouraging.  Future hybrid systems will prove what they can about the original program, and 
then alter the program to make proving the additional properties easier.   

Software Fault Isolation 

Software Fault Isolation (SFI) [Wahbe93, TLLW96] enables a distrusted application to run in a 
shared address space without the possibility that it will interfere with memory outside its data 
segment.  It works by altering memory access operations and jump addresses with bit masks to 
ensure that only the correct memory range is accessed.  SFI was explained in more detail, along 
with the SFI-based mechanisms used by Naccio/Win32 in Section 6.2.2. 

7.2 Language-Based Code Safety Systems 

Static language-based approaches to code safety attempt to limit the damage a program may do 
by requiring that only programs written in a specific language be executed, and designing that 
language to have limited expressiveness.  This can be done either by designing a new safe 



  

 87  

programming language or adding static checking to an existing language. The (unattainable) ideal 
safe programming language would be able to express all interesting safe programs and no unsafe 
programs.  Actual safe programming languages either permit some unsafe programs to be 
expressed or prevent interesting safe programs from being expressed; most do both. 

This work is relevant to Naccio, in that it presents an alternative way to safely execute code from 
untrustworthy sources.  While language-based approaches has some appealing properties, the 
restrictions or demands they place on programmers limit their practical usefulness.   

Type safety 

A type safe programming language restricts a program’s ability to convert values between 
different types.  Providing type safety at compile time makes programs easier to understand and 
debug. Several type safe programming languages have been designed including Algol60 
[Nauer63], CLU [Liskov81], ML [Milner90], Modula-3 [Nelson91] and Java [Sun96].  Type 
safety is generally a good trade off between increased reliability of programs and decreased 
language expressiveness, but it does limit the programs that can be written.18   

Type safety can be used to provide the low-level code safety necessary to isolate programs by 
preventing programs from referencing invalid memory addresses.  A language can provide this by 
checking types statically, preventing conversions between incompatible types, and limiting how 
particular types may be used.  Combining this with forced initialization, automatic storage 
management and array bounds checking prevents a program from referencing arbitrary memory 
addresses and from manipulating memory in a way that does not correspond to its type.  Type 
safe languages also limit what instructions a program may execute; all control flow is through 
language control structures and calls to well-defined procedure interfaces.   

Restrictive programming languages 

Other programming languages have been designed that provide more severe restrictions on 
programs.  These languages are usually geared to a special purpose, and some are not Turing 
complete.   

This approach was used in [Mogul87] to provide a safe way of allowing user code to implement 
packet filters that run in the kernel.  A simple stack-based assembly language is used to encode a 
packet filter, and this is interpreted in the kernel.  Since the packet filter language lacks any 
control flow operations, all programs are guaranteed to terminate.   

PLAN [Hicks97] is a restrictive programming language designed for expressing programs that 
execute at the nodes of an active network.  PLAN provides strong safety guarantees.  PLAN 
programs are guaranteed to use a bounded amount of memory, processor and network bandwidth.  
PLAN does not support recursive function calls or unbounded iteration, hence, programs are 
guaranteed to terminate.   

Both the packet filter language and PLAN place severe constraints on the programs that may be 
expressed.  While they may be well suited for the particular application for which they were 

                                                      

18 Here, by limiting the programs that can be written, we really mean limiting the possible implementations.  
Since all the type safe languages are Turing complete, any function that can be written in a non-type safe 
language can be written in all of the type safe languages.  However, it may be more difficult to implement a 
particular program efficiently without the additional expressive power of a non-type safe language. 
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designed, they are not Turing complete languages and are not capable of expressing most useful 
programs. 

Static checking 

Another way to create a safer programming language is to add more static checking to an existing 
language.  The most ambitious system using this approach to date is ESC [Detlefs96].  ESC 
attempts to prove at compile-time that certain errors (such as derefencing a null value, indexing 
an array out of bounds, or race conditions) will not occur.  While ESC shows much promise as a 
debugging tool, it is unlikely that it could be used to enforce the kinds of high-level safety 
properties we are addressing.  Many of these properties could not be checked statically since they 
depend on values that are not known at compile time (for example, a user enters a file name).  
Further, proving a property such as a constraint on the maximum number of bytes that may be 
written to a file is well beyond current and foreseeable automatic proving techniques.   

Execution environment 

Once a safe programming language is designed, a system can provide security only if the 
execution environment has some way of verifying that the program was created using the safe 
language.   

The simplest solution is to use the source code in the safe programming language directly in the 
execution environment (PLAN uses this approach).  The code can then be run in an interpreter, or 
compiled and executed.  This approach has two main flaws:  

• Performance – there is some performance penalty incurred by either having to interpret code 
or compile it every time it is executed.  Just-in-time compilers offer some potential to reduce 
this performance cost. 

• Code disclosure – most commercial software vendors view proprietary source code as the 
cornerstone or their business, and would be unwilling to develop programs for a platform that 
requires them to reveal their source code. 

An alternative is to supply object code to the execution environment, but have some way for the 
execution environment to validate the object code.  This can be done either by verifying that the 
object code was generated from a program in the safe language by a trusted compiler, or by 
verifying that the object code satisfies the safety properties of the safe programming language.  
SPIN and Java illustrate the two possibilities. 

SPIN [Bershad95] uses extensions written in Modula-3 as a safe way of extending an operating 
system kernel.  They suggest having a trusted compiler cryptographically sign the object files it 
produces.  The execution environment validates an object file’s signature before loading the code, 
to ensure that only unaltered code written in the safe programming language and compiled using 
the trusted compiler may be loaded.  This approach depends on expensive cryptographic 
techniques, and prevents innovation or competition in producing compilers, since only the trusted 
compiler is able to sign code. 

The other approach is for the execution environment to verify that the object code satisfies the 
safety properties guaranteed by the source language.  In order to make the verification easier, it 
may be helpful for the compiler to include extra information in the object file.  However, it is 
important that the verifier does not trust this information.  The Java byte-code verifier and PCC 
(see Section 7.1) use this approach. 
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7.3 Reference Monitors 

This section looks at other systems that use reference monitors to enforce security policies.  The 
concept of a reference monitor originated in the early 1970s [Lampson71, Anderson72], and is 
described in Section 1.2.  Here we look at a few reference monitor systems that are most closely 
related to Naccio.  The diversity of systems represented illustrates the usefulness of reference 
monitors. 

7.3.1 Java Security Manager  

The only way a Java program may manipulate system resources is by calling provided Java API 
library functions or by calling native methods.  Untrusted code is prevented from installing native 
methods, so security can be provided by placing limits on how the Java API routines are called.  
The API is implemented so that before an unsafe system call is executed, the relevant 
SecurityManager method is called.  In theory, this guarantees that the reference monitor for a 
particular manipulation is always called before the manipulation is allowed.  If the security policy 
disallows the call, a security exception is raised before the unsafe system call can be executed.   

The SecurityManager is a Java class, so flexible security policies may be implemented.  The 
scope and precision of policies, however, is limited by where the system libraries call 
SecurityManager check methods.  The check methods are fixed by the API specification, and 
cannot be extended without changing the API specification and implementation. 

A common paradigm in Java security policies is to use information on the call stack to determine 
what policy should be enforced.  Every class and object at run-time has an associated class loader 
(a subclass of the java.lang.ClassLoader type) and the class loader reveals the source of the class.  
A typical SecurityManager policy uses this information to determine if the class was loaded 
locally or remotely, and enforces different constraints on different classes.  The JDK 1.0 security 
model supported two types of code.  Local code would run with no restrictions, and all remote 
code would run with severe restrictions imposed by a single SecurityManager implementation.  
JDK 1.1 extended this model to support signed applets that are treated as local code, but 
otherwise did not change the security model.  To distinguish between types of code, authors of 
SecurityManagers must explicitly examine the ClassLoader stack. 

JDK 1.2 (also marketed as Java 2 SDK) introduced a new security architecture that addressed 
many of the limitations of the earlier JDK versions [Gong97].  Unlike earlier JDK versions, 
where code was either trusted or untrusted, using JDK1.2 different code can run with different 
permissions.  A system security policy defines a mapping between a protection domain and a set 
of access permissions granted to the code.  Particular code is mapped to a protection domain 
based on its origin (URL location) and cryptographic signers.  

JDK 1.2 also introduced mechanisms to make it easier to define a security policy in terms of 
setting permissions (as opposed to earlier releases where it was necessary to subclass the 
SecurityManager to change the policy).  Permissions are defined as subclasses of the root 
java.securityPermission class.  Typical permissions contain a target and an action.  For example, 
the java.io.FilePermission class controls file system access.  The target is a pathname (which may 
contain wildcards), and the action is one or more of read, write, execute and delete.  Permission 
classes define a method implies that takes a Permission object and returns true if this permission 
implies the argument permission.  Programmers can define new permissions associated with their 
application by creating a Permission subclass.  When the permission should be checked, the code 
explicitly calls the security manager with a Permission object that represents the new permission.  
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This is useful extensibility, but it is up to the application programmers to define new permissions 
not the users or independent parties.   

Instead of calling specific SecurityManager check methods, the JDK 1.2 uses the more general 
AccessController.checkPermission method that takes a Permission object.  It will throw a 
security exception unless all classes on the call stack belong to protection domains that have been 
granted the requested permission.  The normal semantics is that the permissions granted at a 
particular execution point are the intersection of the permissions granted by all protection 
domains in the call chain.   

In exceptional cases, privileged code can call the AccessController.beginPrivileged to explicitly 
enable (and endPrivileged to disable) a particular privilege regardless of the protection domain of 
its callers.  This is necessary to allow system API routines to manipulate resources even when 
they are called from an untrusted protection domain.  Between the call to beginPrivileged and 
endPrivileged, all permission checks will ignore the permissions of callers further up the call 
stack and allow all permissions of the protection domain of the code that enabled privileges. 

The method AccessController.checkPermission checks whether a particular permission is enabled 
checking.  It can be implemented either by eagerly constructing the intersection of permissions 
when a code from a different protection domain is called, or by lazily looking up the execution 
stack when a permission needs to be checked.  Sun’s JDK 1.2 implementation uses the lazy 
evaluation approach [Gong98].  The other approach is used by the security-passing style 
[Wallach98].  Instead of searching the stack for protection domains, the stack information is 
encoded into a security context parameter that is passed as a parameter.  This requires modifying 
Java classes to add and pass the extra parameter.  The security-passing style has some advantages 
over the JDK 1.2 implementation since it is not tied to a particular JavaVM implementation and 
does not prevent certain compiler optimizations (such as inlining) that are not permitted using the 
stack searching approach.  For typical programs, it is likely to perform worse than the lazy 
evaluation technique since passing explicit security contexts is more expensive then searching 
stacks when a permission needs to be checked [Wallach99]. 

Naccio avoids many of the complications associated with protection domains by making policy 
decisions at transformation time.  There is no need to examine the execution stack to determine 
the protection domain of particular code, since that code has already been transformed to reflect 
the policy that applies to it.  This eliminates the complexity and run-time overhead associated 
with stack inspection.  It means, however, that certain policies that can be easily enforced using 
the JDK 1.2 mechanisms cannot be reasonably defined using Naccio.  The relative expressiveness 
of Naccio in comparison to different code safety systems is discussed in Section 8.1. 

7.3.2 Interposition Systems 

Several systems have provided security by interposing checking code directly into the operating 
system.  This can be done either by modifying the kernel or taking advantage of operating system 
features such as a tracing facility that support.  

Although Naccio enforces policies at the application level, much of the work could also be 
applied to an interposition approach.  The difference is that instead of modifying applications to 
use different policy-enforcing libraries the operating system library would be modified to call all 
standard resource operations.  The resource operations would dispatch based on the policy in 
effect, which the operating system kernel can determine from the application running and a 
secure process-policy mapping.  This has the advantage of eliminating the need to rely on low-
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level code safety of the application, assuming the operating system kernel is protected, as is the 
case in most modern operating systems.  The other advantage is that no modification or analysis 
of applications is necessary; all that is required to enforce a policy on an execution is to select the 
desired policy.  There are however, two substantial drawbacks to this approach.  First, it requires 
access to the operating system kernel.  Modifying an operating system kernel is usually a 
cumbersome and risky undertaking.  Much of the modification, though, could be done 
automatically by the existing Naccio mechanisms.  The other problem is performance.  For every 
system call that can be constrained, it is necessary to check what policy is in effect and determine 
what if any checking code should be executed.  This means that even unconstrained programs that 
are trusted completely will suffer substantial checking overhead. 

Program-specific access controls 

Several projects have sought to extend traditional operating systems with access controls that 
depend on the program executing.  [Wichers90] suggests protecting a system from malicious 
programs by associating an access control list with each file that explicitly specifies which 
programs can modify the file.  The access controls can be implemented through an extension to 
the UNIX kernel.  

Cybermedia’s Guard Dog [Cyber97a, Cyber97b] is a commercial product incorporating a similar 
idea to protect critical files in Windows.  It includes a File Guardian that uses operating system 
hooks to monitor all access to critical files, and warns the user if a program not permitted to 
access the file does so.  The user decides what programs are allowed to access particular files or 
communicate using the network. 

TRON [Berman95] is a process-specific file protection system for the UNIX operating system.  
TRON allows users to create shells with specific access permissions that apply to all processes 
executed in the shell.  A modified UNIX kernel enforces the permissions by placing wrappers 
around system calls.   

Program-specific access controls have the advantage that safety checking is placed inside the 
operating system.  This makes it harder for programs to circumvent the safety checking since the 
checking is conceptually close to the resource.19   These systems have significant performance 
advantages over run-time approaches using a virtual machine, since untrusted programs are 
executed directly.  The main disadvantage is lack of flexibility – checking is limited to a fixed set 
of predefined system calls.  We could imagine support for checking a large number of system 
calls, but this has detrimental performance consequences.  For each system call that is checked, 
all programs (both trusted and untrusted) incur the additional overhead of the safety check 
(although on some systems dynamically linking with a specialized library can minimize this cost).  
We have found no data that quantifies this performance cost well, but since it applies to trusted 
programs even a small penalty may be unacceptable to many users. 

Janus 

Janus is a system designed to limit the damage caused by untrusted helper applications used to 
process remote data [Goldberg96].  Non-malicious helper applications such as the PostScript 
viewer ghostview are complex enough that they are likely to have bugs that can be exploited by 

                                                      

19 I suspect, however, that the program-specific systems (as opposed to process-specific systems 
like TRON) are vulnerable to attacks where a rogue program makes itself appear to have the 
identity of a trusted program.   
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data files constructed by malicious attackers.  Janus limits what these helper applications can do 
by restricting their access to the operating system.  Janus takes advantage of debugging features 
of the Solaris operating system that support tracing the system calls performed by an application.  
The tracing mechanism can be set to call a user-defined function in a separate process whenever a 
particular system call is issued.  Since the checking code is in a separate process and the kernel 
provides the debugging features, no low-level code safety guarantees are needed to prevent the 
helper application from tampering with the checking code or data.  This approach works well for 
Solaris, but could not be used on other operating systems that do not provide a similar tracing 
mechanism.   

A policy is defined by a list of policy modules in a configuration file.  A fixed set of policy 
modules is provided by the system.  The configuration file controls the behavior of a policy 
module.  For example, it can set parameters to the path module that control what directories can 
be read and written.  Each module may return allow, deny or no comment on a particular system 
call.  When different modules return conflicting responses, the later modules override earlier ones 
and no comment responses are ignored.  If the last module that returns a response other than no 
comment returns deny, the system call is disallowed. 

The module composition mechanism is similar to, but more general than, the policy composition 
mechanisms supported by Naccio.  Where Naccio allows a property to be weakened by a 
permission using allow commands to override violations, Janus allows an unlimited number of 
modules to be combined with allow and deny responses overriding each other based on ordering.  
It is unclear whether the expressiveness advantages of this approach outweigh the added 
likelihood that a policy author will be confused and accidentally define the wrong policy. 

Generic Software Wrappers 

Generic Software Wrappers (GSW) is a technique designed to make off-the-shelf software more 
suitable for use in secure systems [Fraser99].  Prototype implementations have been developed 
for two Unix-based operating systems: Solaris 2.6 and FreeBSD 2.2.  A wrapper support 
subsystem is implemented as a dynamic loadable kernel module, a feature provided by most 
UNIX systems.  Wrappers run in kernel space so they are protected from application code and 
require no context-switch overhead.   

GSW defines a policy by writing wrapper code in a C superset extended with some primitives 
useful in security checking.  Wrappers are associated with system calls or system call groups 
introduced by annotations in the characterized system call interface.  The characterized system 
call interface describes the system API.  It is much less general and expressive than Naccio’s 
platform interface, but motivated by the same desire to hide platform differences and allow safety 
policies to be expressed in a platform-independent manner.  System calls are characterized by 
adding annotations to their return values, function names, and parameters.  The annotations can 
be used to categorize functions, but not to precisely describe their behavior.  For example, the 
annotations on the FreeBSD open system call indicate that it is a file operation that manipulates 
file descriptions, its return value is a file descriptor, and its first parameter is a null-terminated 
string representing a pathname.  The library characterizations allow a wrapper to be attached to 
all system calls that deal with file descriptors.  Within the code for that wrapper, however, it is 
not possible to determine how a file descriptor is being manipulated.   

A Windows NT prototype implementation of GSW is currently under development [Spector99].  
Since Windows NT does not provide support for dynamic loadable kernel modules, the standard 
architecture cannot be used.  Instead, they use mechanisms similar to those used by 
Naccio/Win32.  As with Naccio/Win32, it must enforce the necessary low-level code safety and 



  

 93  

they are attempting to do this by performing SFI transformations on running code [Feldman99].  
If a Windows NT implementation of GSW were developed successfully, it would provide a 
useful platform to implement the low-level code safety necessary for Naccio/Win32.  

7.3.3 Transformation-based Systems 

A few systems have used program transformation approaches to code safety.  These systems are 
similar to Naccio in their enforcement mechanisms, but differ in how policies are defined.  In 
particular, all define policies at the level of concrete operating system calls or machine 
instructions. 

SASI 

Security Automata SFI Implementation (SASI) [Erlingsson99] is a generalization of SFI that can 
enforce a wide class of safety policies.  SASI prototypes have been implemented for x86 
assembly language output from the GNU gcc compiler and JavaVM code. 

A policy is defined using a security automaton, similar to a finite state automaton.  It consists of 
state and transitions where the input alphabet corresponds to events that a reference monitor 
would see.  The input symbols correspond to program instructions – for the JavaVM version they 
are Java byte code instructions; for the x86 version they are x86 assembly instructions.  This 
provides for unlimited precision, but makes it difficult to express even simple policies. 

SASI converts a security automaton into code that is added to the program.  New variables are 
added to represent the automaton states and code implementing the automaton is inserted between 
each program instruction.  Unnecessary code is removed, and the necessary code is converted into 
machine code and inserted into the program executable.  Unlike Naccio, the entire program must 
be analyzed and transformed instead of just replacing routine calls.  This is necessary because 
policies are expressed at the level of individual instructions.  In essence, an implementation of the 
security automaton defining the policy must be inserted before every instruction (fortunately, 
much of this can be optimized out for many instructions and policies).   

Ariel 

The Ariel project describes policies using a declarative language and enforces policies by 
inserting code in Java classes [Pandey98].  The transformations done by Ariel to enforce a policy 
are similar to those done by Naccio/JavaVM.  Policies are described as access constraints that 
prevent the creation of objects or invocation of routines based on a predicate.  Because of the 
declarative nature of policy descriptions, Ariel is unable to describe behavior-modifying policies 
that can be described using Naccio’s mechanisms (such as the SoftSendLimit property described 
in Section 4.2.4).  This, however, could be changed fairly easily by extending the policy 
language.  Policies are described at the level of the Java API so they are not portable across 
platforms, and writing a policy that constrains writing would require placing constraints on all 
routines that may write to a file. 

JRes 

JRes is a resource management interface for JavaVM programs [Czajkowsik98].  It supports per-
thread accounting for heap memory, CPU time and network usage.  Limits can be placed on the 
amount of a particular resource a thread may consume, and callbacks are invoked when a limit is 
exceeded.  In JRes, policies are described by application calls to methods that set fixed value 
limits on a predefined set of resources.  Many policies that Naccio can enforce could not be 
defined using JRes because they depend on resource manipulations not constrained by JRes or 
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they place more complex constraints on resource usage than a fixed limit (e.g., a rate or a function 
of other resource usage). 

JRes is implemented by rewriting Java application classes to keep track of thread and resource 
information.  To account for memory usage, JRes inserts code before every object or array 
allocation that calculates the size of the allocation and invokes a method that accounts for this 
memory usage.  Accounting for CPU usage requires native code and a new thread that queries the 
operating system for CPU consumption.   

The mechanisms used by JRes could be incorporated into Naccio/JavaVM with minor modifica-
tions.  This would allow resources corresponding to CPU and heap memory usage to be defined, 
and policies to be defined and enforced that constrain these resources.  Unfortunately, this would 
tie us to a particular JavaVM since JRes uses native methods and operating system calls to 
monitor CPU consumption. 

7.4 Code Transformation Engines 

Naccio depends on modifying program binaries to enforce a safety policy.  Naccio/JavaVM uses 
an augmented version of the Java Object Instrumentation Environment (JOIE) toolkit to do the 
necessary transformations.  The Naccio/Win32 prototype uses custom code to make simple 
binary transformations, but an industrial implementation would need a more substantial 
transformation engine to perform the transformations necessary to ensure low-level code safety.   

The earliest known work on automatic program transformation for monitoring was the Informer 
measurement tool done at UC Berkeley in 1969 [Deutsch71].  Informer was developed to 
measure a time-sharing system by allowing user-written programs to be dynamically inserted as 
measurement routines.  It would patch the operating system object code to call a measurement 
routine before an arbitrary selected execution point.  More recent work has focused on providing 
tools that allow for more general program transformations, make the desired transformations 
easier to define, and support a range of complex platforms. 

7.4.1 Java Transformation Tools 

The Java byte code format is a popular target for code transformation engines since it is widely 
used, portable, well specified and far easier to deal with than most binary formats.  Further, Java 
binary compatibility rules mean class files can be transformed in certain ways without breaking 
applications.  Several tools for transforming Java class files have been produced including JOIE, 
Binary Component Adaptation, the Bytecode Instrumenting Tool, and Compaq JTrek.  None of 
these tools were produced with security in mind, but rather improving performance and 
reusability of Java classes.  Although any of these could have been used (with some modification) 
as the transformation engine for Naccio/JavaVM, we choose to use JOIE because at the time this 
work began it was the most mature and stable tool available, its source code was available, and it 
provided general enough interfaces to support most of the transformations needed by 
Naccio/JavaVM. 

JOIE [Cohen98] is a toolkit for transforming Java classes.  It is intended to be used to do load-
time transformations by using a custom class loader that calls user-defined transformers.  
Naccio/JavaVM does not use the JOIE class loader, but uses classes in the JOIE toolkit to 
transform and rewrite classes independently from them being loaded into a JavaVM.  
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Binary Component Adaptation (BCA) [Keller98] is a tool for rewriting JavaVM code at load-
time, designed to improve the reusability of Java components.  Adaptations are expressed as 
changes that should be made to a class such as adding, renaming or replacing a method.  A 
compiler converts the requested changes into a set of modification rules.  When the class loader 
loads a class, it is modified according to the modification rules 

The Bytecode Instrumenting Tool (BIT) [Lee97] is a tool for instrumenting JavaVM code, 
primarily directed at performance analysis.  BIT supports insertion of code at key locations in a 
program (for example, method calls and basic blocks).  BIT is not as general a transformation 
engine as BCA or JOIE, since transformations are limited to inserting code at points determined 
only by control flow. 

Compaq JTrek [Compaq99] contains a class library that can be used to analyze and modify Java 
class files.  It supports byte code transformations, intended to instrument classes with monitoring 
code.  JTrek provides hooks for user-defined methods that are called when a routine is invoked or 
field is referenced and modifies Java classes to call those methods at the appropriate times.   

7.4.2 Win32 Transformation Tools 

Transformation tools for Win32 binaries are less readily available since there is substantial 
complexity involved in dealing with the Win32 binary format [Pietrek94].  One of the challenges 
in binary editing for Win32 platforms is code discovery.  Unlike Java classes where the location 
of code and data is defined by the class format, distinguishing code and data in Win32 
executables is complicated.  Another problem is code relocation.  If the length of code changes 
because of the program modifications, jump instructions and memory references must be adjusted 
to point to the modified location.  This is particularly problematic for indirect jumps where the 
address is calculated and not known statically.  Most binary editors rely on symbolic information 
that is part of the executable such as a debugging table identifying procedure entry points and 
data regions.  Naccio/Win32 cannot depend on this information unless it is verified.  There is no 
way to prevent an attacker from altering the symbolic information in a way that circumvents 
safety checking.  All of these problems make transforming Win32 executables for security a 
challenging problem.  Although it is believed to be possible, it would involve substantial effort 
and resources beyond what was available for the Naccio/Win32 prototype.  The predominant 
Win32 architecture, Intel x86, poses additional problems because of the complexity of its 
instruction set.  Supporting Alpha NT would be easier because of the simpler RISC instruction 
set, however a tiny fraction of Win32 users are using Alpha NT. 

Several tools are available that would be a helpful starting point for an industrial implementation.  
OM [Srivastava92] is a tool for performing link-time modifications on Alpha binaries.  It 
translates the program to a register transfer language and performs modifications on that 
representation before rewriting it as a binary.  OM makes use of supplemental relocation 
information provided by the compiler in the binary.  If it were used for code safety, this 
information would need to be verified or ignored.  ATOM [Srivastava94] is a tool built on top of 
OM to simplify program instrumentation.  It provides a set of APIs for instrumenting programs 
but does not support arbitrary modifications such as deleting instructions.  ATOM has been used 
on the OSF/1, Digital UNIX and Windows NT operating systems.  The Windows NT version of 
ATOM, Spike [Cohn97] provides binary instrumentation for Alpha Windows NT executables.  In 
addition, it intercepts system calls using replacement DLLs to transparently substitute 
instrumented DLLs for their unmodified versions.  A similar technique could be used by 
Naccio/Win32 to introduce wrapper code. 
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A few binary editing tools for x86 Win32 executables have been developed.  Etch [Romer97] is a 
tool for rewriting x86 Win32 binaries.  Etch analyses a Win32 binary to discover the code 
segments, and then cycles through each basic block instrumenting instructions.  A (now-defunct) 
company, TracePoint, used OM technology to build tools that instrument Win32 binaries to do 
profiling and test coverage analysis [TracePoint97].  This work is believed to be continuing at 
Microsoft under the code name Vulcan [Srivastava98].  Neither Etch nor Vulcan is currently 
available for research purposes.   

In addition to the single platform binary editing tools, a few projects have attempted to build 
general frameworks that can be used to edit binaries on different platforms.  Executable Editing 
Library (EEL) [Larus95] is a C++ library for editing executables.  EEL translates executables into 
a platform-independent register transfer language, allows transformations to be performed on the 
intermediate representation, and translates it back to a platform-dependent executable.  EEL is 
intended to be portable across a wide range of instruction sets and binary formats, but so far has 
only been used with SPARC executables running under SunOS and Solaris and a partial 
implementation for RS/6000 AIX executables.  It remains to be seen if this approach could work 
for a CISC architecture like x86.   
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The security system was adequate, but it did not foresee an armed robbery. 

 
        Italian Minister of Culture Walter Veltroni, explaining the theft of 

two van Goghs and a Cézanne from Rome’s National Gallery. 

 

Chapter 8 
Evaluation 

 

This chapter evaluates the Naccio architecture and prototype implementations.  We analyze how 
well the goals of security, versatility, ease of use, ease of implementation and efficiency set forth 
in Section 1.3 have been met by the Naccio design in general and our prototype implementations 
in particular.   

8.1 Security 

The most essential property of any security-related system is that it satisfies desired security 
requirements.  For Naccio, this means that a specified policy is enforced correctly.  There is no 
clear way to prove this in the positive, but any successful attack proves the negative.  A formal 
analysis of the soundness of the Naccio design would increase our confidence, but is beyond the 
scope of this thesis.  Instead, this section speculates on the security of the design and discusses 
likely vulnerabilities in the prototype implementations. 

The smaller the part of the system security depends on, the more likely it can be implemented 
correctly or validated.  Although Naccio’s design is conceptually simple, the trusted computing 
base for Naccio is far larger than is desirable.  In general, it comprises the program transformer, 
policy compiler, platform interface, and all system code below the level of the platform interface.  
For the Naccio/JavaVM prototype implementation, the trusted computing base comprises: 

• The policy compiler.  It must correctly parse the resource descriptions, resource use policy 
and platform interface.  It must weave the checking code from the resource use policy into the 
resource descriptions.  If optimizations are done to remove resource operations and platform 
interface wrappers, these optimizations must correctly determine that the removed modules 
do not do any useful checking.  The code generated for the resource implementations must 
correctly implement the checking described by the resource use policy.  Since a Java 
compiler is used to compile these resource implementations, that Java compiler is part of the 
trusted computing base also.  The policy-enforcing library must correctly reflect the contents 
of the platform interface.  This is perhaps the most complicated part of policy generation, and 
it is exceedingly unlikely that the prototype policy compiler does not have some bugs in the 
generation of wrappers.  Further, it depends on the JOIE toolkit used as the transformation 
engine.  Finally, the produced policy description file must accurately describe the 
transformations that must be done to enforce the policy on an application. 



  

 98  

• The program transformer must correctly perform the transformations described in the policy 
description file.  Naccio/JavaVM also relies on the Java byte code verifier to ensure low-level 
code safety properties.  In addition, we rely on the wrappers for Java reflection and dynamic 
class loading correctly prohibiting applications from bypassing or tampering with the 
checking code.  The prototype implementation keeps these wrappers simple (at the expense 
of disallowing some harmless programs) to increase the likelihood that they are correct. 

• The platform interface must correctly describe the Java API in terms of the resource 
operations.  The task is simplified somewhat by support for pass-through wrappers, but the 
platform interface must still correctly specify the behavior of several hundred API routines.  

• The Java API implementation must not manipulate resources in ways different from those 
described in its documentation.  Since the platform interface is written according the API 
documentation, if the Java API implementation produces different resource manipulations 
than described in its specification, an attacker will be able to exploit them to violate the safety 
policy without detection. 

This is a very large trusted computing base, and it compares unfavorably with most other code 
safety systems.  The trusted computing base for the JDK 1.1 security mechanisms comprises the 
byte code verifier, the Java API correctly calling SecurityManager check methods, and the 
SecurityManager correctly implementing that checking.  It also depends on the Java compiler to 
correctly compile the API and SecurityManager, and the Java run-time to correctly distinguish 
between trusted (local or signed) and remote code and the ClassLoader only loading verified 
classes.  This is certainly a larger trusted computing base than is desirable, and too large to be 
feasible to verify, but smaller than the Naccio/JavaVM trusted computing base.  Systems like 
SASI [Erlingsson99] and proof-carrying code [Necula98] have smaller trusted computing bases 
than the JDK. Because they describe policies at the level of machine instructions, there is less 
processing needed (and hence, a smaller trusted computing base), to enforce or verify a policy. 

The story for Naccio/Win32 is similar.  Its security depends heavily on correct implementation of 
the protective transformations necessary for low-level code safety.  Implementing SFI is 
notoriously difficult for a platform as complex as Intel x86 and no satisfactory implementation 
that deals with arbitrary Intel x86 executables is known.  Further, the Win32 API is large and 
complex.  The prototype implementation only defines a partial platform interface; correctly 
defining a complete one would constitute a major undertaking. 

One way to deal with a large trusted computing base is to identify and verify the most vulnerable 
pieces.  The platform interface is the most likely candidate for verification.  Section 9.1 discusses 
some possible ways of increasing confidence that various parts of a Naccio implementation are 
correct.  The other way is to change the design or implementation to shrink the trusted computing 
base.  One way to do this would be to move more of the checking into the operating system.  On 
platforms that support extensible kernel modules (such as Solaris and FreeBSD), this could be 
done without any need to modify the kernel.  This would eliminate any reliance on low-level code 
safety, other than trusting the operating system mechanisms that protect the kernel.  The trusted 
computing base would then only be the policy compiler that generates the checking code from the 
policy and the platform interface that describes the kernel calls.  One way to simplify and reduce 
the size of this code would be to remove all the optimizations.  This would incur a significant 
performance penalty, but would be acceptable in situations where greater security assurance is 
more important.  If Naccio/JavaVM enforced policies at the level of native methods instead of the 
Java API, it would eliminate much of the trusted computing base since it would only rely on 
hooks into the native methods and the generated checking code itself.  It would remove reliance 
on the Java API implementation, other than the implementation of native methods.  The platform 
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interface would be smaller and simpler, since it describes only security-relevant native methods.  
The drawback is it would tie Naccio/JavaVM closely to a single execution platform.  It would 
also be more difficult to write extended safety policies, since the platform interface must be 
expressed at the level of machine instructions. 

Naccio’s large trusted computing base is one of the prices we pay for abstract policy definition 
mechanisms.  The further away the policy definition is from the execution platform, the more 
work that must be done to enforce the policy.  While the tradeoff between increased trusted 
computing base size (and the resulting reduction of confidence in the security mechanisms) and 
the ability to efficiently enforce a wide class of useful policies may be acceptable for low and 
medium security environments, it is not acceptable in security-critical environments.  For 
security-critical environments, Naccio may be usefully combined with simpler enforcement 
mechanisms with better assurance that enforce the most important properties in such situations. 

In addition to the sheer size of the trusted computing base, some aspects of the prototype 
implementations are of particular concern.  Naccio/JavaVM supports pass-through wrappers to 
make writing the platform interface easier.  This greatly reduces the size of the platform interface 
needed for the Java API.  On the other hand, it increases the complexity of the policy compiler.  
Handling pass-through wrapper semantics is the most unwieldy part of the policy compiler 
implementation and the most likely part to contain bugs that are manifest as security 
vulnerabilities.  Nevertheless, we believe the benefits of supporting pass-through wrappers in 
reducing the size of the platform interface outweigh these risks.  Another possible vulnerability of 
the prototype Naccio implementations results from the optimizations done by the policy compiler 
to remove unnecessary resource operations and platform interface wrappers.  Bugs in these 
optimizations can lead to wrappers that do meaningful checking being incorrectly removed and as 
a result produce a policy-enforcing library that does not detect violations of the policy.  We 
believe the analysis is simple enough to implement correctly so that the run-time performance 
benefits obtained by removing unnecessary wrapper more than outweigh the added risks 
associated with bugs in the optimizer code. 

The Win32 platform presents some additional vulnerabilities not faced on the JavaVM platform.  
Ensuring low-level code safety is much more difficult, and is not attempted by the prototype 
implementation.  We believe it is possible to implement SFI correctly on Win32 Intel x86 
executables, although it remains to be seen if this is true.  Multiple threads pose another problem, 
and there is some doubt as to whether or not a satisfactory solution to protecting wrappers and 
resource state in the presence of multiple threads can be found.      

Even if a Naccio implementation is correct, attackers can still exploit poor policy choices.  Since 
all constraints imposed by Naccio are discretionary, it is up to users and system administrators to 
determine a suitable policy for their environment.  Actually deciding what is an appropriate 
policy for different environments is beyond the scope of this thesis, but it is important that precise 
enough policies can be expressed and that it is easy enough to define and understand policies that 
it is likely a policy really means what its author intended.  We believe Naccio offers some 
advantages over the alternatives because of the way policies are described in terms of abstract 
resource manipulations.  The next two sections discuss this. 

8.2 Versatility 

This section considers how well Naccio encompasses the range of useful safety policies. We 
consider the issue in general, and then specifically for the standard policies and extended policies 
supported by the prototype implementations.  
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8.2.1 Theoretical Limitations 

The policies Naccio can enforce encompass all safety properties that can be expressed in terms of 
manipulations visible at the platform interface level.  With a suitable platform interface, all 
resource manipulations are visible and Naccio can define and enforce all policies in Class EM 
(see Section 3.3).  Naccio cannot enforce liveness properties or policies that depend on 
knowledge of all possible executions. 

Liveness properties depend on knowing something will happen in the future.  For example, a 
policy that requires that all open files must eventually be closed is a liveness property.  Although 
Naccio cannot strictly enforce liveness properties, most useful liveness properties can be 
approximated.  For example, we could modify the file close policy to require that all open files 
must be closed before the application terminates.  Naccio could define this policy by adding a 
state block that maintains a set of the currently open files.  Code associated with the open file 
resource operations would add files to the open set, and calls to the close operation would remove 
them.  Checking code associated with the file system terminator could either issue a violation if 
the open files set were non-empty before execution is about to terminate.  Approximations of 
liveness properties may be slightly awkward to express, but Naccio can approximate many of the 
liveness properties that are useful for security. 

Policies that depend on knowledge of all possible executions cannot be enforced without static 
analysis of the program text.  Most properties in this category deal with information flow.  
Knowing whether a particular execution reveals information about some object requires 
determining if the visible output of this execution is distinguishable from other executions where 
the value of the object is different.  Since runtime monitors on a single execution cannot reveal if 
this is the case, Naccio cannot be used to enforce fine-grain information flow.  Naccio can be 
used to enforce coarse information flow policies that prohibit any remotely visible behavior after 
a sensitive object is touched.  For example, a policy could be defined that prohibits all network 
use after any sensitive file has been read.  In situations where fine grain information flow policies 
are essential, it would be necessary to combine Naccio with a static analysis tool that enforces the 
fine grain information flow policy. 

8.2.2 Policy Expressiveness 

Although in theory a platform interface can be created that makes all resource manipulations 
visible to the policy author, in practice it is not usually practical to do so.  Both prototype 
implementations use platform interfaces at the level of a system API.  This limits the policies that 
can be enforced to those expressible in terms of events visible through system API calls.   

First, we consider the class of standard policies since those policies that can be defined using the 
standard resources represent the class of policies that can be easily defined.  In addition, standard 
policies are portable across Naccio implementations.  Porting an extended policy requires altering 
the platform interface on each new platform.  Hence, it is important that most common policies 
can be expressed as standard safety policies.  Standard policies can be used to express access 
control policies on any of the standard resources including files, network connections, windows, 
and threads.  In addition to the standard static access control policies, policies that constrain 
access control dynamically based on the history of all resource accesses made by the execution 
can be written by using state blocks.  This covers most traditional access control security policies.      

With extended policies, the class of expressible policies expands to include constraining and 
modifying all behavior visible at the level of the platform interface.  For the prototype 
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implementations with platform interfaces at the level of the system API, this means all resource 
manipulation done through the system API can be constrained.  By using state blocks, Naccio can 
define any policy that depends on the history of all system calls made by the execution.  This is a 
large class of policies, but there are still limitations on what policies can be expressed.  In 
addition to the theoretical limitations discussed earlier, the expressible policies are limited by 
what is visible to the platform interface.  Some resources are manipulated without using system 
calls, in particular memory and the CPU.  Naccio implementations cannot place any constraints 
on manipulating resources that are not visible at the level of the platform interface. 

Other resources are visible at the application level, but do not correspond to any system resource.  
For example, a library may maintain a database in local storage and provide routines for 
manipulating that database.  Since these routines are not part of the system API calls, there is no 
way to use Naccio to enforce a policy that constrains how the database may be manipulated.  
Eventually, the database manipulations may lead to a file modification or network transmission 
that can be constrained by Naccio.  However, it is likely to be difficult to define a database access 
policy in terms of file operations, since the mapping between file segments and database entries is 
often complex and dynamic.  It is possible, however, to extend the platform interface to include 
the database classes and to define new resources that correspond to manipulating the database. 

Comparison to JDK 

Naccio/JavaVM can mimic any JDK policy since we can write a Naccio policy that makes the 
same calls to the security manager check methods at the same execution points and with the same 
parameters as the Java API does (the MimicJDK policy introduced in Section 8.5.1 does this).  
Although this clearly duplicates a JDK policy, it is not entirely satisfying since it depends on 
hooks that allow policies to call Java methods.  The policy is not portable because it relies on the 
Java SecurityManager code. 

To define a portable version of a JDK policy, the checking code needs to be moved directly into 
the safety properties and translated into the generic property language.  One problem that needs to 
be addressed is how to deal with JDK code that distinguishes between privileged and 
unprivileged code.  The JDK 1.1 security manager often depends on examining the ClassLoader 
to determine if code is part of the system and should be considered privileged.  JDK 1.2 uses 
stack inspection to provide a more general way to enable privileges through a call sequence. 

Duplicating stack inspection requires access to more run-time state than is visible in a Naccio 
policy.  The stack is not visible from a safety policy, so there is no way to define a policy that 
treats resource manipulations differently depending on what is on the call stack when they occur.  
Naccio can, however, mimic most of the useful aspects of stack inspection.  Further, we argue 
that many policies defined in terms of different privileges supported by stack inspection are better 
expressed as more precise policies not depending on different privileges. 

In JDK 1.1 and earlier, stack inspection was limited to distinguishing system and application code 
based on the ClassLoader.  Naccio makes the same distinction at the platform interface boundary.  
Code within the Java API that is described by the platform interface is trusted.  The wrapper 
describes its behavior and the implementation code runs with no additional safety checking.  To 
define a policy that allows system code to manipulate resources in ways not permitted by 
application code, all that is necessary is to write a wrapper for the relevant API routine that does 
not call the resource operations corresponding to its actual manipulations.   

JDK 1.2 supports a richer model where stack inspection distinguishes arbitrary classes of code.  
This is primarily motivated by the desire to support multi-layered applications where different 
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classes have different trust levels and capabilities.  Given that Naccio cannot duplicate stack 
inspection behavior exactly, we need to consider what is lost in terms of expressiveness as a 
result.  Stack inspection was motivated by the desire to allow trusted code to perform actions that 
untrusted code is not permitted to, even when that system code is called by the untrusted code.  A 
common example is the font loading code in the AWT.  This needs to open and read a file, but is 
viewed differently from an application attempting to open and read a file directly.  An example 
that takes advantage of JDK 1.2 capabilities would be an untrusted application that calls a third-
party library that calls system code.  The system code is privileged, and the third-party library has 
some privileges not afforded to the application but does not have all the privileges available to the 
system code.   

This allows certain policies not expressible using Naccio to be defined, but it is questionable 
whether or not these kinds of policies are desirable.  Policies expressed in terms of varying 
privileges do not correspond well to anything a user understands.  Users have no notion of stack 
frames and make no distinction between system code and application code.  It is awkward to 
describe to a typical user a policy that allows system code to access the file system but does not 
allow application code to do so.  This policy might be useful if we want to allow the AWT font 
loading code to read a local file but prevent application code from directly accessing the any files.  
The assumption is that it is okay for system code to do this, since the system code is trusted and 
only limited information about files is made available to the untrusted code as a result.  This 
seems contrary to the user’s understanding of the policy.  It would be better to define a more 
precise policy that constrains only the behavior of the program but make no distinction between 
what code is directly causing that behavior.  For example, a better policy would disallow access 
to files except allow reading a limited number of files in the system fonts directory.  This policy 
could be easily defined using Naccio by weakening a no writing policy with the standard JDK 
allowances that permit reading the font files.  We believe most useful policies that depend on 
varying privileges can be better defined as precise policies defined in terms of program behavior. 

There is a wide class of policies enforceable by Naccio but not enforceable by the JDK security 
mechanisms.  This includes policies that depend on resource manipulations that do not 
correspond to security manager checks and are not visible to JDK policies.  In order to enforce 
these types of policies using JDK mechanisms, additional check methods would need to be added 
to the SecurityManager and API implementations would need to be altered to call those check 
methods at the appropriate execution points.  For example, current JDK mechanisms cannot 
support policies that constrain file activity once a file has been opened.  This means both that 
there is no way to revoke read and write access once it has been granted by the original open call, 
and that there is no way to constrain the amount or content of data read from or written to an open 
file.  To extend the JDK to support this class of policies, one would need to add new security 
manager check methods that correspond to reading and writing to files.  All the Java API classes 
that read from or write to files would need to be modified to call the new check methods at the 
appropriate time.  Even supposing one did have access to change the Java API in this way, the 
overhead of calling the new check methods is suffered for every Java program that runs with a 
policy enforced, even if that policy places no constraints on reading and writing to files.  This 
would be unacceptable in many environments, since the overhead associated with security 
checking for a commonly called routine like writing a byte to a file would be substantial.  Naccio 
avoids this problem by inserting the platform interface wrappers only when they do useful work.  
Hence, there is no overhead suffered unless the policy constrains a particular resource 
manipulation. 
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Examples 

One way to get a better handle on whether Naccio can successfully express useful policies is to 
consider whether policies that protect against particular kinds of hostile applets can be written.  
One well-known collection of hostile applets is Mark D. LaDue’s collection of hostile applets 
[LaDue96, LaDue99].  Here we consider how effective Naccio would be in protecting against 
each of these applets.  The effectiveness of Naccio’s policy definition mechanisms is judged on 
the basis of whether a policy can be written to prohibit the attack, how easy it is to write the 
policy, and how precisely it excludes the hostile behavior. 

• The NoisyBear applet displays a clock and makes an annoying sound.  Even after you leave 
the page, the sound continues.  This behavior could easily result from an accidental 
programming error, and takes advantage of browsers allowing applet threads to continue even 
after the browser has left the page containing the applet.  The simplest policy that would 
prevent this particular attack would be to always disallow playing audio files.  This would 
disallow some potentially useful applets, however.   

The more general problem revealed by this applet, however, is that threads are allowed to 
continue after the applet stop method has been called.  The browser calls the applet stop 
method when it leaves the page containing the applet, but there are no requirements that the 
applet stop method actually terminates all applet threads.  Using Naccio, we can impose a 
policy that requires that no applet threads are running at the end of the stop method.  The 
program transformer modifies the applet to call terminators (including RSystem.terminate) at 
return points of the applet stop method.  A useful policy would keep track of all threads 
created by the applet using a state block, and then check that all threads have been stopped 
when RSystem.terminate is called.  Occasionally, a useful applet may need to keep threads 
running after the containing page has been left by the browser.  It seems reasonable to require 
user approval before allowing this.20  The JDK approach could not be used to enforce such a 
policy, since there is no check method associated with stopping an applet. 

The best general solution to these kinds of attacks, however, is at the browser level.  A 
security-conscious browser should allow the user to see what applet threads are running and 
which URL was responsible for their creation, and to selectively kill annoying or suspicious 
threads.   

• The Consume, Wasteful, HostileThreads and TripleThreat applets are all denial-of-service 
attacks that consume most available CPU and memory.  They work by creating a new thread, 
setting its priority to MAX_PRIORITY, and doing lot of useless processing.  A policy that 
disallows increasing a thread’s priority would solve part of the problem since a normal 
priority thread will not prevent other threads from acquiring the CPU.  This policy can be 
easily defined using Naccio by issuing a violation in the standard resource operation 
associated with setting a thread’s priority if the requested priority is too high.  A less 
obtrusive policy would not issue a violation, but instead skip the system call that sets the 
priority.  Defining this policy requires changing the platform interface so the original system 
call can be skipped. 

                                                      

20 Supporting this well would require changing the terminators, so that different resource operations 
correspond to stopping the applet and termination of the last thread associated with the applet.  This could 
be done by transforming applet code so each thread checks if it is the last thread running before completion, 
but would perhaps be better done by the containing application. 
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This would lessen the effects of the denial-of-service attacks, but would not prevent the 
eventual consumption of resources.  To do this we need a policy that restricts the actual 
resource use.  Attack applets use different kinds of resources in different ways.  Some create 
a large number of threads or windows.  Naccio policies can easily place limits on the number 
of threads or windows created, and it seems sensible to import such a policy on untrusted 
applets.  If the resource use is done through processing and memory allocation, however, 
Naccio/JavaVM is not able to constrain the resource consumption.  The limits on thread 
creation and setting thread priorities, would significantly reduce the amount of the CPU 
resource that could be consumed, but Naccio/JavaVM cannot enforce a policy that places 
limits on memory and CPU usage.  Since using memory and the CPU does not correspond to 
a system call, these are not visible to the platform interface so we cannot write a policy that 
constrains them using Naccio/JavaVM.  Although it is possible to extend Naccio/JavaVM to 
support these resources (see Section 9.2), it is more practical to constrain memory and CPU 
usage in the run-time environment. 

• AppletKiller is a hostile applet that shuts down all other applet threads.  It recursively loops 
through threads in a thread group, and their parents.  Naccio policies can easily place 
restrictions on killing threads by writing a resource use policy that attaches checking code to 
the RSystemThreads resource operations.  Perhaps the most reasonable thing to do would be 
to disallow any access to the applet’s parent thread.  A Naccio policy can do this by attaching 
checking code to the resource operation associated with getting a thread or thread group’s 
parent.  The difficulty is determining if the requested thread is the original applet thread (in 
which case the call reveals information about threads outside the applet), or a thread created 
by the applet (in which case the call should be allowed).  To do this, we need a state block 
that keeps track of how a thread was created. 

• Forger sends forged email by opening a network connection back to the originating host that 
uses the send mail port (25).  A simple policy that would prevent this would prohibit all 
connections to port 25, or more generally prohibit explicit connections to any questionable 
port.  This policy could also be written easily using a JDK security manager.  The problem is 
with the default settings and policy interface on most browsers, not the available JDK 
security mechanisms. 

To summarize, all of the applets in the hostile applets collection can be mitigated using standard 
safety policies.  Only the denial-of-service applets that consume memory and the CPU but not 
some constrainable resource cannot be prohibited by a reasonable policy.  The policies can be 
expressed precisely enough that the hostile behavior can be prevented without also preventing 
many non-hostile applets. 

It is not clear how well the hostile applets collection corresponds to the real attacks browsers are 
likely to face.  In fact, there have been few reports of malicious attacks exploiting Java21.  Nearly 
all the media reports of Java vulnerabilities result from academic research rather than discovery 
of an actual malicious attack.  Despite Java’s security vulnerabilities, it is far easier for a 
malicious hacker to cause damage in other ways and most attacks exploit Windows executables 
or (more recently) macros for Word and similar programs.  Fortunately, a Windows 
implementation of Naccio could be used to prevent many of these attacks.  Java may become a 
more popular target for attackers as users become more security conscious and resist running 

                                                      

21 Symantec’s database of about 40,000 viruses and Trojan horses [Synamtec99] contains only two Java 
viruses (strangebrew and beanhive).  Both depend on running in an environment where file access is not 
constrained. Trojan horses should be more common, but there are none reported in Symantec’s database. 
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untrusted programs without code safety.  However, for the near future, it is likely that buggy 
programs are a more serious threat to users with Java-enabled browsers than are malicious 
attacks. 

8.3 Ease of Use 

A main goal of Naccio is to make it easier to write, modify and understand policies than it is with 
other systems.  This is a subjective question, but can be considered by looking at how much 
knowledge and code is required for different kinds of policies.  Our experience with actual users 
is limited to that of the author and Andrew Twyman’s experience developing policies the 
constrain network use before he began to develop Naccio/Win32.  He was able to write new 
policies after looking at a few examples and had no problems defining the desired policies using 
Naccio. 

Many policies can be written by combining and setting parameters of predefined properties.  
Users can construct these properties without any knowledge of resource descriptions or how 
policies are defined.  If a sufficiently comprehensive property library is included with a Naccio 
implementation, it should be possible for most users and system administrators to construct many 
of the policies they need using predefined properties. 

More sophistication is required to write a new safety property.  We hope that moderately 
sophisticated computer users without substantial programming experience will be able to 
understand and write standard safety policies.  To do so requires being able to understand the 
concept that program manipulations are characterized by resource operations, and that attaching 
checking code to resource operations constrains those manipulations.   

The simplest policies are expressed as checking code that attaches a violation to a resource 
operation.  For example, consider what must be done to write a policy that prohibits altering or 
creating files but allows reading.  To define this policy using Naccio, a policy author must 
determine that file writing corresponds to the RFileSystem resource, examine the RFileSystem 
resource description to deduce that the modifyFile group corresponds to altering or creating files.  
The policy can be defined by attaching a violation to RFileSystem.modifyFile.  Writing the same 
policy as a JDK SecurityManager involves creating a new SecurityManager subclass and 
overriding the checkWrite and checkDelete methods to throw an exception.22  In fact, the default 
SecurityManager disallows everything, so the policy author either needs to subclass a different 
SecurityManager, or needs to override every other check method with an empty body.  This 
involves a fair bit more programming knowledge than writing the Naccio policy (understanding 
subclassing and exceptions), but perhaps less effort for someone who already knows Java.  Most 
Java-enabled browsers do not support user-written security managers, but instead provide a 
graphical interface for setting security parameters.  The policy configuration dialog boxes for 
Internet Explorer 5.0 cannot be used to define a no writing policy.  The only choice is to either 
enable or disable access (both reading and writing) to all files or to require a user prompt to 
approve all file access.  While the interface for selecting policies is simple enough for naïve users 
to understand, it places severe limits on the range and precision of policies that can be defined. 

                                                      

22 The java.io.File.rename method calls checkWrite on both its arguments; java.io.File.delete calls 
checkDelete. 
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The next level of complexity in writing policies is writing policies that maintain state, such as 
LimitBytesWritten shown in Figure 6.  Writing state-based policies involves more programming, 
but Naccio’s mechanisms make it easier to write these policies than the alternatives.  In addition, 
a library of common state blocks covers the state needed for many policies.  It will often be 
possible to express a new policy using pre-defined state.   

The fact that defining a Naccio policy requires writing code makes it inaccessible to the majority 
of computer users.  The subset of users who might be willing to consider writing a safety policy is 
probably similar to the class of users who write their own spreadsheet or Word macros.  To make 
Naccio accessible to a wider class of users would require a graphical, parameter-based interface 
to policies.  Such an interface tool could be created, but it is beyond the scope of this thesis. 

8.4 Ease of Implementation 

This section considers the amount of effort required to produce a new Naccio implementation by 
examining the effort required to produce the two prototype implementations.  We report on how 
much work was required to produce Naccio/JavaVM, the first Naccio implementation; and how 
much additional work was needed to produce an implementation of Naccio for another platform, 
in this case, Naccio/Win32.  Many of the lessons learned from these efforts would reduce the 
amount of time needed to produce a new Naccio implementation.  Further, because of the design 
of the Naccio architecture, much of the code from the policy compiler can be reused on 
implementations of Naccio for different platforms. 

Implementation of the Naccio/JavaVM prototype began in May 1998.  Before this a preliminary 
prototype had been produced that transformed ANSI C source code according to fixed rules as a 
proof-of-concept23, and the Naccio architecture had been designed and described in a thesis 
proposal.  It took about four weeks to build a basic Naccio/JavaVM system that could be used to 
enforce simple policies on test programs.  The main difference between the original prototype and 
the implementation described in this thesis is that instead of modifying the Java API class files to 
produce the policy-enforcing wrapper classes, the original implementation generated subclasses 
as Java source code and ran the Java compiler to produce a class file.  The program transformer 
replaced calls to constructors for wrapped classes with calls to the corresponding constructor in 
the generated subclass.  Generating Java source code subclasses is much easier than rewriting 
byte codes as is done by the final implementation, but had some significant drawbacks.  It made it 
awkward to constrain final methods since they could not be overridden in the subclass.  We could 
work around this problem using a similar technique as is done to handle wrapped native methods 
in the current implementation – rename the wrapped final methods and replace names in program 
transformation.  Dealing with constructors posed another problem, since Java compilers require 
the call to the superclass construction be the first statement in the constructor body.  This meant 
checking code could not be inserted before the original constructor call.  More fundamentally, the 
subclassing approach suffered a non-negligible run-time overhead associated with the additional 
virtual method calls that would be suffered even for methods not constrained by the safety policy.   

As a result, the implementation was changed to rewrite the Java class files directly.  
Implementing the class modifying code took a few weeks.  Much of this time was spent learning 
the intricacies of the Java byte code format and understanding and modifying JOIE (see Section 

                                                      

23 This was done because the author had access to and familiarity with a tool that deals with ANSI C code 
[Evans96], from which a simple program transformer could be constructed with little effort. 
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7.4.1) to support the necessary changes.  The Naccio/JavaVM prototype including the policy 
compiler and program transformer as described in this thesis is implemented in about 40,000 lines 
of Java code, some of which were generated automatically by a parser generator.  Most of the 
code is for the policy compiler (although the actual division is not obvious since they share 
objects and code) and is reusable for Naccio implementations for other platforms.  The core of the 
program transformer is about 1500 lines. 

The Java API platform interface was developed in conjunction with the Naccio/JavaVM 
implementation and test policies.  Although pass-through wrappers were not part of the original 
design, the need for them became apparent early in the process of developing the platform 
interface.  Support for pass-through wrappers greatly reduced the amount of work needed to write 
the Java API platform interface. 

The second Naccio implementation was Naccio/Win32, built by Andrew Twyman starting in 
January 1999.  Building Naccio/Win32 involved changing the policy compiler back end to 
produce C code for resource implementations instead of Java classes, and creating new tools that 
produced the platform interface linker file and modify the executables import table.  Except for 
developing a new back-end, the rest of the policy compiler was reused without any changes.  
Converting the back end to produce C code instead of Java took a little over a week, and did not 
require a deep understanding of the rest of the policy compiler.  Since the Naccio/Win32 
prototype did not implement the protective transformations necessary for low-level code safety, 
the amount of work needed to implement the program transformer was limited to replacing DLL 
names in the import table.  This was accomplished in a few days;  almost all the effort was in 
understanding the Windows executable format.  In addition, we did not produce a complete 
platform interface for Win32.  Because of the size and complexity of the Win32 API, 
construction of a complete platform interface would likely take a skilled developer several 
months.  The prototype platform interface used by Naccio/Win32 that only covered a subset of 
file manipulation calls took about two weeks to write and debug. 

Producing the next Naccio implementation should involve less work that was necessary to 
produce the first two.  The Java and C back-ends to the policy compiler should provide a good 
starting point for producing resource implementations on most platforms.  For example, either 
back-end could be fairly easily adapted to produce resource implementations suitable for a Linux 
implementation of Naccio.  There are two approaches to generating the policy-enforcing library 
exhibited by the prototype implementations – Naccio/JavaVM modifies the object code directly, 
while Naccio/Win32 generates separate wrapper code that performs the policy checking and then 
calls the original routine.  The Naccio/JavaVM approach does not transfer easily to a new 
platform since modifying object code is likely to be highly platform-specific.  The Naccio/Win32 
approach is likely to be reusable on other platforms.  To implement similar wrappers for a Linux 
implementation, it would be necessary to write a suitable platform interface and produce the 
appropriate linking information, but otherwise most of the Naccio/Win32 implementation could 
be reused. 

The standard resource library evolved during the course of developing Naccio/JavaVM and 
Naccio/Win32.  Some changes to the resource descriptions were a direct result of experience 
building Naccio/Win32.  For example, the operations dealing with file observations were 
inadequate to precisely reflect all the different file properties that may be observed using the 
Win32 API.  New operations were added to the RFileSystem resource corresponding to 
operations like observing the creation time of a file.  It is likely that the standard resource library 
would change slightly as a result of producing a Naccio implementation for another platform.  We 
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expect it would converge fairly quickly, though, and after one or two more platforms there would 
be no need to change the standard resource library to support a new platform. 

Finally, we consider what would be necessary to produce industrial quality implementations of 
Naccio.  Naccio/JavaVM is close to what an industrial implementation would be, except for 
lacking the validation necessary to provide good security assurances.  The amount of effort 
required to do this is substantial, but similar to what would be required for any code safety 
system.  Producing an industrial version of Naccio/Win32 would involve implementing the 
protective transformations necessary for low-level code safety.  While the work required is 
substantial because of the difficulties in implementing software fault isolation on the x86 
platform, almost all of it is the same as would be required for any code safety system that runs 
x86 executables directly.  If a satisfactory implementation of software fault isolation were 
available, it could be adapted to support Naccio with only minor changes necessary to protect the 
state associated with safety checking.  The other major task necessary to produce an industrial 
quality Naccio/Win32 implementation is producing a platform interface for the Win32 API.  This 
would involve substantial effort because of the size and complexity of the Win32 API.   

8.5 Efficiency 

The performance of a code safety system is important since a system that incurs a significant 
performance penalty will not be acceptable except in a security-critical environment.  With 
Naccio, the costs of enforcing a policy are divided into three phases.  First, the policy compiler is 
run to compile the policy.  This is done once per policy and platform pair, and not experienced by 
the end user.  While it is important that the time required to compile a policy is not excessive, 
performance is not a great concern since policy compilation is done infrequently.  Next, the 
application transformer prepares a particular application to enforce a policy.  This is done once 
for each application, policy and platform combination.  Users experience this time every time 
they install a new application to run with a policy.  If Naccio were integrated into a web browser, 
it would be experienced for each new applet or control encountered.  Hence, it is important that 
the application preparation time is low enough that it is not noticeable to the user.  Finally, there 
is the performance overhead when the transformed program is running.  This is necessary 
whenever the program is running with a policy enforced.  The overhead should be commensurate 
with the complexity of the policy.  It is unacceptable to have high overhead when enforcing a 
simple policy, but reasonable for the overhead required to enforce a complex and ubiquitous 
policy to be high.  The rest of this section introduces some policies for testing and discusses the 
performance properties of Naccio in each of these phases.     

8.5.1 Test Policies 

For the experiments, the following policies are used: 

Null is an empty policy that does no checking.  This is a baseline to measure the overhead 
required for no checking. 

NoBashingFiles is defined in Figure 5.  It disallows any destructive manipulation of existing 
files are reports file names in error message. 

NoBashingExceptTmp is the property combination from Section 3.2.3.  It weakens the 
NoBashingFiles property to allow modification of existing files in the /tmp/ and /u/evs/tmp/ 
directories. 

LimitWrite is defined in Figure 7.  It disallows modifying existing files and places a limit on the 
number of bytes that may be written.   
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NetLimit is a policy that uses the NetLimitSendRate property from Figure 14 to limit the network 
send rate by delaying transmissions.  For testing purposes, it sets the limit parameters high 
enough that it is never exceeded. 

SoftSendLimit uses the SoftSendLimit property from Figure 15 to limit the network send rate by 
splitting up and delaying transmissions using an altered platform interface.  For testing purposes, 
it sets the limit parameters high enough that it is never exceeded. 

DisallowAll issues a violation for every resource manipulation. 

DisallowAllExcept weakens DisallowAll with permissions that allow common system properties 
to be observed. 

MimicJDK mimics a JDK SecurityManager policy by calling the same check methods as the Java 
API does.  Naccio can be used to mimic any JDK policy using the MimicJDK policy simply by 
setting the appropriate SecurityManager when the policy is initialized.  For our experiments, we 
use a SecurityManager that performs no checking.  Although it reports no violations, it performs 
differently from the Null policy since Naccio cannot optimize out unnecessary wrappers and 
resource calls for the MimicJDK policy.  Naccio does not analyze the security manager (which can 
be installed dynamically), so there is no opportunity to optimize out unnecessary checking code. 

JavaApplet duplicates the policy HotJava 1.1 enforces on untrusted applets.  Rather than using 
MimicJDK, the JavaApplet policy implements the HotJava policy directly by moving the checking 
code from AppletSecurity security manager into the safety policy and making the few changes 
necessary to convert Java code into safety policy actions.  This produces a more portable policy, 
and allows Naccio to eliminate unnecessary work.  The JavaApplet policy disallows reading, 
writing and observing files except as permitted by access lists in the user’s configuration file.  It 
only allows network connections to the originating host.  Since we run our experiments are 
applications from the command line, we set the originating host using a command-line definition. 

Paranoid is a comprehensive policy that would be suitable for untrusted programs.  It includes 
the NoBashing and LimitBytesWritten properties, as well as properties that limit the number of 
new files that may be created, limit how many files may be observed, limit the total number of 
bytes that may be read, restrict the directories that may be read from, prohibit network use, and 
constrain the creation of windows and manipulation of threads. 

TarCustom is a policy designed specifically for the tar archive utility.  It instantiates several 
properties specifically targeted to the tar application, as well as some general properties, such as 
the NoNetwork property that disallows all network use.  It includes a property that allows one file 
with a name ending in .tar to be overwritten if the c flag is used to create an archive, but allows 
no other files to be overwritten.  TarCustom also limits the number of bytes written at all 
execution points to a function of the number of bytes read, and restricts files that may be read 
during the execution to those listed on the command line.  In addition to offering protection from 
malicious or buggy implementations, the TarCustom policy provides protection from user 
mistakes.  For example, executing tar cf * with TarCustom enforced on tar results in a policy 
violation.  With the original application it would replace the first file in the directory with an 
archive of all other files. 

8.5.2 Policy Compilation 

The time to compile a policy depends on the size and complexity of the policy, the size of the 
platform library that must be analyzed and rewritten, and the optimizations done by the policy 
compiler.  This section considers the costs associated with compiling each of the test policies 
using Naccio/JavaVM.  To produce these results, we set options to the policy compiler to turn on 
all checking optimizations and to produce a policy-enforcing library without renaming classes.  
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This is the normal case, except in deployments where multiple policies need to be supported 
simultaneously. 

The results for Naccio/Win32 are similar but less relevant.  Since Naccio/Win32 does not include 
a complete Win32 API platform interface, only the policies that deal exclusively with the file 
system could be compiled correctly.  The compilation times for Naccio/Win32 are lower that for 
Naccio/JavaVM, since it does not need to alter the library classes but only produces the resource 
implementations and headers and compiles the platform interface file. 

Table 1 reports the number of resource operations that need to be implemented to enforce the 
policy (that is, how many resource operations were determined to do meaningful checking); how 
many API routines are wrapped; the size of the policy-enforcing library (both the altered API 
classes and the resource implementations); and the time required to compile the policy.  As 
expected, the Null policy requires no resource operations since there is no checking required.  The 
NoBashing and NoBashingExceptTmp policies both require eleven resource operations – one for 
the RFile constructor to track file names according to the FileNames state block, and ten 
corresponding to the members of the RFileSystem.modifyExistingFile resource group.  The 
DisallowAll and DisallowAllExpect policies issue violations for every resource operation in the 
standard resources.  Both policies implement all 122 resource operations provided by the standard 
resource library.  For DisallowAllExcept, a larger policy-enforcing library is produced because of 
the violation codes needed to track permissions as well as the extra checking code in permission 
actions. 

The number of routines wrapped depends on the implemented resource operations, but one 
resource operation may require dozens of wrappers if there are many different API routines that 
manipulate the same resource.  The 21 wrappers required for the Null policy comprise the 
wrappers necessary to guaranteed low-level integrity of the checking.  These are the wrappers 
that protect dynamic class loading and reflection as described in Section 6.2.1.    Although these 
wrappers are not strictly necessary for the Null policy, since it places no constraints on program 

   

Policy 

Implemented 
resource 

operations 
Wrapped 
routines 

Policy-enforcing 
library size 

(KB) 

Rules in 
policy 

description 

Compilation 
time 

(seconds) 
Null 0 21 244 3 126 
NoBashing 11 65 263 3 149 
NoBashingExceptTmp 11 65 267 4 215 
LimitWrite 13 80 280 6 153 
NetLimit 10 40 283 4 146 
SoftSendLimit 10 40 258 4 146 
DisallowAll 122 182 362 26 188 
DisallowAllExcept 122 182 373 27 259 
MimicJDK 51 139 306 7 225 
JavaApplet 43 130 310 6 241 
Paranoid 59 140 383 10 234 
TarCustom 26 101 316 13 192 

 
Table 1.  Policy compilation costs. 

Time is the average wall-clock time over three runs.  All the results use Sun’s JDK 
1.1.7 with no JIT compiler on a 500 MHz Pentium III with 256MB running RedHat 
Linux 5.2.  



  

 111  

behavior, they are required for any policy that imposes behavioral constraints on executions.  
Naccio does not attempt to optimize out checking necessary for low-level code safety, since it is 
required for any policy that places any constraints on executions.  The other policies require these 
wrappers, and additional wrappers depending on the resource operations.  The DisallowAll policy 
requires 182 wrappers.  This is the highest number of wrappers possible with the standard 
resources, since all resource operations are meaningful.  The only way more wrappers would be 
needed, is if an extended safety policy altered the platform interface to define additional resource 
operations.   

The size of the policy-enforcing library depends on how much of the API needs to be modified 
and how many resource operations are required.  In the worst case, Naccio would need to copy 
the entire API.  For the normal case, however, only a subset of the API classes need modifications 
and Naccio need only generate those classes.  For all the test policies, the size needed represents 
less than 4% of the size of the Java API (about 9 megabytes for JDK 1.1.7).  If the policy 
compiler options were set to produce globally renamed library classes to support multiple 
simultaneous policies as described in Section 5.4.1, the policy compiler would need to rewrite all 
Java API classes to replace the names. 

The policy description file contains the transformation rules that encode what the application 
transformer must do to enforce the policy.  All policies have a rule that gives the location of the 
policy-enforcing library.  Additional rules are needed for each wrapped native method and for 
each initializer and terminator required.  For the Null policy, there are three rules: one gives the 
location of the policy-enforcing library, and two describe wrapped native methods (the 
java.lang.Class.forName and java.lang.reflect.Method.invoke methods that must be wrapped to 
protect integrity of the checking).  Other policies have additional rules for wrapped native 
methods, and calls to initializers and terminators.  An additional rule is needed for policies that 
have permissions (NoBashingExceptTmp and DisallowAllExcept) to indicate to the program 
transformer that violation codes must be passed to the initializers and terminators. 

The final column gives the time needed to compile each policy.  The prototype implementation is 
very inefficient, so it is expected that these times could be significantly improved without 
substantial effort.  The measurements are for Java code running completely interpreted, so a 
substantial improvement is possible simply by using a native Java compiler.  The policy 
compilation time increases with the number of implemented resource operations and number of 
routines that are wrapped.  The policies that contain permissions (NoBashingExceptTmp and 
DisallowAllExcept) require violation codes and involve additional processing time.  

On average, about half the total time is spent generating wrapper classes and most of the 
remainder is spent compiling the generated resource implementation.  The time spent generating 
wrappers depends on the number of wrappers required and the performance of the class 
transformation engine.  While the prototype implementation does a reasonably good job of only 
wrapping routines that need wrappers, the performance of the transformation engine could be 
significantly improved.  The time spent producing the resource implementation source files is 
minimal, but the time spent running a Java compiler to produce corresponding class files 
represents about half the policy compilation time.  One way to improve this would be to be more 
selective about which resources are implemented.  Naccio/JavaVM generates and compiles a 
resource implementation even if a resource has no implemented operations.  Another option 
would be to use a faster compiler, or to directly generate class files for resource implementations 
instead of producing and compiling source files.  Since the intermediate representation is 
available, Naccio/JavaVM should be able to produce class files directly much more quickly than 
the time required producing source files and running a Java compiler. 
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Policy compilation is slow, but not a serious concern.  It is clear that it could be several times 
faster in an industrial implementation.  Further, policy compilation is a relatively infrequent task.  
There are ways to avoid the entire compilation process when a policy is being developed.  For 
example, we can generate the unoptimized platform interface library once and only need to 
produce new resource implementations to compile the policy. 

8.5.3 Application Transformation 

The time required to transform an application is important, since users experience it every time a 
new program is run with a safety policy.  Table 2 shows results from using Naccio/JavaVM to 
transform some test applications with the LimitWrite and DisallowAllExcept test policies.  The test 
applications are: 

• jlex – a lexical analyzer generator available from 
www.cs.princeton.edu/~appel/modern/java/JLex/. 

• tar – an implementation of the tar file archiving utility from www.ice.com.   

• ftpmirror– an application that uses jFtpClient from www.1hostplus.com/java/ to mirror an 
ftp directory by retrieving a set of files from one site, storing them in local files, and 
putting them on another site. 

Most of the application transformation time is spent reading and writing class files.  The 
application transformer’s performance could easily be improved in an industrial implementation.  
In particular, we can reduce the overhead of application transformation to nearly zero by 
integrating it into the byte code verifier.  The actual work needed to transform an application is 
limited to some simple string replacements in the constant pool at the beginning of each class file 
and for some policies inserting a few calls to initializers and terminators into the main method. 

The constant pool changes are necessary to handle wrapped native methods.  The LimitWrite 
policy wraps the native java.io.FileOutputStream.write(int) method, so references to this method 
in the application class files need to be replaced with references to w_write.  Since ftpmirror and 
jlex do not call java.io.FileOutputStream.write(int), no changes to the constant pool are necessary. 

The instructions added are only for calling initializers and terminators.  Since the LimitWrite 
policy has no implemented intializer or terminator resource operations, no instructions are added 
to enforce it.  Both tar and ftpmirror have a main method that has one exit point; hence, the 
DisallowAllExcept needs to insert instructions to call each initializer and terminator once.  The jlex 
application has a return statement in the middle of its main method, so Naccio/JavaVM must 
insert additional calls to the terminators before this return. 
 

LimitWrite DisallowAllExcept 

Program 

Size of 
application 

classes 
(KB) 

Constant 
pool 

changes 
Instructions 

inserted 
Time 

(seconds) 

Constant 
pool 

changes 
Instructions 

inserted 
Time 

(seconds) 
jlex 86.7 0 0 1.62 37 26 1.77 
tar 23.4 2 0 1.03 41 21 1.44 
ftpmirror 7.1 0 0 0.77 39 21 1.08 

Table 2.  Program transformer results. 
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8.5.4 Execution 

Assuming the policy generation and application transformation costs are acceptable, the most 
important cost of enforcing a safety policy is the run-time overhead experienced when the 
program is run.  This section looks at the run-time performance of executions of programs 
transformed by Naccio/JavaVM to enforce the test policies.  To isolate the costs of the safety 
checking, we first consider some micro-benchmarks that are toy applications designed to do little 
real work.  Then, we report on results for more realistic benchmarks based on the test applications 
used in Section 8.5.3.   

Micro-benchmarks 

To obtain an accurate estimate of the overhead required for safety checking, we use two micro-
benchmarks: 

• setproperties runs a loop that calls System.setProperties (null) ten million times.  We 
use setProperties since it is the least expensive operation in the JDK that includes a 
security check.  

• exists creates a java.io.File object and runs a loop that calls java.io.File.exists () one 
million times on that object.  

These benchmarks are not intended to correspond to typical programs, but rather to provide a way 
to isolate the performance overhead associated with safety checking.  Hence, they do very little 
real work relative to the amount of safety checking compared to typical programs.   

To test the benchmarks we use policies that do not do any actual checking, but measure the 
overhead that would be associated with different ways of enforcing a safety policy.  These micro-
benchmarks are used to measure the overhead associated with introducing checking code, isolated 
from the cost of actually doing checking.  We run each benchmark imposing the following 
policies: 

• nochecking – This corresponds to Naccio enforcing a policy that does not constrain the 
relevant resource operation (either RSystem.setProperties or 
RFileSystem.observeExists).  Of the test policies, Null, NoBashing, 
NoBashingExceptTmp, LimitWrite, NetLimit, and SoftSendLimit are equivalent to 
nochecking for the micro-benchmarks, since they place no constraints on either 
RSystem.setAllProperties or RFileSystem.observeExists. 

• emptycheck – Naccio enforcing a policy that has resource operations for 
RSystem.setAllProperties and RFileSystem.observeExists that do no work.  Normally, 
Naccio would optimize out these resource operations and remove the related wrappers; 
for this benchmark, we configure Naccio to prevent these optimizations so that we can 
measure the overhead associated with the resource operation call. 

For both policies, the policy compiler removes code associated with calling the JDK security 
manager, as described in Section 5.4.1.   

There results are compared to setting the JDK security manager to either null or an empty 
manager: 

• JDK-null – Standard Java execution with the SecurityManager set to null.  This reflects 
the normal execution for a Java application. 
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• JDK-empty – Standard Java execution with a SecurityManager that does no checking.  
This reflects the execution of a Java applet with a SecurityManager installed but a policy 
that does no relevant checking. 

Table 3 shows the time spent in the micro-benchmark loop for each Naccio policy or JDK 
security manager setting.  The results give an indication of the relative costs of different ways of 
interposing checking code.  Both Naccio policies require less overhead than is required for either 
JDK security manager setting, since they do not need to obtain and test the security manager.  
The traditional JDK security approach requires obtaining that security manager (either by calling 
System.getSecurityManager or referencing of a local instance variable in java.lang.System 
methods), and a comparison to null and a branch.  The setproperties micro-benchmark runs 23% 
slower using the null SecurityManager because of this code.  The exists benchmark requires more 
work to obtains the security manager since it needs to call System.getSecurityManager while 
setproperties can reference an instance variable.  Nevertheless, the relative overhead is less since 
the java.io.File.exists method does substantially more work than java.lang.System.setProperties.   

The results for emptycheck and JDK-empty reveal that the overhead associated with calling 
security checks is lower with Naccio/JavaVM than using a JDK security manager.  This is a result 
of saving the overhead associated with retrieving and testing the security manager, and that the 
security manager calls being virtual method invocations and the Naccio resource calls being static 
method calls.   

Since the micro-benchmarks isolate same security-relevant code excerpts, they should not be used 
as a guide to overall program performance.  They do indicate, however, that there is some non-
negligible cost associated with JDK-style checking even when the SecurityManager is null.  
Further, Naccio’s approach of inserting checking code when necessary is more efficient than the 
fixed checks included in the Java API.  Although the relative costs will vary according to the 
virtual machine used, even an ideal compiler would not be able to avoid this overhead using 
standard JDK security mechanisms since the result of System.getSecurityManager is not 
guaranteed to be fixed over an execution. 

 
  

setproperties exists 

Policy Time (s) 

Time  
(ratio to 

nochecking) Time (s) 

Time  
(ratio to 

nochecking) 
nochecking 2.67 1.00 5.61 1.00 
JDK-null 3.30 1.23 6.06 1.08 
emptycheck 2.83 1.06 5.95 1.06 
JDK-empty 5.77 2.16 6.44 1.15 

Table 3.  Micro-benchmark performance. 

Time is the average time over ten trials measured on the system clock before and 
after the microbenchmark loop using Sun’s JDK 1.1.7 with no JIT compiler on a 
500 MHz Pentium III with 256MB RAM running RedHat Linux 5.2. 
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Program benchmarks 

The costs of enforcing a policy on an execution depend on both how much checking is done and 
how expensive it is relative to the other work done by the program.  Here we look at the relative 
costs of enforcing the test policies on different program benchmarks using the programs 
introduced in Section 8.5.3.  The benchmarks are: 

• jlex – running JLex on a 700-line sample file. 

• tar – running tar to create an archive of a directory tree containing 1736 files and 5.2 
megabytes of data. 

• ftpmirror – running ftpmirror to mirror ten 1-megabyte files from an ftp server on the 
local network to a different location on the same ftp server. 

Table 4 shows the number of calls to resource operations and number of violations reported for 
each benchmark execution.  The number of calls to resource operations gives an indication of 
how much checking is done for a given execution.  The actual work associated with each resource 
operation call varies depending on the policy, but the number of calls gives a good indication of 
how comprehensive the checking is.   

The Null policy requires no resource calls and issues no violations since it does no checking.  The 
NoBashing and NoBashingExceptTmp policies call resource operations to construct RFile objects 
for each file used in the execution.  For the tar benchmark, there are 1737 file objects 
corresponding to the 1736 files in the directory tree being archived and the single output file.  The 
additional resource call is the one call to RFileSystem.openOverwrite for the output file (which 
exists before the execution starts).  It does the checking associated with the modifyExistingFile 
group and issues a violation before the output file is overwritten.  The LimitWrite policy requires 
these calls and additional calls to preWrite and postWrite for the API call that writes to the output 
file.  The DisallowAll and DisallowAllExcept policies associate checking code with every resource 
operation in the standard resource library.  DisallowAll issues a violation for every operation 
except the initialize and terminate operations for RSystem; as a result a large number of violations 
are issued for the tar and ftpmirror benchmarks that do a lot of resource manipulations.  For the 
DisallowAllExcept policy, some of these violations are overridden by allow commands. 

 
jlex tar ftpmirror 

Policy resource 
calls violations 

resource 
calls violations 

resource 
calls violations 

Null 0 0 0 0 0 0 
NoBashing 3 1 1738 1 31 10 
NoBashingExceptTmp 3 1 1738 1 31 10 
LimitWrite 63 1 3826 947 13021 5211 
NetLimit 1 0 1 0 1093 0 
SoftSendLimit 1 0 1 0 1309 0 
DisallowAll 127 125 57099 57097 30819 30817 
DisallowAllExcept 127 110 57099 57097 30819 30817 
MimicJDK 9 0 13896 0 179 0 
JavaApplet 10 2 13896 0 166 0 
Paranoid 87 28 31971 30881 6223 12490 
TarCustom 88 1 25792 1 6221 12520 

Table 4.  Benchmark checking. 
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Figure 24.  Results for jlex benchmark. 

Value is execution time using the policy shown, averaged over 50 trials.  Times are divided by 
average execution time using JDK-null for that benchmark to show the relative overhead. 

For the performance measurements, we modify the policy compiler to remove the actual violation 
production.  Otherwise, the overhead is dominated by creating strings for violation messages.  
Since in normal situations execution would be terminated after the first violation, this is a 
reasonable thing to do for generating performance measurements for policies that would issue 
multiple violations.  For comparison, we use the JDK-null, JDK-empty and JDK-applet policies.  
The JDK-null and JDK-empty policies were introduced in the previous section – JDK-null sets the 
security manager to null, and JDK-empty sets the security manager to a SecurityManager that does 
no checking.  The JDK-applet policy sets the security manager to the AppletSecurity security 
manager (version 1.76) that is used by HotJava 1.1.  We modify AppletSecurity to enforce the 
same policy on applications as it does on applets (by changing the return value of one function) 
since all the test benchmarks are applications.  To avoid any security violations, we set the 
acl.read and acl.write properties to allow the necessary reading and writing, and set the 
originating host to allow the network connections made by the ftpmirror benchmark.  The 
JavaApplet policy enforces the same policy as JDK-applet using Naccio security mechanisms. 

Figures 24-26 show the execution results for each benchmark.  The checking overhead for jlex 
and ftpmirror is low compared to that for tar.  This results from the difference in the ratio of 
security-relevant operations to the amount of real work done by the different benchmarks.  For 
each benchmark, the overhead varies for each test policy depending on the amount of checking 
work done by the policy.  

For the jlex benchmark, the security overhead is virtually negligible.  At most, it is just over 2% 
for the JavaApplet policy.  The low overhead is not surprising since jlex executes few security-
related operations compared to the amount of processing it does.  The JavaApplet result compares 
unfavorably to the JDK-Applet result for the same policy, although the absolute differences are 
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very small.  Both policies require the same initialization code that reads a file that contains the 
access permission settings.  This explains the bulk of the overhead.  The rest is checking 
associated with the file opens.  JavaApplet has to do the additional work of maintaining abstract 
resource objects associated with the files, although second order effect like caching may be 
enough to explain the performance differences.   

The tar benchmark requires far more security overhead than jlex.  The checking overhead for the 
tar benchmark ranges up to 250% for the JDK using the JavaApplet security manager; for all 
other policies the overhead is below 70%.  The reason the JDK-applet performs so poorly is that it 
creates a new java.io.File object and calls getCanonicalPath for each security check call.  Since 
the SecurityManager.checkRead method takes a String parameter, it does not have access to the 
corresponding java.io.File object even if it has already been created.  In the checking code, 
checkRead needs to convert the String to a canonical path for checking.  This is done by calling, 
new java.io.File (file).getCanonicalPath ().  Both the file creation and the getConnonicalPath calls 
are expensive.  For each file that is added to the archive, tar calls java.io.File.isDirectory twice, 
java.io.File.length, java.io.File.lastModified, and the java.io.FileInputStream constructor that 
actually opens the file.  Each of these calls the SecurityManager.checkRead function and incurs 
the costs of creating a new file object, calling getCanonicalPath and scanning the access list to 
determine if reading if permitted.  As a result, the benchmark takes 3.5 times as long using the 
JDK-JavaApplet as without security checking.  Using Naccio to enforce the same policy is much 
less expensive, as is evident from the results for JavaApplet.  The overhead is 70%, about a 
quarter of the overhead required for JDK-JavaApplet.  Since the checking code uses an RFile 
object, the canonical path for the file is stored in an object field using a state block the first time it  
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Figure 25.  Results for tar execution benchmark. 

Value is execution time using the policy shown, averaged over 50 trials.  Times are divided by 
average execution time using JDK-null for that benchmark to show the relative overhead.  

3.5 
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Figure 26.  Results for ftpmirror execution benchmark. 

Value is execution time using the policy shown, averaged over 50 trials.  Times are divided by 
average execution time using JDK-null for that benchmark to show the relative overhead. 

is requested.  Instead of doing this operation five times per file archived as is necessary for the 
JDK-applet, the JavaApplet policy only does it once.  It is safe to store this result, since once a 
java.io.File object is created the pathname it refers to cannot change. 

The results for ftpmirror are shown in Figure 26.  As with jlex, the overheads are small since the 
security checking work is small relative to the actual work done by ftpmirror.  The execution time 
is dominated by the time for actually sending or receiving data over the network, so even a 
complex policy involving substantial checking such as SoftSendLimit can be enforced with less 
than 1% overhead.  For the tests, the limits for SoftSendLimit are set high enough that there is no 
need to delay network sends, otherwise the execution would slow down noticeably because of 
delays introduced in sending data over the network. 

Summary 

Naccio offers two performance advantages over the JDK security approach.  Since the Naccio 
policies are integrated into the application at transform time resource operations are called 
directly from the wrapped API routines.  By contrast, the JDK approach must call 
java.lang.System.getSecurityManager to obtain a security manager at run time, test if it is null, 
and make a virtual method call to a security manager check method.  The micro benchmarks 
indicate this overhead can be significant, but it is usually too small to be noticeable in a program 
that does useful work.  The other performance advantage is that whereas the JDK approach must 
always call a security manager check method regardless of the policy in effect, Naccio only wraps 
an API routine when that routine manipulates a resource in a way constrained by the policy in 
effect.  This difference is not clearly apparent from the benchmark results because the JDK 
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security manager check methods are so limited.  Security checking may only be associated with a 
small subset of resource manipulations, most of which are expensive enough that the overhead of 
a security manager check call is not significant.  If the JDK supported more extensive check 
methods, the advantages of eliminating unnecessary checks would be revealed in the benchmark 
results. 

The main performance disadvantage associated with Naccio is the need to maintain abstract 
resource objects.  For example, each java.io.FileOutputStream object used in a Java execution that 
is enforcing a policy that constrains file manipulations maintains an extra field that stores an 
RFile object.  In addition to being passed to resource methods, this object has to be constructed 
and garbage collected.  Further, adding an extra field to the structure may result in unpredictable 
second order effects because of displacement in the cache. 

For the most part, the execution performance results are satisfactory.  There is some overhead 
associated with Naccio enforcing a policy, but it is related to the complexity of the policy and 
comparable to the JDK overhead.  Although Naccio does not offer a significant performance 
advantage over the JDK mechanisms for most policies, it can enforce a large class of policies that 
cannot be enforced by the JDK mechanisms. 
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Chapter 9 
Future Work 

There are several possible directions for future work.  This chapter considers work directed at 
improving the reliability and performance of Naccio implementations; extending the architecture 
that would allow for a larger class of policies to be defined and enforced; deploying Naccio 
implementations in real environments; and exploiting Naccio’s definition and enforcement 
mechanisms in areas other than code safety. 

9.1 Improving Implementations 

While the prototype implementations are useful for conducting experiments and validating 
Naccio as a proof of concept, neither prototype implementation is good enough to be considered 
ready for industrial applications.  This section discusses some of the work that would be 
necessary to produce an industrial quality implementation.  Section 9.1.1 discusses some things 
that could be done to provide better assurance that a Naccio implementation is correct.  Section 
9.1.2 discusses what would be necessary to make Naccio/Win32 into a complete and secure 
implementation of the Naccio architecture.  Section 9.1.3 suggests ways to improve the 
performance of the policy compiler, program transformer and execution of the transformed 
program. 

9.1.1 Assurance 

For a code safety system to be trustworthy, there must be some assurance that it provides the 
expected security.  As discussed in Section 8.1, one of the security vulnerabilities of Naccio is its 
dependence on a large trusted computing base.  An industrial implementation should attempt to 
reduce the size of the trusted computing base and validate its most critical parts. 

The critical part that is most amenable to validation is the platform interface.  A malicious 
program could exploit an error in the platform to manipulate resources without appropriate 
checking.  One approach is to attempt to prove the platform interface is equivalent to some other 
model of the platform.  Verifying the platform interface against the system library requires a 
model of execution behavior that captures the resource manipulations described by the platform 
interface.  The resource descriptions provide one such model, but they are only useful for 
comparison if we can describe the system in terms of those resource descriptions.  This is in fact 
what the platform interface does.  Obviously, comparing the platform interface to itself is unlikely 
to produce useful results.  Instead, what is needed is a second platform interface that describes the 
platform at a lower level.   

For example, if we had the Naccio/Win32 platform interface that describes the Win32 API calls 
in terms of the standard resource descriptions, and a second platform interface that describes 
Windows kernel calls in terms of those same standard resource descriptions, we could attempt to 
prove for a given Win32 API implementation both platform interfaces will produce the equivalent 
sequence of resource operations.  This could be done using either the source code or object code 
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for the Win32 API.  While it is likely to be more difficult to construct a proof from the object 
code, using the source code means the compiler used to produce the Win32 API must also be 
trusted.  For most Win32 routines, statically determining what kernel calls are made can be done 
without unreasonable difficulty.  Then the sequence of resource calls made by those kernel calls 
could be derived from the platform interface.  The final step is to determine if those calls are 
equivalent to the calls made by the Win32 API platform interface for the same routine.  If the 
sequence is exactly the same, they are obviously equivalent.  It may be possible to argue that 
sequences that differ are also equivalent, although this will depend on assumptions about the 
kinds of checking code that may be attached to resource operations.  This would provide a useful 
test of the platform interface and likely uncover some bugs in both the Win32 API platform 
interface and the Windows kernel platform interface.   

A similar approach could be used the test the Java API platform interface.  If we are testing a Java 
implementation for Win32, we could use the Win32 API platform interface as the secondary 
platform interface and use it to produce the sequence of resource calls made by each native 
method implementation.  This information could be used along with the Java API 
implementation, to determine the resource operation sequence associated with every API routine.  
Comparing it to the resource calls made by the Java API platform interface would reveal 
inconsistencies between the two platform interfaces and the API implementation. 

Another approach would be to use an independent formal model that represents a program 
execution, and map both the platform interface and the API implementation onto that model.  
This would make most sense if such a model already existed.  A suitable model would be a 
formal specification of a platform API.  An advantage of this approach is that the producer of the 
model does the work of describing the platform API.  Having it produced independently also 
increases the likelihood that whatever errors it has are different from the errors in the platform 
interface, so inconsistencies are more likely to be detected.  Unfortunately, no suitable 
specification is believed to exist for either the Java API or Win32 API.  It if did exist, validation 
would require producing a mapping from the Naccio resource descriptions to the independent 
model, and validating their equivalence. 

9.1.2 Complete Implementations 

While the Naccio/JavaVM prototype is complete enough to be used for security in a hostile 
environment, the Naccio/Win32 prototype implementation does not completely implement the 
Naccio design.  In particular, is does not include a complete platform interface and does not 
perform the protective transformations necessary to ensure the checking code is not bypassed or 
tampered with.  Producing a complete platform interface would be a tedious and expensive 
process.  There may be some ways to automate the process using the Win32 source code, 
however it is unlikely that it could be done without carefully considering every Win32 API 
function. 

Implementing the protective transformations necessary to provide low-level code safety on 
Win32 is also a major task.  Although there are successful SFI implementations that operate on 
x86 assembly code [Small97, Erlingsson99], there is no known implementation that works on x86 
executables.  Producing one requires dealing with several additional complications not present 
when dealing with assembly code including code discovery and handling jumps to the middle of 
variable length instructions.  There is, however, reason for optimism that a suitable SFI 
implementation will be available in the near future.  There is at least one industrial project 
directed towards this goal [Feldman99].  Further, an industrial implementation of Naccio/Win32 
needs to ensure that multiple threads cannot be used to circumvent safety checking.  While we 



  

 123  

believe this can be done using SFI as described in Section 6.2.2, some extensions beyond 
standard SFI are necessary to provide the needed assurances.  

9.1.3 Performance Improvements 

The prototype implementations are designed with ease of implementation as a priority.  Although 
the performance results presented in Section 8.4 indicate that even the prototype performance is 
acceptable in most situations, an industrial implementation could make substantial performance 
improvements.  This section discusses some straightforward ways to improve the performance of 
the policy compiler, program transformer, and executing application. 

Policy compiler 

There are several aspects of the policy compiler that could be changed to improve performance.  
The prototype policy compiler makes several complete passes over the parse tree.  These passes 
could be combined into a single pass to improve performance at the expense of increased 
complexity.  Optimizations are done using inefficient relaxation algorithms that reanalyze the 
entire policy definition each iteration.  These could be substantially improved to be more 
selective about what must be reanalyzed.  The relaxation could keep track of dependency 
information so that only the relevant parts of the policy definition need to be reanalyzed.  Another 
way to dramatically improve the policy compiler would be to compile the Java code to a native 
executable instead of running it as interpreted JavaVM code. 

Another way to improve the performance of the policy compiler is to provide better options for 
trading off compilation time and execution performance.  The prototype policy compiler focuses 
on producing a policy-enforcing library with good execution performance, but when a policy is 
being developed and the policy compiler is run frequently, it is more important to reduce the 
compilation time.  We could do this by reusing an unoptimized version of the wrapped API 
classes instead of regenerating the platform interface wrappers each time the policy compiler is 
run.  These wrapped classes would assume every resource operation does useful work.  We could 
compile a policy by analyzing only the resource descriptions and resource use policy, and 
generating resource implementations including empty routines for any resource operation that has 
no code.  This policy would be inefficient to enforce because of the overhead of calling the empty 
resource operations, but would be quick to produce. 

Program transformer 

Although the prototype program transformer is fast enough to be acceptable for many 
environments, an industrial implementation could be significantly faster.  Nearly all the cost of 
the program transformer is spent in reading, parsing and writing the class files.  The actual 
modifications are limited to simple string replacements in the constant pool, except for the 
application main or applet start and stop methods in the case of initializers and terminators.  The 
prototype implementation uses the JOIE toolkit, which reads and parses the entire class file.  For 
most classes, there is in fact no need to parse the entire class file since all the modifications are in 
the constant pool.  Since the format of the constant pool is well defined and it is always found at 
the beginning of the class file, a performance critical program transformer could skip reading and 
parsing the remainder of the class file entirely, and simply copy it as blocks. 

The other thing that could be done if performance of the program transformer is extremely critical 
would be to integrate it into the byte code verifier.  Since byte code verification is already 
required, replacing names in the constant pool during the verification would incur negligible 
overhead. 
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Program execution 

Performance of the resulting execution is the most important consideration.  The prototype 
implementation is limited to doing simple optimizations that eliminate unnecessary wrappers and 
resource operations based on a dependency analysis.  An industrial implementation could 
implement more extensive optimizations to substantially improve run-time performance.  Section 
5.5 describes optimizations that can be done by integrating the resource implementations and 
platform interface wrappers.  These could substantially reduce the performance costs associated 
with checking.  While doing these optimizations automatically would involve some complexity, 
they could be done without any new compilation techniques.  Ambitious optimizations do 
increases the complexity of the policy compiler, which is part of the trusted computing base.  
There is a risk that these optimizations would be implemented incorrectly and lead to new 
vulnerabilities. 

9.2 Extensions 

Here we consider some extensions to the Naccio policy definition and enforcement mechanisms.  
Some of the extensions make it easier to define policies that can be defined with the current 
mechanisms.  Other extensions support classes of policies that cannot be defined or enforced with 
the current design. 

Persistence 

Naccio does not provide any mechanisms to support policies that depend on more than one 
execution.  It would be useful to define policies that can be applied to multiple executions of the 
same program or executions of different programs.  Naccio provides no mechanisms for 
persistent policies, although policy authors could write checking code that manually stores and 
loads persistent data in a secure database.  It would be more satisfactory if mechanisms that 
support persistence were integrated into the Naccio design.  One approach to this that could be 
adopted by Naccio is used by Deeds [Edjlali98]. 

Deeds uses history-based access control to constrain the behavior of Java executions.  Policies are 
defined using handlers attached to security events.  Security events are limited to check methods 
defined by the SecurityManager.  An access-control policy is defined by defining a Java class that 
provides methods corresponding to event handlers and uses instance variables to maintaining an 
event history.  History is persistent across multiple executions of the same program.  Persistence 
is achieved by using a customized class loader that requires that the entire program be loaded 
statically (it scans for and rejects programs that use dynamic class loading), and creates a secure 
one-way hash of the program that is stored in the class loader.  This history is saved in persistent 
storage and loaded using the hash value when execution starts.  While history-based policies 
prevent certain attacks that are not detectable on a single execution, it remains to be seen if they 
are generally useful.  Edjlali et al. suggest extending Deeds by using code transformation to 
support user-defined security events [Edjlali98], and introducing persistence mechanisms in 
Naccio by using the approach used in Deeds should be fairly straightforward. 

Multi-level platform interfaces 

It may be useful to combine more than one platform interface to increase the scope or precision of 
policies that can be defined.  It may be useful to use a partial lower-level platform interface to 
define resource operations that correspond to manipulations that are not visible at the higher-
level.  It may also be useful to introduce a partial higher-level platform interface to enable 
policies that refer to higher-level abstractions.  In both cases, there are issues to resolve about 
how checking is done in the presence of multiple platform interfaces.  Here, we consider what 
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might be done to use a lower-level platform interface to constrain resources such as memory use 
and the CPU, and how a higher-level platform interface could be supported to allow policies to 
depend on abstractions that are not visible to the regular platform interface. 

Certain resources are not visible at the level of the platform interface.  For example, the 
Naccio/JavaVM platform interface cannot see memory allocation and CPU usage.  To extend 
Naccio to support policies defined in terms of resources not visible to the platform interface, 
mechanisms for introducing either a lower-level platform interface or special transformations are 
necessary.  For Java, this could mean supporting a main platform interface at the level of the Java 
API and a secondary platform interface at the level of individual byte code instructions.  A 
resource corresponding to memory use could be defined in terms of resource operations that are 
called when an allocation instruction is used.  The policy compiler would insert these calls into 
the policy-enforcing library and generate a rule that instructs the program transformer to insert 
them into the application code.   

Defining a resource corresponding to CPU use it more difficult.  One approach would be to call a 
processInstruction resource operation before every instruction.  This would allow fine-grain 
constraints on CPU usage, but would make the modified program run several times slower than 
the original.  Given that the goal of a CPU resource is to support policies that limit CPU 
consumption, requiring so much additional CPU consumption to enforce it is probably 
unacceptable.  We can provide less fine-grain usage monitoring by batching the checking.  It is 
easy to statically determine the number of instructions that will execute in a basic block (that is, a 
code fragment that contains no branches except possibly its last instruction).  The individual 
processInstruction resource operation calls could be replaced by a single resource operation call 
at the beginning of each basic block that accounts for all the instructions in the basic block.  This 
supports less precise policies, since CPU consumption for an entire basic block is accounted for 
before it starts.  An alternative would be to modify the execution environment to call a resource 
operation for every quantity of CPU use by a particular thread.  Information about thread resource 
consumption should be available to the virtual machine, and it could call resource operations 
every time a relevant threshold is crossed.  It would require modifying a virtual machine, but 
avoids much of the performance overhead and low-level modification necessary to do this 
checking directly.  JRes [Czajkowsik98] illustrates one way of doing this (see Section 7.3.3).   

Support for multiple platform interfaces would also be useful in supporting higher-level platform 
interfaces.  For example, suppose we have a platform interface for MFC in addition to the Win32 
API platform interface.  It would be useful if a policy could be written that would enforce the 
necessary constraints on all Win32 programs regardless of whether or not they use MFC, but 
could do more precise checking for programs that use MFC to allow some behavior that would 
trigger a violation if all the checking were done at the Win32 API level.  One way to produce 
such a system would be to share resources and policies, but add additional resource operations 
that are called from the MFC platform interface.  These resource operations would encode 
information that is not available to the standard resource operations, such as that a file for 
opening was selected by the user using a standard dialog box.  They give the policy author a 
chance to express a policy in terms of those resource operations.  Another way would be to have 
separate policies associated with each platform interface, each described in terms of their own 
(possible different) resource sets.  The policies could be combined so that the policy associated 
with the higher-level platform interface would override the policy associated with the lower-level 
platform interface.  This could be done using a violation code that has a wider scope that the one 
currently used to support permissions. 
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Policy interactions 

Naccio doesn’t support sharing objects amongst code enforcing different policies.  In 
Naccio/JavaVM, different safety policies use different classes for the Java API objects.  For 
example, if a class enforcing one policy passes a FileOutputStream object from a wrapped class 
to a class enforcing a different policy, a type error results.  Although the types were identical in 
the original classes, the program transformer replaced the names of wrapped classes in the 
transformed applications with different policy prefixes.  Hence, there is a type mismatch when the 
wrapped object is passed.  This would be detected as an error by the byte code verifier running on 
the second transformed class when it is loaded.  The situation for Naccio/Win32 is different, but 
no better.  If an application transformed with one policy passes a pointer to a routine in a DLL 
that was transformed to enforce a different policy, each will use a different version of the system 
DLLs.  The called DLL will use its policy-enforcing system DLLs, but will not have information 
about the passed pointer that is stored in the application’s policy-enforcing system DLLs.  For 
example, consider the situation where an application executable opens a file and passes the 
associated file descriptor to a DLL that enforces a different policy.  When the DLL calls the write 
routine in its policy-enforcing system DLL, the mapping between the file descriptor and the 
actual file is not available and neither policy is enforced correctly.  

The current Naccio design does not readily support modifications that would support combining 
code enforcing different policies.  There are three sensible options for what it means to pass 
objects between different security domains.  One option would be for the policy enforced on the 
original application to be enforced on the objects it passes to other security domains.  To 
implement these semantics with Naccio/JavaVM, it would be necessary to create copies of 
routines that accept objects enforcing different policies that have type names altered to conform 
to the policy of the caller.  This transformation would need to be done when the second class is 
loaded.  The other options are to enforce the intersection of both policies or to only enforce the 
second policy.  Neither of these options can be easily implemented using the current Naccio 
design.  Naccio assumes that policies are known statically when a program is transformed.  This 
model cannot be readily extended to support introducing new policies during an execution. 

9.3 Deployment 

This thesis does not address issues involved in deploying a Naccio implementation in a real 
environment.  The prototype implementations are run from the command line, and it is up to the 
user to manually select the policy to enforce.  Several issues must be addressed before Naccio can 
be usefully deployed as part of a web browser or operating system. 

Dealing with violations 

The prototype implementation deals with violations in one of three ways depending on a 
command line flag used in program transformation: 

1. It pops up a dialog box that reports the violation and offers the user the choice of 
terminating that execution or continuing normally. 

2. It prints a violation message to the standard error stream and terminates execution. 

3. It prints a violation message to the standard error stream and continues execution. 

The first option is closest to being satisfactory for a typical interactive deployment environment, 
while the second option is useful for a non-interactive program (such as a server daemon) and the 
third option is useful for testing policies. 
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For an industrial deployment, it would be useful to also offer facilities to dynamically alter the 
policy to avoid future violations.  For example, when the first violation of a property that limits 
the number of bytes written to the file system is reported, it would be useful to allow the user to 
select to suppress future violations issues by this property, or to change the limit that must be 
exceeded before the next violation is reported.  Otherwise, each write will lead to another 
violation and require the user to decide to allow the execution to continue.  It is possible to write a 
Naccio policy that only reports the first write violation by keeping a stateblock that tracks how 
many violations have been reported, however, it would be useful if there were mechanisms that 
supported this more generally and allowed users to dynamically choose to suppress categories of 
violations.  Adding this support to Naccio is simply a matter of modifying the policyViolation 
library method.  It can maintain a data structure for each property for which a violation is 
reported, and record user selections on whether or not future violations of the property should be 
suppressed.   

Another useful option would allow the user to choose to continue the execution, but skip the 
resource manipulation that produced the violation.  This existing violation code mechanism could 
be extended to encode an option to skip the system call.  The policy compiler would generate 
additional code in platform interface wrappers that checks the violation code, and skips the 
system call if the user selected this option.  For system calls that return values, the wrapper would 
need to generate a suitable replacement value to return.  Often, a null object is the best choice; 
however, it may be useful to extend the platform interface language so alternate return values can 
be selected. 

Dynamically changing policies is more difficult.  Since it is not possible to swap the API classes 
during an execution, support for swapping policies at run-time is complicated and likely to be 
error-prone.  Instead, supporting policies that can be parameterized seems more reasonable.  All 
that is needed is some way to dynamically pass parameter values to the policies.  We could do 
this using a library class that keeps a database of parameters values and provides routines policies 
can use to access those values.  Then a policy author would write a policy to explicitly retrieve 
parameter values and use them in checking accordingly.   

Global resource scope 

The current Naccio implementations associate global resources with an entire execution.  In the 
case of Naccio/JavaVM, this means a single global resource applies to all applets running in the 
virtual machine.  As a result, a policy like LimitWrite places a limit on the total number of bytes 
written by all applets not on the bytes written by a single applet or collection of applets.  In a web 
browser deployment, it may be more appropriate to have separate global resources apply to the 
applets loaded from different web sites.   

We could do this by changing the policy compiler to produce implementations of global resources 
that are like regular resource objects.  Instead of using static methods and class variables, they 
would use regular methods and instance variables.  The generated platform interface wrappers 
would need to replace calls to global resource methods with calls to a static method that obtains 
the appropriate resource object for this thread and then invokes a method on this object.  The 
container would need to keep a mapping between threads and global resource objects to return the 
correct resource object.  This would require some additional execution overhead, but would not 
require substantial changes to a Naccio implementation. 

Splitting up global resource accounting, however, would make a deployment susceptible to new 
kinds of attacks where an attacker has control over applets that the browser assigned to different 
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global resource scopes.  There is no easy way to determine which applets can be attributed to the 
same producer, so assigning different global resources to different applets is risky. 

Policy manager 

Naccio does not address the issue of deciding what policy should be used on what code.  
Requiring a user to manually select a policy for each applet encountered or program installed 
would be too intrusive for most users.  Instead, it should be possible to configure a policy 
manager to automatically select the appropriate policy based on the source of the program.  A 
straightforward policy manager could be created for Naccio similar to the policy manager in 
Internet Explorer 5.0.  It selects a policy based on the source of the program.  Programs from 
remote sites are classified according to their URL. 

Policy development environment 

The prototypes do not include any tools to help policy authors write, understand and test policies.  
If policy authoring is meant to be accessible to non-experts, a better environment for developing 
policies is essential.  A policy development tool that is based on selecting parameters from 
standard policies, but can be extended with user-defined policy definitions, would provide a 
useful introduction to policy authoring. 

Tools to support policy testing are an area for future research.  It would be useful to have tools 
that can automatically analyze policies and answer questions about what one policy allows that a 
different policy does not, or whether a policy always disallows a certain sequence of system calls.  
So far, the only way to test policies is to develop test cases that represent things the policy is 
supposed to either allow or disallow.  With suitable test cases, this is likely to detect simple errors 
in the policy, but it is not sufficient assurance to know the policy means what its author intends. 

9.4 Other Applications 

Although the focus of this thesis is on code safety, there are a number of other possible 
applications of Naccio.  The described mechanisms provide a way to alter or monitor the behavior 
of executions that could be useful in addressing many other problems.  We discuss a few 
possibilities here, but this is by no means a comprehensive list. 

Debugging 

Without any modifications, Naccio can be used to enforce policies that are useful in debugging 
programs.  For example, a policy could be used to confirm the number of bytes sent over the 
network is a function on the number of bytes read from files, or that every file that is opened is 
closed before execution terminates, or that all files created in temporary directories are deleted.  
The policies used for debugging programs can be more precise than the policies enforced on 
arbitrary programs since the programmer should know a great deal about the expected behavior of 
the program.  In addition, a policy violation is not necessarily a problem but can direct the 
programmer to examine assumptions about the behavior of the code more carefully. 

Naccio becomes more useful for debugging when platform interfaces are written for application-
level objects.  Then, programmers could express policies in terms of the expected behavior of 
application routines.  They could test return values against expectations that depend on a history 
of previous calls and other state.  This is similar to the common practice of inserting assertions in 
code, but expressing those assertions as policies and using Naccio to test them has significant 
advantages.  By separating assertions from the code and expressing them at a more abstract level, 
Naccio makes it possible for the checking policy and code to be written separately, and allows a 
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checking policy to be written at a high level where it can more easily be compared to the program 
requirements.  In addition, it allows debugging information to be portable across platforms. 

Auditing 

Rather than issue violations, we can write a Naccio policy that records program activity in a log 
file.  The only difference, is instead of violations producing an error message or dialog box, they 
would record information in a log file.  This log can be used for program analysis.  If the logging 
were done at the system level, it would be useful for intrusion detection.  The monitoring could 
also be done in real-time, and interface with a real-time performance monitoring or intrusion 
detection system.  Because of the expressiveness of Naccio’s policy definition mechanisms, a 
policy can limit monitoring to a precise class of events or event sequences.   

Behavior modification 

Section 4.2.4 introduced a policy that modifies the behavior of a program to delay and split 
network sends to conform to a specified bandwidth constraint.  By altering platform interfaces, it 
is possible to change program behavior in ways that are not necessarily security related.  For 
example, we could write a policy that saves backup versions of all files before they are 
overwritten.  We could do this by attaching checking code to the RFileSystem.modifyExistingFile 
group that copies the file in question to a backup directory. 

Behavior modification leads to a number of legal and ethical issues.  While most software 
licenses strictly prohibit any modification (including in some cases the binary relocation or 
caching that occurs during normal executions), there are certain kinds of modification that should 
be permitted and others that should be prevented.  Modifications that introduce security checking 
should be allowed.  Modifying a program to alter author and copyright information should be 
prevented.  Preventing certain kinds of program modification could be done using a trusted 
execution environment that only allows the unaltered, cryptographically signed program to run.  
When program transformation tools become common, there will be a need for mechanisms to 
limit the transformations that can be done. 
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Defeat against Celtic was a crushing blow to Herrera's “invincible” 

Inter…It was the beginning of the end for catenaccio.  Celtic had proved 
that the Inter defense could be breached.  But Herrera refused to accept 

that tactics were responsible, instead he blamed sweeper Picchi for Inter's 
crash.  Picchi was soon sold to a lower league club Varese, where he 

claimed: “When things go right it is always Herrera's brilliant planning.  
When things go wrong, it is always the players who are to blame.” 

 
Andy Gray, Flat Back Four: The Tactical Game.   

Macmillian Publishers Ltd, 1988.   
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Chapter 10 
Summary and Conclusion 

This thesis demonstrates that it is possible to define a large class of safety policies in a general 
and platform-independent way, and to enforce those policies on executions without an 
unreasonable performance penalty. 

10.1 Summary 

The contributions of this thesis are in three areas – mechanisms for defining safety policies, an 
architecture for enforcing those policies, and prototype implementations of that architecture. 

Policy definition mechanisms 

Naccio defines a safety policy by associating checking code with abstract resource manipulations.  
The policy definition mechanisms are general enough to describe a large class of safety policies 
that includes many useful policies.  A subset of definable policies is known as standard safety 
policies.  These policies can be defined using a standard resource library, and are portable across 
Naccio implementations for different platforms.  Altering the platform interface allows additional 
policies to be defined.  Extended policies can be used to constrain any manipulation visible at the 
level of the platform interface.   

Naccio’s policy definition mechanisms have considerable advantages over other alternatives.  By 
describing policies in terms of abstract resource manipulations, they isolate policy authors from 
platform details.  It is not necessary to know a particular platform API to produce or understand a 
standard safety policy.  Once a standard safety policy has been developed, it can be reused on all 
platforms for which Naccio implementations are available. 

Policy enforcement architecture 

The architecture for enforcing policies is based on transforming programs to insert checking code.  
The enforcement architecture depends on replacing resource-manipulating calls with wrappers 
that perform checking around those calls.  Low-level code safety mechanisms prevent the 
program code from tampering with or circumventing the checking code. 

The enforcement architecture has two advantages over common alternatives.  Because it modifies 
platform library object code directly, it does not depend on availability of source code and is only 
loosely tied to a particular platform implementation.  Second, since it statically analyzes the 
policy and only introduces wrappers that are necessary for checking, the overhead required to 
enforce a policy is directly related to the amount of checking it does.  If a policy does not 
constrain a particular resource manipulation, there is no checking overhead associated with that 
resource manipulation.  The main drawback to the enforcement architecture is that it depends on a 
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large trusted computing base.  This increases the likelihood that there are vulnerabilities that can 
be exploited and makes assurance difficult. 

Implementations 

Naccio implementations have been developed that enforce policies on JavaVM classes and 
Win32 executables.  Naccio/JavaVM is a complete implementation, while Naccio/Win32 does 
not provide a complete platform interface or implement the protective transformations necessary 
for low-level code safety.  While the prototype implementations are not ready for industrial 
deployment, they provide a proof-of-concept for the Naccio architecture.  The performance 
results indicate that it is possible to expand the class of policies that can be enforced without 
sacrificing performance.   

10.2 Conclusion 
Naccio represents one point in the design space for code safety systems.  It is well suited to 
typical Internet users at small and medium size companies today and for the foreseeable future.  It 
supports enforcement of a large class of policies with low preparation costs and run-time 
overhead that is minimal for simple policies and scales with the complexity of the policy.  By 
defining policies in terms of abstract resource manipulations, it makes it possible for moderately 
sophisticated users to define new safety policies.  The current design is not well suited to high-
security environments because its large trusted computing base makes assurance difficult.   

By providing better ways to define safety policies along with efficient and convenient 
mechanisms for enforcing policies, we hope the situations in which code safety policies are used 
will be expanded.  Currently, code safety is usually considered only for untrusted mobile code.  A 
satisfactory code safety system would be useful in protecting users from bugs in applications 
from trustworthy sources as well.  As the precision of safety policies increases and the costs of 
enforcement are reduced, policies can be enforced in more situations with more pervasive 
benefits. 
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