
.NET Security:  Lessons Learned and Missed from Java 
Nathanael Paul David Evans 

University of Virginia 
Department of Computer Science 

[nate, evans]@cs.virginia.edu 
 

 

Abstract 
Many systems execute untrusted programs in 

virtual machines (VMs) to limit their access to system 
resources.  Sun introduced the Java VM in 1995, 
primarily intended as a lightweight platform for 
execution of untrusted code inside web pages.  More 
recently, Microsoft developed the .NET platform with 
similar goals.  Both platforms share many design and 
implementation properties, but there are key 
differences between Java and .NET that have an 
impact on their security.  This paper examines how 
.NET’s design avoids vulnerabilities and limitations 
discovered in Java and discusses lessons learned (and 
missed) from Java’s experience with security. 
 
 
1. Introduction 

Java and .NET are both platforms for executing 
untrusted programs with security restrictions.  Each 
platform uses a virtual machine to enforce policies on 
executing programs as depicted in Figure 1. 

The term Java is used to refer to both a high-level 
programming language and a platform.  We use Java to 
refer to the platform consisting of everything used to 
execute the Java class containing Java virtual machine 
language code (JVML, also known as “Java 
bytecodes”) in the left part of Figure 1 except the 
operating system and the protected resource.  A Java 
archive file (JAR) encapsulates Java classes and may 
also contain other resources such as a digital signature 
or pictures.  Java was designed primarily to provide a 
trusted environment for executing small programs 
embedded in web pages known as applets. 

The .NET platform includes the .NET part of the 
figure involved in executing an assembly except for the 
operating system and the protected resource.  A .NET 
assembly, analogous to Java’s JAR file, is an 
executable or dynamically linked library containing 
Microsoft intermediate language instructions (MSIL), 
some metadata about the assembly, and some optional 
resources.  .NET differentiates between managed (safe) 

and unmanaged (unsafe) code.  Since a security policy 
cannot be enforced on unmanaged code, we only 
consider managed code. 

Both Java and .NET have large trusted computing 
bases (TCBs) allowing many possible points of failure.  
The TCB includes everything in Figure 1 except for the 
external untrusted program (the Java class or .NET 
assembly).  In Java, a flaw in the bytecode verifier, 
class loader, JVM or underlying operating system can 
be exploited to violate security properties.  With .NET, 
a flaw in the policy manager, class loader, JIT verifier, 
CLR, or underlying operating system can be exploited 
to violate security properties.  The size of the TCB 
makes it infeasible to make formal claims about the 
overall security of either platform; instead, we can 
analyze individual components using the assumption 
that other components (in particular, the underlying 
operating system) behave correctly. 

The JVML or MSIL code may be generated by a 
compiler from source code written in a high-level 
program such as Java or C#, but these files can be 
created in other ways.  Although high-level 
programming languages may provide certain security 
properties, there is no way to ensure that delivered 
JVML or MSIL code was generated from source code 
in a particular language with a trusted compiler.  
Hence, the only security provided against untrusted 
code is what the platform provides.  This paper does 
not consider the relative merits of the Java and C# 

Java VM

Operating System

Protected Resource

ClassLoader
Security 

exception

Security 
exception

Verify 
Exception

JAR Assembly

PolicyManager

Verifier

ClassLoader

JIT VerifierVerify 
Exception

CLR

Operating System

Protected Resource

Security 
exception

Java .NET

Figure 1.  Architecture Overview 

20th Annual Computer Security 
Applications Conference (ACSAC). 
December 6-10, 2004, Tucson, Arizona.



 

 2

programming languages but only compares the security 
properties of the two execution platforms. 

Since the Java platform was introduced in 1995, 
Java’s security model has evolved to incorporate 
additional security mechanisms including code signing 
and increasingly flexible policies.  When specific 
implementation issues are considered, we address the 
current standard implementations of each platform: the 
Java 2 Software Development Kit 1.4.2 and the .NET 
Framework 1.1. 

Previous work, including Pilipchuk’s article [24], 
have compared security mechanisms and features in 
Java and .NET from an operational perspective.  In this 
paper, we consider how they differ from the 
perspective of what has and has not been learned from 
experience with Java security vulnerabilities.  Table 1 
summarizes security vulnerabilities reported in Java 
over the past 8 years.  Hopwood [10], Princeton’s 
Secure Internet Programming team [4, 35, 36] and 
McGraw and Felten [18] identified several 
vulnerabilities in early Java implementations.     

The general lessons to be learned from experience 
with Java are not new.  All of them go back at least to 
Saltzer and Schroeder’s classic paper [25], and none 
should be surprising to security analysts.  In particular: 
economy of mechanism, least privilege, and fail-safe 
defaults are design principles that enhance security, but 
can often conflict with other goals including usability 
and complexity.  The concrete experience with Java 
shows how failure to apply these well known 
principles has lead to vulnerabilities in a specific, 
security-critical system.  The primary contributions of 

this paper are: 1) an illustration of how the history of 
Java security vulnerabilities reveal failures to follow 
established security principles; 2) an identification of 
how .NET’s security mechanisms have addressed the 
vulnerabilities and limitations of Java; and 3) a 
discussion on how differences in the design of .NET 
and Java are likely to impact their security properties. 

Both Java and .NET use a combination of static 
analysis and dynamic checking to enforce policies on 
executing programs.  The bytecode verifier in Java and 
the just-in-time (JIT) verifier in .NET statically verify 
some low-level code properties necessary (but not 
sufficient) for type safety, memory safety and control 
flow safety before allowing programs to execute.   
Other properties must be checked dynamically to 
ensure low-level code safety.  Section 2 describes how 
Java and .NET guarantee low-level code safety 
properties.  Five of the 42 Java platform security 
vulnerabilities in the Common Vulnerabilities and 
Exposures (CVE) database [3], and four of the earlier 
vulnerabilities [30], are directly attributed to flaws in 
implementations of the Java bytecode verifier.  

Programs that pass the verifier are executed in the 
Java virtual machine (JVM) or .NET Common 
Language Runtime (CLR).  Both virtual machines use 
a reference monitor to mediate access to protected 
system resources.  Section 3 describes how policies are 
defined in Java and .NET.  Section 4 details how a 
particular policy is associated with a resource action.  
Section 5 describes how the JVM and CLR enforce 
policies on executions. 

Table 1.  Java Security Vulnerabilities. 
Vulnerabilities reported in Java platform in CVE database [3] and Sun’s web site [30, 33].   

Instances of the form CVE-YEAR-NUMB are CVE entries; CAN-YEAR-NUMB are CVE candidates. 

Category Count Instances 

API bugs 10 
CVE-2000-0676, CVE-2000-0711, CAN-2000-0563, CVE-2002-0865, 
CVE-2002-0866, CVE-2002-1260,  CAN-2002-1293, CAN-2002-1290, 
CAN-2002-1288, CAN-2002-0979 

Verification 9 http://java.sun.com/sfaq/chronology.html (4), CVE-1999-0141, 
CVE-1999-0440, CVE-2000-0327, CVE-2002-0076, CAN-2003-0111 

Class loading 9 http://java.sun.com/sfaq/chronology.html (5), CAN-2000-1117,  
CVE-2002-1287, CAN-2003-0896, CAN-2004-0723 

Other or unknown 5 CVE-1999-0766, CVE-2001-1008, CVE-2002-1257, 
CAN-2002-1286, CVE-2002-1325 

Html tags 4 CAN-2001-0068, CAN-2002-1258, CAN-2002-1295, CAN-2002-1291
Missing policy checks 2 CVE-1999-0142, CVE-1999-1262 

Configuration 2 CVE-1999-0162, CAN-2002-0058 

DoS attacks (crash) 4 CVE-2002-0867, CAN-2002-1289, CAN-2003-0525, CAN-2004-0651 

DoS attacks (consumption) 2 CAN-2002-1292, http://sunsolve.sun.com/pub-cgi/search.pl (alert 57555) 



 

 3

2. Low-Level Code Safety 

Low-level code safety comprises the properties of 
code that make it type, memory, and control-flow safe.  
Without these properties, applications could 
circumvent nearly all high-level security mechanisms 
[37].  The primary lesson learned from Java’s experi-
ence with low-level code safety goes back to one of the 
earliest security principles: keep things simple. 

Type safety ensures that objects of a given type 
will be used in a way that is appropriate for that type.  
In particular, type safety prevents a non-pointer from 
being dereferenced to access memory.  Without type 
safety, a program could construct an integer value that 
corresponds to a target address, and then use it as a 
pointer to reference an arbitrary location in memory.  
Memory safety ensures that a program cannot access 
memory outside of properly allocated objects.  Buffer 
overflow attacks violate memory safety by overwriting 
other data by writing beyond the allocated storage [1].  
Control safety ensures that all jumps are to valid 
addresses.  Without control safety, a program could 
jump directly to system code fragments or injected 
code, thereby bypassing security checks. 

Java and .NET achieve low-level code safety 
through static verification and run-time checks.  In 
typical Java implementations, static verification is done 
by the Java bytecode verifier at load time.  An entire 
class is verified before it is executed in the virtual 
machine.  In .NET, parts of the verification are done as 
part of the JIT compilation.  All code must pass the 
verifier, however, before it is permitted to execute. 

2.1 Verification 

The first step in the verification process is the 
validation of the file format of the code [5, 17].  The 
file is checked according to the Java class file or .NET 
PE/COFF file specifications [17, 20].  Following the 
verification of the file format, the verifier also checks 
some static rules to ensure that the objects, methods, 
and classes are well formed. 

Next, the verifier simulates each instruction along 
each potential execution path to check for type and 
other violations.  Since JVML and MSIL are stack-
based languages, executions are simulated by modeling 
the state of the stack while tracking information about 
each instruction to help ensure low-level code safety.  
Verification fails if a type violation could occur, or a 
stack operation could cause underflow or overflow.  In 
addition, control flow safety is ensured by checking 
that all branch instructions target valid locations. 

The general problem of verifying type safety is 
undecidable [23], so certain assumptions must be made 

to make verification tractable.  Both verifiers are 
conservative: if a program passes verification it is 
guaranteed to satisfy prescribed safety properties; 
however, programs exist that are type safe but fail 
verification.  A more sophisticated verifier could 
accept more of the safe programs (still rejecting all 
unsafe programs), but increasing the complexity of the 
verifier is likely to introduce additional vulnerabilities. 

Code passing the verifier is permitted to run in the 
virtual machine, but additional runtime checks are 
needed that could not be checked statically.  Runtime 
checks are required to ensure that array stores and 
fetches are within the allocated bounds, elements 
stored into array have the correct type (because of 
covariant typing of arrays in both JVML and MSIL this 
cannot be checked statically [2]), and down cast 
objects are of the correct type.   

A bug in the Java bytecode verifier or Microsoft’s 
JIT verifier can be exploited by a hostile program to 
circumvent all security measures, so complexity in the 
verifier should be avoided whenever possible. 

The JVML and MSIL verifiers are both relatively 
small, but complex, programs.  Sun’s 1.4.2 verifier 
[11] is 4077 lines of code (not including code for 
checking the file format).  For .NET, we examined 
Rotor, the shared source code that is a beta version of 
Microsoft’s implementation of the ECMA CLI 
standard [28].  The JIT verifier in the production .NET 
release is either very similar or identical to the Rotor 
verifier [16].  Rotor’s integrated verifier and JIT 
compiler total about 9400 lines, roughly 4300 of which 
are needed for verification. 

2.2 Instruction Sets 

Since the verifier’s complexity is directly tied to 
the instruction set of the virtual machine, examining 
the instruction sets provides some measure of the 
verifier’s complexity.  Each platform uses about 200 
opcodes, but some important differences in their 
instruction sets impact the complexity of their verifiers.  
This section considers the differences between the 
JVML and MSIL instruction sets from the perspective 
of how complex it is to verify low-level code safety 
properties.   

Table 2 summarizes the instruction sets for each 
platform.  One obvious difference between the instruc-
tion sets is that JVML has separate versions of 
instructions for each type, whereas .NET uses a single 
instruction to perform the same operation on different 
types.  For example, Java has four different add 
instructions depending on the type of the data (iadd 
adds integers, fadd adds floats, etc.) where .NET has 
one instruction that works on different types.  Using 
generic instructions to perform an operation with 



 

 4

multiple types instead of just two types makes 
verification slightly more difficult, but means that 
.NET has more instruction opcodes available for other 
purposes.  .NET uses some of these instructions to 
provide overflow and unsigned versions of the 
arithmetic operations.  The overflow versions of 
arithmetic operations throw exceptions if the 
calculation overflows, enabling applications to better 
handle overflows and avoid security vulnerabilities 
related to arithmetic overflows (such as the Snort TCP 
Stream Reassembly Integer Overflow Vulnerability 
reported in [26]). 

 
Function Calls. Complex, multi-purpose instructions 
further increase verification complexity.  For example, 
the invokespecial instruction in JVML serves three 
purposes: calling a superclass method, invoking a 
private method, and invoking an initialization method.  
The multiple uses of this instruction make it difficult to 
verify correctly.  Sun’s verifier uses 260 lines to verify 
the invokespecial instruction (counting major methods 
used for verification).  A 2001 verifier bug involving 
the invokespecial instruction [31] affected many 
implementations of the JVM, and could be exploited to 
violate type safety [14]. 

.NET has two main instructions for calling 
methods:  call and callvirt (another MSIL calling 
instruction, calli, is used for calling functions indirectly 
through a pointer to native code). The call instruction is 
similar to Java’s invokespecial and invokestatic 
instructions.  The callvirt instruction is similar to Java’s 
invokeinterface and invokevirtual instructions.  The 
main difference between the call and callvirt 
instructions is how the target address is computed.  The 
address of a call is known at link-time while callvirt 
determines the method to call based on the runtime 
type of the calling object.  Combining Java’s four 
different calling instructions into two instructions may 
make it easier for a compiler writer [19], but given 
Java’s history of trouble it may have been better to 

have several single-purpose call instructions rather 
than a few instructions with multiple functions.  The 
call, and callvirt instructions each have their own 
method for JIT compilation and verification totaling 
approximately 200 lines in the Rotor implementation. 

To efficiently support tail recursion, the MSIL call 
instructions may also be preceded by a tail prefix which 
is treated as a special case by the verifier [5].  The tail 
prefix reuses the same activation record on the stack 
instead of creating a new record every time a call is 
made.  About 250 extra lines are required for 
verification and compilation of the tail prefix including 
the extra lines needed to deal with call, calli, and 
callvirt.  It is too soon to judge whether the performance 
advantages of supporting tail outweigh the additional 
security risks associated with the added complexity. 

 
Object Creation. Sometimes complex instructions are 
better than using many separate instructions.  For 
example, a Java program creates a new object by using 
new to allocate memory for the new object, dup to 
place an additional reference to the newly created 
object on the stack, and then invokespecial to call the 
object’s initializing constructor.  After returning from 
the constructor, a reference to the (now initialized) 
object is on top of the stack because of dup.  In MSIL, 
the single newobj instruction calls a constructor, 
creating and initializing a new object in one step.  This 
sacrifices flexibility, but verification of newobj is much 
easier than Java’s sequence of instructions since the 
verifier knows that the object is initialized as soon the 
instruction is executed.  
    A Java verifier must check that any new object is 
initialized before use [15].  In cases where the new, 
dup and invokespecial instructions are separated by 
instructions, this can pose problems for the verifier.  
Microsoft and Netscape’s Java verifiers have both had 
vulnerabilities related to improper object initialization.  
The Microsoft verifier bug involved calling a 
constructor within an exception handler inside a child 

Table 2. Instruction Sets Comparison. 
 JVML MSIL 

Type Number Examples Number Examples 
arithmetic 36 iadd, fadd, ladd, iand 21 add, add_ovf, xor 
stack 11 pop, dup2, swap 2 pop, dup 
compare 21 ifeq, ifnull, if_icmpeq 29 ceq, beq, brfalse 
load 51 Ldc, iload, iaload 65 Ldarg, ldftn, ldstr 
store 33 istore,lstore_1, castore 27 Starg, stloc_s, stelem_R8 
type conversions 15 i2f, d2i, l2d 33 conv_i2, conv_ovf_u8, conv_u2 

method calls 4 
invokevirtual, invokestatic, invokespecial, 
invokeinterface 3 callvirt, call, calli 

object creation 4 new, newarrary, anewarray,  multianewarray 2 newobj, newarr 
exceptions 3 athrow, jsr, ret 5 leave, leave_s, rethrow, endfilter, endfinally 

 



 

 5

class [14].  Once the code called the constructor from 
inside the child class, the parent class constructor 
would be called to create a ClassLoader object, but the 
child class had not been given permission to instantiate 
a class loader.  The resulting exception was caught by 
the exception handler in the constructor of the child 
class, and initialization was incorrectly assumed to 
have completed. 
 
Exception Handling. Java’s exception handling 
instructions impose additional complexity compared to 
MSIL’s simpler approach.  The JVML instruction jsr is 
used to implement the Java programming language try-
finally construct that transfers execution to a finally 
block [17] and is one of the most complex instructions 
to verify.  To jump to a finally block, control transfers 
to an offset from the address of the jsr instruction, and 
the return address of the next instruction after the jsr 
instruction is pushed onto the stack.  The main problem 
is the use of the operand stack to store the return 
address since this makes an attractive target for an 
attacker who may try to insert a different address while 
fooling the verifier.  With the return address on the 
operand stack, more difficulty exists in a finally block’s 
verification in the multiple ways one could execute a 
finally block:  a jsr called after execution of the try 
clause, a jsr used upon a break/continue within the try 
clause, or a return executed within the try block. 

Several vulnerabilities have been found in Java 
verifiers due to the complexity of the jsr instruction.  
One relating to subroutines in exception handling was 
found in 1999 in the Microsoft JVM [14].  To exploit 
this flaw, two return addresses are placed on top of the 
stack using different jsr instructions.  Next, a swap 
instruction is executed.  The verifier failed to account 
for the change of return addresses on the stack 
(ignoring the swap since the return addresses are of the 
same type).  The switched return address is used by the 
ret instruction to return to the instruction that is now 
referenced by the address.  The verifier continues to 
verify the method as if the swap had not executed, thus 
breaking type safety. 

.NET avoids the complexity associated with Java’s 
jsr instruction by providing a simpler instruction.  The 
leave instruction used to exit a try or catch clause 
clears the operand stack and uses information stored in 
an exception handling clause for control flow. 

 
Summary. We tested .NET to check that the verifier 
was behaving correctly according to the ECMA 
specification and attempted to carry out exploits that 
have previously worked on the Java verifier, but were 
unable to construct any successful exploits.  Of course, 
this does not mean that there are no exploitable bugs in 
the .NET platform, but it is encouraging that none have 

been reported to date.  .NET’s designers avoided many 
of the pitfalls in early Java implementations benefiting 
from Java’s history of problems with exception 
handling, creating objects, and calling methods.  The 
MSIL instruction set design simplifies the verification 
process by avoiding instructions similar to the most 
complex instructions to verify in JVML. 

3. Defining Policies 

Low-level code safety mechanisms prevent hostile 
applets from circumventing the high-level code safety 
mechanisms, but security depends on high-level 
mechanisms to enforce a policy on program 
executions.  A policy specifies what actions code may 
perform.  If a program attempts an action contrary to 
the policy, a security exception is raised. 

3.1 Permissions 

The amount of control possible over system 
resources depends on the available permissions.  
Except for those permissions that are platform specific, 
Java and .NET provide similar permissions for 
controlling access to the file system, network, display, 
system properties and clipboard [21, 29].  For details 
on the differences, see [22].  Neither supports complete 
mediation: only actions associated with a predefined 
permission are checked.  Further, there is no support to 
restrict the amount of a resource that is consumed, so 
many denial-of-service attacks are possible without 
circumventing the security policy.  These limitations 
are serious [12], but more complete mediation is 
possible through the reference monitoring framework 
only by significantly reducing performance.  Richer 
policy expression and efficient enforcement is an 
active research area [6, 7, 34]. 

3.2 Policies 

Policies associate sets of permissions with 
executions.  In Java, policies are defined by specifying 
the permissions granted in a policy file based on 
properties of an execution: the origin of the code, the 
digital code signers (if any), and the principal 
executing the code.  Java’s policies are also affected by 
a system-wide properties file, java.security, which 
specifies paths to other policy files, a source of 
randomness for the random number generator, and 
other important properties. 

A Java policy file contains a list of grant entries.  
Each entry specifies a context that determines when the 
grant applies and lists a set of granted permissions in 



 

 6

that context.  The context may specify the code signers 
(a list of names, all of whom signed the code for the 
context to apply), the code origin (code base URL), 
and one or more principals (on whose behalf the code 
is executing).  If no principals are listed, the context 
applies to all principals. 

Java is installed with one system-wide policy file, 
but a user can augment this policy with her own policy 
file.  The granted permission set is the union of the 
permissions granted in all the policy files.  This is dan-
gerous since it means more permissions are granted 
than those that appear in the user’s policy file.  Further, 
it means a user can make the policy less restrictive than 
the system policy, but cannot make the policy more 
restrictive.  Java users may not exclude permissions a 
system administrator allows unless they are able to edit 
java.security, the Policy implementation, or the policy 
file granting the unwanted permissions. 

.NET provides policy definition mechanisms that 
overcome these limitations by providing flexible, 
multi-level policies, but at the cost of greater 
complexity.  A .NET policy is specified by a group of 
policy levels: Enterprise (intended for the system 
administrator), Machine (machine administrator), User, 
and Application Domain (AppDomain).  The permiss-
ions granted to an assembly are the intersection of the 
permissions granted at the four policy levels.  .NET’s 
policies grant permissions based on evidences within 
an assembly (see Section 4.2).   The AppDomain policy 
is created at run-time, and there is no associated 
configuration file for this policy level.  If no 
AppDomain exists at run-time, then the policy is the 
intersection of the Enterprise, Machine, and User 
policy levels.  .NET’s policy levels are similar to Java 
having a system-wide policy file and a user policy file, 
however they are much more flexible.  Importantly, in 
.NET the final permission set granted is the 
intersection of all policy levels, whereas in Java it is 
the union [9]. 

Typical users will execute code found on untrusted 
web sites, so the Internet default policy is extremely 
important to protect users and resources.  Java’s default 
policy allows an untrusted process to read some 
environment properties (e.g., JVM version, Java 
vendor), stop its own threads, listen to unprivileged 
ports, and connect to the originating host.  All other 
controlled actions, such as file I/O, opening sockets 
(except to the originating host), and audio operations 
are forbidden.  The default Java policy disallows the 
most security critical operations, but does not prevent 
untrusted applets from annoying the user.  Many 
examples of disruptive applets exist, such as one that 
stops and kills all current and future applets and 
another one that consumes the CPU [12, 18]. 

The .NET default permissions are given by the 
intersection of the four policy levels expressed in three 
separate files (AppDomains exist only at runtime).  At 
runtime, the CLR looks for the three XML policy files 
representing the Enterprise, Machine, and User policy 
levels.  By default, .NET allows all code to have all the 
permissions in the Enterprise and User policy levels, 
and the Machine policy level’s granted permissions 
determines the resulting permission set.  The default 
policy grants permissions based on the zone evidence.  
Local code is given full trust along with any strong-
named Microsoft or ECMA assemblies.  Code from the 
local intranet is granted many permissions including 
printing, code execution, asserting granted permissions 
(see Section 5.2), and reading the username.  Internet 
assemblies are given the Internet permission set which 
includes the ability to connect to the originating host, 
execute (itself), open file dialogs, print through a 
restricted dialog box, and use its own clipboard.  The 
trusted zone will receive the Internet permission set.  
No permissions are granted to the restricted zone.  
These defaults are more consistent with the principle of 
fail-safe defaults than Java’s defaults.  But their 
strictness may encourage users to assign too many 
code sources to more trusted zones. 

4. Associating Policies with Code 

Since programs with different trust levels may run 
in the same VM, VMs need secure mechanisms for 
determining which policy should be enforced for each 
access to a controlled resource.  The ability to assign 
different policies to different code within the same VM 
follows the principle of least privilege: every module 
(class or assembly) can be assigned the minimum 
permissions needed to do its job.  Section 4.1 explains 
how granted permissions are associated with code.  
Section 4.2 describes how code properties determine 
which policy should be applied.  There are important 
differences in how Java and .NET accomplish this.  
Java‘s initial design was a simple model where code 
was either completely trusted or untrusted, and all 
untrusted code ran with the same permissions.  Later 
versions of Java extended this model, but were 
constrained by the need to maintain backwards 
compatibility with aspects of the original design.  .NET 
was designed with a richer security model in mind 
from the start, so it incorporates an extensible policy 
mechanism in a consistent way. 

4.1 Code Permissions 

Both Java and .NET support two types of 
permissions: static and dynamic.  Static permissions 



 

 7

are known and granted at load time.  Dynamic 
permissions are unknown until runtime. 

When Java loads a class, an instance of the 
abstract class, ClassLoader, is responsible for creating 
the association between the loaded class and its 
protection domain.  These static permissions are 
associated with the class at runtime through a 
protection domain (PD).  Each Java class will be 
mapped to one PD, and each PD encapsulates a set of 
permissions.  A PD is determined based on the 
principal running the code, the code’s signers, and the 
code’s origin.  If two classes share the same context 
(principal, signers and origin), they will be assigned to 
the same PD, since their set of permissions will be the 
same.  Prior to J2SE 1.4, permissions were assigned 
statically at load time by default, but dynamic security 
permissions have been supported since J2SE 1.4 [32].  
This provides more flexibility, but increases 
complexity and makes reasoning about security 
policies difficult. 

To assign static permissions at load time in Java, a 
class loader will assign permissions to a PD based on 
properties of the code and its source, and the loaded 
class will be associated with that single PD for the 
duration of the class’ lifetime [32, 17].  Several flaws 
have been reported in Java’s class loading 
mechanisms, including eight documented from [33] 
and [3] (see Table 1). 

.NET uses a similar approach to associate 
permission sets with assemblies.  The role of the 
ClassLoader in Java is divided between the 
PolicyManager and ClassLoader in .NET.  The 
PolicyManager first resolves the granted permission set 
[13, p. 173-175].  Then the CLR stores the permissions 
in a cached runtime object before passing the code on 
to the ClassLoader which loads the class. 

4.2 Code Attributes 

Both Java and .NET grant permissions based on 
attributes of the executing code.  The expressiveness of 
policies is limited by the code attributes used to 
determine which permissions to grant. 

The JavaVM examines the CodeSource and 
Principal and grants permissions based on the values 
found in these objects.  The CodeSource is used to 
determine the location or origin of the code and signing 
certificates (if used), and the Principal represents the 
entity executing the code.  The associated PD of a class 
encapsulates these objects along with the ClassLoader 
and static permissions granted at load time.  To extend 
the default policy implementation, the Policy class may 
need to be rewritten, or a different SecurityManager 
may need to be implemented.  It is questionable if this 
level of extensibility is actually a good idea—it 

introduces significant security risks, but the benefits in 
practice are unclear.  Problems with class loading were 
found in early Java implementations [4], and continue 
to plague Java today.  In one recent classloader 
vulnerability (CAN-2003-0896 in Table 1), arbitrary 
code could be executed by skipping a call to a 
SecurityManager method.  The corresponding code 
characteristics in .NET are known as evidences.  
.NET’s PolicyManager uses two types of evidences, 
host evidences and assembly evidences, to determine 
the permissions granted to an assembly.  Assembly 
evidences are ignored by default.  Evidences include 
the site of origin, zone (corresponding to Internet 
Explorer zones), publisher (X.509 certificate) and 
strong name (a cryptographic code signature).  .NET’s 
design incorporates the ability to extend not only the 
permissions that may be granted, but also to add new 
evidences as well.  Any serializable class can be used 
as evidence [8]. 

Java and .NET both provide complex policy 
resolution mechanisms and a bug in the policy 
resolution could open a significant security hole.  
There are difficult issues to consider in introducing 
new permissions including XML serialization, and 
declarative/imperative testing of a new permission (see 
Section 5) [13, p. 534-544].  Although .NET does not 
provide the same level of extensibility as Java in the 
policy implementation, a developer creating a new 
permission must still be careful to avoid errors. 

4.3 Bootstrapping 

Both platforms need some way of bootstrapping to 
install the initial classes and loading mechanisms.  Java 
1.0 used a trusted file path that gave full trust to any 
class stored on the path.  Code on the system 
CLASSPATH was fully trusted, so problems occurred 
when untrusted code could be installed on the 
CLASSPATH [10].  Java 2 treats code found on the 
CLASSPATH as any other code, but maintains back-
wards compatibility by using the bootclasspath to 
identify completely trusted code necessary to bootstrap 
the class loader.  Hence, the same risks identified with 
installing untrustworthy code on the CLASSPATH now 
apply to the bootclasspath.  Having exceptions based 
on the location of code is not a good idea, since an 
attacker who can modify the trusted path or trick a web 
browser into storing code in a location on the trusted 
path will be able to execute a program with full 
permissions. 

.NET uses full-trust assemblies to break the 
recursive loading of policies since all referenced 
assemblies must also be loaded [13, p. 112].  .NET did 
not completely abandon the notion of a trusted path, 
but it has added some security.  .NET uses a global 



 

 8

assembly cache (GAC) where assemblies in this cache 
are signed and then shared among different assemblies.  
The GAC acts as a trusted repository, similar to the 
bootclasspath in that an assembly within the GAC will 
be fully trusted [21].  To speed up loading, a GAC 
assembly’s strong name (or signature) is checked when 
the assembly is added to the GAC, not when the 
assembly is loaded.  If an attacker can modify an 
assembly in the GAC, then the attacker may have full 
control of the machine.  Sometimes fully trusted 
assemblies across all policy levels are needed; for 
example, the default assemblies used for policy 
resolution that are fully trusted by default. 

As an illustration, the .NET default policy trusts 
all signed Microsoft assemblies, and this is checked by 
examining the strong name evidence of each assembly.  
If all four policy levels fully trust signed Microsoft 
assemblies, then any assembly from Microsoft is fully 
trusted on that machine. 

5. Enforcement 

Policy enforcement is chiefly done at run-time by 
the virtual machine.  Unlike Java, .NET can perform 
some policy enforcement statically.  It allows the 
programmer to specify static or dynamic policy 
enforcement.  Declarative security permissions are 
statically known and contained within the assembly 
manifest.  Imperative security permissions are 
compiled to MSIL and evaluated at run-time.  The 
declarative permissions can be class-wide or method-
wide and can be used for some actions that cannot be 
expressed using imperative permissions.  When run-
time information is needed to evaluate a request (e.g., a 
filename), imperative permissions must be used. 

Run-time enforcement mechanisms share many 
similarities across the two platforms.  In Java, the 
SecurityManager checks code permissions.  Program-
mers can implement SecurityManager subtypes to cus-
tomize security checking, and programs with sufficient 
permission can change the security manager.  This 
makes it especially easy to exploit a type safety break 
in Java, since the security manager can be set to null to 
turn off all access control.   .NET’s design does not 
allow programmers to implement their own 
SecurityManager class, but the reduced flexibility 
provides stronger security. 

5.1 Checking Permissions 

When a Java program attempts a restricted 
operation, the called Java API method first calls the 
SecurityManager’s appropriate checkPermission 
method which calls the AccessController to determine 

if the necessary permission is granted.  When deciding 
to grant a permission to execute a requested action, the 
AccessController checks that the current executing 
thread has the needed permission. 

The 10 API bugs in Table 1 illustrate the difficulty 
in implementing permission checks correctly.  Many of 
these vulnerabilities involve an API method that allows 
access to a protected resource without the necessary 
security checks.  CVE-2000-0676 and CVE-2000-0711 
both bypass calls using SecurityManager by exploiting 
the java.net.ServerSocket and netscape.net.URLInput-
Stream classes.  Another flaw, CAN-2000-0563, used 
browser redirection to gain sensitive data in 
java.net.URLConnection.  Two vulnerabilities, CAN-
2002-0866 and CAN-2002-1260, involve bugs in the 
Java Database Connectivity (JDBC) classes with the 
former allowing an attacker to execute any local 
Dynamic Link Library (DLL) through a JDBC 
constructor and the latter allowing access to a database 
through a JDBC API call.  CAN-2002-1290 and CAN-
2002-1293 were bugs in Microsoft’s JVM that exposed 
interfaces to the INativeServices and CabCracker 
classes allowing access to the clipboard or local file 
system respectively.  CAN-2002-0865, CAN-2002-
0979 and CAN-2002-1288 exposed various resources 
including XML interfaces, logging, and directory 
information. 

Java’s AccessController must not only verify that 
the current stack frame has the required permission, but 
also that the calling stack frames do.  In this way, 
previously called methods cannot gain privileges by 
calling higher privileged code.  Since every method 
belongs to a class and a class to a PD, each stack 
frame’s permissions are checked through the 
associated PD in addition to any dynamic permissions 
granted by the policy.  If any stack frame has not been 
granted the permission for the requested access, then 
the request will be denied by throwing an exception.  
The AccessController accomplishes permission checks 
by calling a method to indirectly return an object 
encapsulating the current PDs on the stack (i.e., current 
context) and then checking those PDs’ permissions.  
The act of gathering the current permissions from each 
stack frame is called a stack walk. 

.NET performs a similar stack walk with Frame 
objects representing the frames on the stack.  To 
support multiple languages (including type unsafe 
languages like C++), the stack has frames that are 
managed and unmanaged.  The managed frames are 
frames that are verified for type safety while the 
unmanaged frames have no safety guarantees.  As the 
stack is traversed, the managed code’s permissions are 
checked with a security object contained in each JIT-
compiled method on the stack [27]. 



 

 9

5.2 Modifying the Stack Walk 

In both platforms, programmers can modify the 
stack walk.  This should be done to enforce the 
principle of least privilege by explicitly denying 
permissions to called methods. 

A Java program can modify the stack walk to deny 
certain permissions past a specific stack frame or to 
simply stop checking permissions at a specific point.  
If a method invokes doPrivileged (PrivilegedAction), the 
stack walk will not look at any frames further up the 
call stack.  Attacks have occurred where the caller 
gains access to some protected resource by calling 
code that has higher privileges which indirectly 
provides access to that resource (for example, CAN-
2002-1288).  To deny permissions to a method in Java, 
a method can invoke doPrivileged (PrivilegedAction, 
AccessControlContext).  This creates a new context 
that is the same as the stack’s current execution context 
without the denied permissions.  The stack walk will 
then use this context to check permissions.  However, 
using doPrivileged can cause problems when null is 
passed as the AccessControlContext object.  This 
removes the stack frame from any more security 
decisions and introduces scoping problems when 
implemented with an inner class [18, 29]. 

.NET has extended Java’s stack walk design with 
the Permission methods PermitOnly(), Assert(), and 
Deny().  A stack walk is done when a demand() call is 
made, similar to Java’s checkPermission().  .NET 
provides slightly better interfaces for the programmer 
to alter the stack walk since many of the mechanisms 
involve only one method call after constructing the 
specified permissions.  Calling the PermitOnly() 
method means a stack walk will continue only if the 
permission is granted.  After a Deny() call, if any of the 
specified permissions are requested an exception is 
thrown to terminate the stack walk.  Assert() terminates 
the stack walk successfully if the current stack frame 
has the asserted permission. 

Although stack inspection is complex in both 
models, .NET’s added flexibility using these new 
Permission methods can be used to help programmers 
improve security by writing code that does not expose 
protected resources unnecessarily. 

6. Conclusion 

Java and .NET have similar security goals and 
mechanisms.  .NET’s design benefited from past 
experience with Java.  Examples of this cleaner design 
include the MSIL instruction set, code access security 
evidences, and the policy configuration.  .NET has 

been able to shield the developer from some of the 
complexity through their new architecture. 

Where Java evolved from an initial platform with 
limited security capabilities, .NET incorporated more 
security capability into its original design.  With age 
and new features, much of the legacy code of Java still 
remains for backwards compatibility including the 
possibility of a null SecurityManager, and the absolute 
trust of classes on the bootclasspath. Hence, in several 
areas .NET has security advantages over Java because 
of its simpler and cleaner design. 

Most of the lessons to learn from Java’s 
vulnerabilities echo Saltzer and Schroeder’s classic 
principles, especially economy of mechanism, least 
privilege and fail-safe defaults.  Of course, Java’s 
designers were aware of these principles, even though 
in hindsight it seems clear there were occasions where 
they could (and should) have been followed more 
closely than they were.  Some areas of design present 
conflicts between security and other design goals 
including fail-safe defaults vs. usability and least 
privilege vs. usability and complexity.  For example, 
the initial stack walk introduced in Java has evolved to 
a more complex stack walk in both architectures to 
enable developers limit privileges.  In addition, both 
platforms default policies could be more restrictive to 
improve security, but restrictive policies hinder the 
execution of programs.  .NET’s use of multi-level 
policies with multiple principals provides another 
example of showing the principles of least privilege 
and fail-safe defaults in contention with usability and 
complexity. 

Several of the specific complexities that proved to 
be problematic in Java have been avoided in the .NET 
design, although .NET introduced new complexities of 
its own.  Despite .NET’s design certainly not being 
perfect, it does provide encouraging evidence that 
system designers can learn from past security vul-
nerabilities and develop more secure systems.  We 
have no doubts, however, that system designers will 
continue to relearn these principles for many years to 
come. 

Acknowledgements 

This work was funded in part by the National 
Science Foundation (through grants NSF CAREER 
CCR-0092945 and NSF ITR EIA-0205327) and 
DARPA (SRS FA8750-04-2-0246).  The authors thank 
Jane Prey, Elizabeth Strunk for help with the title, and 
the anonymous reviewers for their helpful comments. 



 

 10

References 

[1]  AlephOne.  Smashing the stack for fun and Profit.  
Phrack, 7(49), Nov. 1996. 

[2] W. R. Cook.  A Proposal for Making Eiffel Type-safe.  
Third European Conference on Object-Oriented 
Programming (ECOOP).  July 1989.   

[3]  Common Vulnerabilities and Exposures.  Java 
Vulnerability Search Results (version 20040901).  
1 September 2004.  http://www.cve.mitre.org/  

[4]  Drew Dean, Edward W. Felten, and Dan S. Wallach.  
Java security: From HotJava to Netscape and Beyond.  
IEEE Symposium on Security and Privacy.  May 1996.   

[5]  ECMA International.  Standard ECMA-335: Common 
Language Infrastructure (Second Edition)  December 
2002.  http://www.ecma-international.org/ 
publications/standards/Ecma-335.htm  

[6]  Úlfar Erlingsson.  The Inlined Reference Monitor 
Approach to Security Policy Enforcement.  Ph.D. 
thesis, Cornell University Department of Computer 
Science. (Technical Report 2003-1916). 2003.  

[7]  David Evans and Andrew Twyman.  Policy-Directed 
Code Safety.  IEEE Symposium on Security and 
Privacy.  May 1999.  

[8]  Adam Freeman and Alan Jones.  Programming .NET 
Security.  O’Reilly, June 2003. 

[9]  Li Gong, Gary Ellison and Mary Dageforde. Inside 
Java 2 Platform Security (Second Edition). Sun 
Microsystems, June 2003. 

[10]  David Hopwood.  Java Security Bug (applets can load 
native methods).  Risks Forum, March 1996.  

[11]  IBM Corporation.  Jikes Research Virtual Machine.  
http://www-124.ibm.com/developerworks/ oss/jikesrvm/  

[12]  Mark LaDue.  A Collection of Increasingly Hostile 
Applets.  http://www.cigital.com/hostile-applets/  

[13]  Brian A. LaMacchia, Sebastian Lange, Matthew 
Lyons, Rudi Martin, Kevin T. Price.  .NET Framework 
Security.  Addison-Wesley, April 2002.  

[14]  Last Stage of Delirium Research Group. Java and 
Virtual Machine Security Vulnerabilities and their 
Exploitation Techniques. http://www.lsd-pl.net/ 
documents/javasecurity-1.0.0.pdf  

[15]  Xavier Leroy.  Java Bytecode Verification: An 
Overview.  Springer Verlag Computer Aided 
Verification:  2101, pp. 265-285, 2001.  

[16] Mark Lewin.  Email communication, Jan. 2004.  
[17]  Tim Lindholm and Frank Yellin.  The Java Virtual 

Machine Specification, 2nd edition. Addison-Wesley, 
April 1999.  

[18]  Gary McGraw and Edward W. Felten. Securing Java. 
John Wiley and Sons, January 1999. 

[19]  Erik Meijer and John Gough.  Technical Overview of 
the Common Language Runtime.  
http://research.microsoft.com/~emeijer/Papers/CLR.pdf  

[20]  Microsoft Corporation.  Microsoft Portable Executable 
and Common Object File Format Specification. 
http://www.microsoft.com/whdc/hwdev/download/ 
hardware/pecoff.pdf  

[21]  Microsoft Corporation.  Security Briefs:  Strong Names 
and Security in the .NET Framework.  

http://msdn.microsoft.com/netframework/?pull=/library/ 
en-us/dnnetsec/html/strongNames.asp 

[22]  Nathanael Paul and David Evans.  .NET Security: 
Lessons Learned and Missed from Java (extended 
version of this paper).  UVA Computer Science 
Technical Report, September 2004. 

[23]  Benjamin C. Pierce.  Bounded quantification is 
undecidable.  ACM SIGPLAN Symposium on 
Principles of Programming Languages (POPL), 
January 1992. 

[24]  Denis Pilipchuk.  Java vs. .NET Security.  
http://www.onjava.com/pub/a/onjava/2003/11/26/ 
javavsdotnet.html 

[25]  Jerome Saltzer and Michael Schroeder.  The Protection 
of Information in Computer Systems.  Fourth ACM 
Symposium on Operating System Principles, October 
1973.  (Revised version in Communications of the 
ACM, July 1974. 

[26]  Snort TCP Stream Reassembly Integer Overflow 
Vulnerability. http://www.securityfocus.com/advisories/ 
5294  

[27]  Daivd Stutz, Ted Neward and Geoff Shilling.  Shared 
Source CLI Essentials. O’Reilly, March 2003.  

[28]  David Stutz.  The Microsoft Shared Source CLI 
Implementation. http://msdn.microsoft.com/library/ 
default.asp?url=/library/en-us/Dndotnet/html/ 
mssharsourcecli.asp  

[29]  Sun Microsystems.  Permissions in the Java 2 SDK. 
http://java.sun.com/j2se/1.4.2/docs/guide/ 
security/permissions.html  

[30]  Sun Microsystems.  Chronology of Security-Related 
Bugs and Issues. November 2002.   
http://java.sun.com/sfaq/chronology.html  

[31]  Sun Microsystems.  Sun Security Bulletins Article 218. 
http://sunsolve.com/pub-cgi/retrieve.pl? 
doctype=coll&doc= secbull/218&type=0&nav=sec.sba  

[32] Sun Microsystems.  Java 2 Platform, Standard Edition: 
1.4.2 API Specification. 2003. 
http://java.sun.com/j2se/1.4.2/docs/api/  

[33] Sun Microsystems.  Sun Alert Notifications.  
http://sunsolve.sun.com/pub-cgi/search.pl,category: 
security java  

[34]  David Walker.  A Type System for Expressive Security 
Policies.   ACM SIGPLAN Symposium on Principles 
of Programming Languages (POPL), January 2000. 

[35]  Dan Wallach, Dirk Balfanz, Drew Dean, Edward 
Felten.  Extensible Security Architectures for Java.  
Symposium on Operating Systems Principles, October 
1997. 

[36]  Dan Wallach and Edward Felten.  Understanding Java 
Stack Inspection.  IEEE Symposium on Security and 
Privacy, May 1998. 

 [37] Frank Yellin.  Low Level Security in Java. 4th 
International WWW Conference, December 1995. 


