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Summary 
 

In teaching software engineering, it is a major challenge to integrate methodology and theory into 
the practice of software development.  The goal of this project is to explore a new pedagogical 
approach to teaching software engineering centered on the close integration of analysis tools with 
instruction in programming methodologies.  Instead of learning methodologies as abstract ideas, 
students will directly benefit from applying analysis tools that embody methodologies to large, 
realistic programs.    

We propose a new approach to teaching software engineering that exploits lightweight analysis 
tools.  Our approach will allow for realistic experience with industrial scale programs, and enable 
direct application of theory and methodology to practical programming.  We propose to develop a 
pilot course that will use lightweight analysis tools to teach software engineering.  Materials and 
ideas from that course will then be integrated into our core software engineering courses and 
made available and adapted for use at other schools. 

We will focus on the use of lightweight analysis tools that offer clear and immediate benefits with 
minimal initial costs.  These tools include LCLint [EGHT94, Evans96, LE01], a lightweight static 
analysis tool that exploits annotations added to the program source code; the Extended Static 
Checker for Java (ESC/Java) [Detlefs98, Leino01a], a static analysis tool that incorporates an 
automatic theorem prover; and Daikon [Ernst00, ECGN01], a tool for automatically determining 
likely program invariants.  Examples of topics where these tools can be used for pedagogical 
benefit include information hiding, invariants, memory management and security.  

Project Description 

1 Goals and Objectives 
Teaching software engineering is extremely difficult.  The root of the problem lies in the impact 
of scale.  Most of the principles central to software engineering are crucial for producing large, 
robust, long-lived programs, but hardly relevant (and oftentimes counterproductive) -critical, 
short-lived programs that can be developed in the scope of an academic course for the smaller, 
non.  Hence, students often regard the methods and theories taught in software engineering 
courses as abstract, academic concepts.  Without experiencing their practical impact on realistic 
programs, students rarely develop a deep understanding or appreciation of important ideas in 
software engineering. 

A common approach to this problem is to increase the size of programs students deal with in 
classes, often by having students work in groups.  However, students with limited time and other 
classes cannot be expected to construct an industrial scale program for a course.  Even if they 
could, one experience is insufficient.  Because the project ends when the semester is over, 
students do not have the experience of needing to modify their code six months later.   
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Edsger Dijkstra [Dijkstra76] and David Gries [Gries81] suggest approaches to teaching 
programming that closely integrate proof techniques.  Despite the elegance and apparent benefits 
of this approach, it has met with limited success.  Students generally only use proof techniques 
when they are required to do so on small programs in course assignments.  In most students’ 
experience, proving correctness properties about programs is a tedious and academic process, not 
something they do voluntarily with an expectation that it will improve their programs.  Despite 
the value in doing these exercises, it is very clear that these manual techniques would not scale 
well to a program of non-trivial size.  Students rarely leave these courses thinking about adding 
explicit representation invariants or formal postconditions to their programs.  Many curricula now 
offer courses in formal methods, but these are typically taught as advanced undergraduate or 
graduate courses separate from the core curriculum and not taken early enough to be used 
throughout a curriculum.   

The problem with previous attempts to introduce formal methods into computer science curricula 
is the large gap between formal methods and the students’ practical programming experience.  
Lightweight analysis tools are a promising way to shrink this gap and make abstract concepts 
immediately and directly relevant in a practical way.  After several years of research efforts by 
many groups in academia and industry, lightweight analysis tools are now mature enough to be 
used effectively in undergraduate education.  Whereas it requires considerable effort to use 
traditional formal methods on even toy programs, students can quickly and effectively use 
lightweight analysis tools on real programs. 

By using and understanding analysis techniques and tools, students will encounter concrete 
embodiments of previously abstract ideas.  By using analysis tools to automatically or semi-
automatically identify relevant program fragments, students will be able to work with and modify 
industrial size programs.  Students will learn how to use lightweight analysis and associated 
methodologies to quickly isolate relevant parts of large programs so they can modify and reason 
about industrial scale programs without needing to understand the entire program.   

This project proposes to develop educational materials for using analysis tools in both specialized 
courses, and more importantly, for integrating analysis tools into core software engineering 
courses.  We will concentrate on lightweight analysis tools since they are readily accessible and 
provide clear and early benefits for limited effort.  Jeannette Wing identified tool support as a 
critical factor in integrating formal methods into undergraduate computer science curricula 
[Wing00].  To enable widespread adoption of formal methods, we need both appropriate analysis 
tools and documentation and course materials that relate them to the abstract concepts and 
methods we aim to teach.  Educational materials produced will include tutorials and 
documentation on using analysis tools, a sequence of exercises that involve applying analysis 
tools to realistic programs to explore and reinforce concepts and principles, and lecture notes and 
slides using analysis tools to teach software engineering and introducing analysis techniques. 

2 Detailed Project Plan 
We plan a pilot course that will be taught as an elective for students who have completed at least 
one programming course.  This course would be small enough that there would be an opportunity 
to closely monitor students’ progress and observe how they use the analysis tools.   

Based on the pilot course, we will develop experience and course materials for use in mainstream, 
required software engineering courses (e.g., UVA CS 201, MIT 6.170, and similar courses at 
other schools).  It is important that analysis tools are introduced in the standard curriculum, and 
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then used in other courses, not a stand-alone course that is considered a special topic.  We also 
expect that modules developed for the pilot course would be adapted into other courses.  For 
example, some of the preliminary assignments on information hiding might be appropriate for an 
introductory (CS 101) course.  A more extensive security module would be appropriate for a 
security elective.  Modules on invariants will be appropriate for theory courses.  We believe the 
approach of developing and refining course materials in a specialized, focused course will give us 
the best opportunity to introduce analysis into a curriculum with minimal disruption. 

The remainder of this section describes the analysis tools we intend to use, and provides some 
examples illustrating how they can be used effectively in teaching. 

2.1 Analysis Tools 

We concentrate on lightweight analysis tools that provide substantial and immediate benefits 
relative to the effort required to use them.  The range of tools we select provides a sampling of the 
design space of analysis tools where efficiency, effort required, soundness and completeness are 
often conflicting goals.   

LCLint 
LCLint [EGHT94, Evans96, Evans00] is an annotation-assisted lightweight static checking tool 
for C developed through a joint research project by the University of Virginia, MIT and Compaq 
SRC.  LCLint is designed to be as efficient and easy-to-use as a compiler.  If minimal effort is 
invested adding annotations to programs, LCLint can perform stronger checks than can be done 
by any compiler or standard lint1.  LCLint checking ensures that there is a clear and 
commensurate payoff for any effort spent adding annotations.  Some of the problems that can be 
detected by LCLint include: violations of information hiding; inconsistent modifications of caller-
visible state; inconsistent uses of global variables; memory management errors including uses of 
dead storage and memory leaks; and buffer overflow vulnerabilities.  LCLint checking is done 
using simple dataflow analyses.  This means the checking is as fast as a compiler, and LCLint can 
easily be introduced into standard development cycles.  

LCLint has been in active use for more than six years, and is used by thousands of programmers 
in industry, especially in the open source development community [Orcero00, PG00].  LCLint 
has been used in several courses including introductory programming courses at RMIT University 
in Australia, the University of London, and Universidade Estadual Paulista in Brazil.  These 
courses used LCLint to assist students in programming assignments, but did not explore ways to 
use LCLint to teach software engineering concepts directly. 

ESC/Java 

The Extended Static Checker for Java (ESC/Java) is an analysis tool for Java developed at the 
Compaq Systems Research Center [Leino01a].  ESC/Java fits in the design space for static 

                                                 

1 Lint was a static analysis tool developed in the late seventies as a tool [Johnson78] for warning 
programmers about inconsistencies in source code.  Although standard lints include mechanisms for using 
source code comments to suppress errors, they do not provide mechanisms to describe programmer 
assumptions. 
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checkers somewhere between LCLint and a program verifier.  It incorporates an automatic 
theorem prover, hence it requires more time and effort to use than LCLint, but can check complex 
and precise properties about programs that are well beyond LCLint’s capabilities.  ESC/Java 
generates verification conditions based on an analysis of the source code and its annotations.  A 
theorem prover searches for counterexamples to the verification conditions, and translates 
contexts that produce counterexamples into warnings. ESC/Java can check for conditions that 
would lead to run-time errors in Java such as null dereferences or out-of-bounds array fetches; 
synchronization errors (race conditions and deadlocks), and violations of annotations added to 
programs.  

The developers of ESC/Java have expressed strong interest in supporting its use in education, and 
several universities (including the University of Toronto, Stevens Institute of Technology, and 
Imperial College) are currently considering developing courses that use it [Leino01b]. 

Daikon 

LCLint and ESC/Java require programmers to invent the invariants and express them as 
annotations.  Daikon determines likely invariants automatically by analyzing program executions 
on test data [Ernst00, ECGN01].  Daikon examines values in test executions and infers useful 
invariants based on patterns and relationships detected in all executions.  Invariants reported by 
Daikon are true for all executions in the test data, but not necessarily true of all possible program 
executions.   

Daikon has been used in conjunction with ESC/Java to automatically add ESC/Java annotations 
to Java programs [NE01].   When a static checker confirms an annotation generated by Daikon, it 
increases our confidence that the annotation is correct.  When a static checker fails to verify an 
invariant detected by Daikon it often reveals interesting properties about the static checker, test 
data or program.  Daikon was use in a limited way in MIT’s Software Engineering course in 
Spring 2001 [Ernst01]. 

2.2 Pedagogical Uses of Analysis 
This section uses some examples to illustrate how analysis tools can be used to enhance the 
teaching of software engineering.  These examples are not intended to be comprehensive, but 
should provide some understanding of how analysis tools might be used to teach concepts in 
software engineering and a flavor of what the course materials and course would be like. 

Information Hiding 
Information hiding, often in the form of data abstraction, is one of the most important concepts in 
software engineering (and in design more generally).  Students typically encounter forms of 
information hiding in courses and are told that data abstraction is a “good thing”, but language 
issues (e.g., classes) generally obscure what it really means and why it is useful and important.  
Many students complete Computer Science degrees without developing a good understanding of 
this, and it is reflected in the poor quality of the systems they design and the programs they write. 

Although C does not provide support for data abstraction, programmers can use an LCLint 
annotation to declare a type as abstract.  By naming convention, certain code is considered part of 
the implementation of the abstract type and is permitted to access the representation of that type.  
For all other code, LCLint will report errors for any dependencies on the type representation.  
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This means the type is checked by name and it may not be used as an operand to primitive 
operations that depend on its representation.  LCLint also detects representation exposure, 
occasions where storage that is part of the representation of an abstract type may be modified 
externally.  Since languages that claim to support data abstraction well do not prevent 
representation exposure, the problems and causes of representation exposure are typically not 
understood well by students in traditional curricula.  By using LCLint to provide data abstraction, 
students can gain a deeper understanding of what it is and its importance in designing 
maintainable and robust programs.  Information hiding is better understood by seeing what must 
be done to introduce it into a programming language without it, then by learning complex 
language constructs that integrate data abstraction with modules, type hierarchies, and syntax.   

An exercise would require students to modify a large program organized loosely around data 
types but without definitive abstractions it in a way that requires changing a data representation.  
By using LCLint, students would identify relevant data abstractions and change client code that 
depends on its representation.  This provides a realistic industrial experience that would apply a 
methodology in a clear and concrete manner. 

Invariants 
Invariants are properties that are always true at particular program points.  Common types of 
invariants include preconditions (properties that are true at function entry points), postconditions 
(properties that are true at function exit points), representation invariants (properties that are true 
about data representation at access boundaries), and loop invariants (properties that are true at 
loop heads).  Invariants have long been considered a useful technique for creating better programs 
and for reasoning about and understanding programs [Gries81, LG86].  Program bugs often result 
from programmers implicitly assuming invariants that are not valid (for example, that a certain 
function always returns a non-NULL value). 

Although students may be required to include explicit invariants in their programs for some 
assignments in a software engineering class, students almost never document invariants in their 
programs voluntarily.  Students view expressing invariants as a tedious and theoretical endeavor, 
far removed from the realities of practical programming.  The notable exception to this is the use 
of run-time assertions (as embodied in C by the assert macro).  Good programmers quickly learn 
that these can be a great aid in reducing their debugging time and producing reliable and 
maintainable programs, and use them liberally.  We believe that the reason for this is that the run-
time assertions provide a clear and obvious benefit that more than outweighs the effort and cost 
required to add them.  The benefits of unchecked invariants are much less clear, and it is hard for 
students to see the value in adding these to their programs. 

By using analysis tools, students can obtain clear and immediate benefits from precisely 
describing program invariants.  Initial exercises would lead students through using annotations to 
precisely describe possible program invariants and using analysis tools to detect invalid 
invariants.  Function preconditions and postconditions can be expressed in LCLint using 
annotations on parameters and return values as well as specialized requires and ensures clauses; 
ESC/Java supports general requires and ensures clauses.  An exercise would start with an 
annotated program, and require students to make a change to the program that involves 
strengthening a function precondition.  By using the analysis tools, students would identify code 
fragments that do not satisfy the new precondition.  Other exercises might involve weakening the 
postcondition of a library function and determining what other code needs to change as a result. 
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Representation invariants provide implicit preconditions and postconditions on member 
operations.  Thinking about representation invariants is an important part of designing good 
datatype implementations [Liskov00].  By expressing these invariants precisely and using 
analysis tools to detect possible violations of these invariants, students will gain a better 
understanding of how representation invariants work, what kinds of explicit invariants are useful, 
and how they can improve datatype implementations.  All attempts I am aware of to require 
students to include representation invariants in their code have failed to instill the practice of 
explicitly documenting invariants after the class completes.2   Students perceive the payoff for the 
somewhat tedious task of determining and documenting an invariant is too low and do not 
appreciated the value that comes from being able to use a precisely expressed invariant to 
automatically detect bugs in code.  A possible exercise would ask students to improve the 
performance of a datatype implementation in ways that involve changing its representation.  By 
precisely expressing the invariant and using static analysis tools to detect possible 
inconsistencies, students would be able to more efficiently and reliably identify necessary 
changes to the code. 

Further experience with invariants would be gained by using Daikon to dynamically determine 
likely invariants.  The invariants produced by Daikon reveal interesting properties of the program 
and its test suite.  If the test suite is insufficient, Daikon may infer an invariant that is true over 
the test executions but not true over other possible program executions.  In testing libraries, 
surprising invariants produced by Daikon may reveal weaknesses in the test suite (for example, it 
never attempts to pop an empty stack).  Students would use Daikon in conjunction with static 
analysis tools to check invariants produced by Daikon.  This approach has been used with 
ESC/Java with promising results [Nimmer01], and will be attempted with LCLint soon [Ernst01]. 

Security Vulnerabilities 
Bad software is by far the most common technical cause of security vulnerabilities [MV01].  The 
preponderance of security problems stem from programming errors, not from flaws in algorithms 
or protocols.  Nevertheless, security is often not part of an undergraduate curriculum, and rarely 
discussed in software engineering classes. 

Analysis tools can be used to great benefit in teaching students to write secure code.  One 
example is detecting vulnerabilities to buffer overflow attacks.  Buffer overflows account for 
approximately half of all security vulnerabilities [CWPBW00, WFBA00].  LCLint has been used 
to statically detect likely buffer overflow vulnerabilit ies in security critical programs [LE01].  By 
understanding how LCLint detects likely vulnerabilities, and by using LCLint to check programs, 
students would gain a good understanding of this problem.  Checking depends on annotating 
programs to document design decisions about buffer sizes, which may involve dependencies on 

                                                 

2 My experience is mostly from TA’ing the Software Engineering (6.170 Spring 1993 and Spring 
1995) and Compilers (6.035 Fall 1993 and Fall 1995) courses at MIT.  In the Software Engineering course, 
students were taught about representation invariants and abstraction functions, and required to include 
explicit invariants in their code.  By the end of the course, most of the students were capable of producing 
reasonable representation invariants.  In the Compilers course, typically taken the following semester by 
the better students from the Software Engineering course, students worked in teams on a large semester 
long project where representations invariants would have been valuable but were not requires.  
Nevertheless, it was extremely rare for students to include them, and when they did they were invariably 
either invalid or too weak to be useful.  Similar experiences have been reported in discussions with faculty 
from other schools who have tried similar approaches. 
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other values.  Checking depends on using heuristics to match and analyze known programming 
idioms.  Students will be able to use analysis tools to better understand these programming 
idioms, and why they make programs easier to analyze and understand. 

Extensible Checking 
All the checking described so far involves using checks already provided by analysis tools 
(although annotations are used to influence and describe the specific checks that are done).  There 
is also considerable opportunity to have students define new checking rules.  This should not only 
lead to a deeper understanding of how analysis tools work, but also give students and opportunity 
to embody new methods and application-specific constraints in checking rules. 

LCLint provides support for extensible checking using a meta-state description.  Users can define 
abstract state associated with particular program entities, and define rules for transforming and 
checking that state.  A simple example would be to check proper use of files by adding state 
associated with file objects that indicates the state of the file (open, closed), and introducing 
annotations that describe assumptions about that state.  LCLint’s extensible checking has been 
used by an undergraduate to develop rules to assist porting applications between Unix and Win32 
[Barker01].  A course exercise could involve developing checking rules to enforce application-
specific constraints and using extensible checking as an integrated aspect of software design.  

In addition to using the built-in extension mechanisms, changing analysis tools by modifying 
their source code will be instructive and worthwhile.  An example would be extending Daikon to 
support a new invariant.  Students do this by defining a new Java class and adding one line to 
Daikon to incorporate the new invariant.  Students could then extend LCLint to support the new 
invariant.  By having students invent and implement new checks, they would develop a deeper 
understanding of how analysis tools work.  In addition, an assignment that asked students to 
invent new checking that followed from a design principle would lead to greater understanding of 
the principle as well. 

3 Experience and Capability of the Principal Investigators  

David Evans  
As the primary developer of LCLint, David Evans has considerable experience with lightweight 
analysis tools.  In the seven years LCLint has been publicly available, he has interacted via email 
with thousands of students and professionals at various levels who have used LCLint in different 
ways, and gained a good understanding of the issues that confuse and enlighten users of analysis 
tools.  In addition, he supervises several undergraduates and graduate students work on LCLint-
related projects.  David Evans joined the University of Virginia in November 1999, and has 
taught courses in Security and Programming Languages.  He won a University Teaching 
Fellowship in 2001. 

4 Evaluation Plan 
The fundamental evaluation question is can lightweight analysis tools be used to improve 
teaching of software engineering.  Software engineering is not yet at the point as a discipline 
where there are clear and objective metrics for measuring a student’s ability.  Some of the 
subjective criteria we propose to use to evaluate the success of the pilot course include: 
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Do students gain a better understanding of abstract concepts by using analysis tools? 

Do students become better software engineers because of their experience with analysis tools? 

Are students able  to efficiently manage and manipulate larger programs than with previous 
techniques?   

Do students develop original checking rules and use them effectively? 

In addition to analyzing student work on assignments, we will use anonymous attitudinal surveys 
to assess the effectiveness of our approach.  Student surveys would be conducted at the beginning 
of the course, in the middle of the course, and at the end of the course to assess the effectiveness 
of different analysis approaches and measure student perceptions. 

Analysis can also be done on the student assignments.  We will ask students to record the amount 
of time they spend on each assignment; this will provide some insight into which tools and 
techniques are used productively in different situations.  For some of the assignments, students 
will use an instrumented version of LCLint that records information about how it is executed and 
the code it analyzes.  For example, we could extract information about the process students’ use 
to add annotations to a program by examining the information produced by the instrumented 
LCLint. 

Perhaps the most definitive measure of success will come from whether or not students continue 
to use analysis tools on their own after completing the class.  If the course is successful, students 
will understand and appreciate software engineering concepts that are enhanced by the use of 
analysis tools.  Since nearly all students who take our pilot course will go on to take further 
courses in our curriculum that involve substantial programming assignment, we will have the 
opportunity to observe and measure differences between how students who took the pilot course 
and those who did not develop software.  In particular, it will be possible to measure how much 
students who took the pilot course continue to use analysis tools voluntarily in later courses.  

Another measure of success will be how many other courses adopt analysis tools.  We will 
evaluate our success based on whether or not we are successful in convincing designers of other 
courses to exploit analysis tools and to make use of the materials we develop. 

5 Dissemination of Results 

The main audience is designers and instructors of software engineering courses.  Our results 
should be applicable to a wide variety of courses ranging from industrial-oriented introductory 
software engineering courses, to more theoretical and methodology-focused software engineering 
courses, to special topics courses in formal methods.  The materials we produce, including 
software, assignments, notes and course designs, will all be made available on the Internet for 
unrestricted use.  We will seek to present our results at computer science education conferences 
(SIGCSE) and organize a tutorial on using analysis tools to teach software engineering at both 
education and software engineering conferences.  After the grant concludes, the materials will 
continue be maintained and supported by the Lightweight Static Analysis research group.  We 
have a good track record of supporting LCLint use in teaching and industry, and believe 
continued efforts to support use of lightweight analysis tools in education will contribute to both 
our educational and research goals. 
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