
Towards Disk-Level Malware Detection

Nathanael Paul Sudhanva Gurumurthi David Evans
University of Virginia, Department of Computer Science

Charlottesville, VA
{nate, gurumurthi, evans}@cs.virginia.edu

Abstract

Disk drive capabilities and processing power are steadily increasing, and this power gives us the possibility
of using disks as data processing devices rather than merely for data transfers. In the area of malicious
code (malware) detection, anti-virus (AV) engines are slow and have trouble correctly identifying many
types of malware. Our goal is to help make malware detection more reliable and more efficient by using
the disk drive’s processor. Using the extra processing power available on modern disk drives can provide
significant advantages in detecting malware including reducing the traditional AV engine’s workload on
the host CPU by partitioning the workload between the host AV engine and the disk drive, improving the
detection of stealth malware by providing a low-level view of the system, and recognizing virus behavior
by observing disk I/O traffic directly. Several research questions must be addressed before these benefits
can be realized: how to correctly partition work between the AV engine and the disk drive processor, how
to design interfaces between the operating system (OS) or host AV engine and the disk drive that provide
satisfactory performance without compromising security, and how to recognize malicious behavior based
on the dynamic analysis of low-level data accesses.

Keywords: dynamic analysis, malware detection, virus detection, disk drive processor.

1. Introduction
Malware detectors face three major challenges: they must
have false positive rates very close to zero, they must have
minimal performance overhead, and they must be able to
detect a large number of known viruses and an unlimited
number of possible variants. Moving malware detection and
response to the disk drive processor offers promising
opportunities on all three of these problems since the disk can
analyze all I/O traffic with little overhead. Current methods
of virus detection can have an overhead potentially as high as
129% [21]. In fact, one company is marketing a hardware
coprocessor explicitly for virus detection to lessen AV
overhead by using regular expressions along with other
techniques [20], and Symantec has a patent on a device (or
software) that can be queried to match a regular expression
on data and block that data from storage if there is a match
[7]. These hardware solutions present a bottleneck, since
higher disk activity will require higher loads on a centralized
hardware coprocessor. Our goals are to speedup and improve
the accuracy of virus detection without requiring specialized
hardware.

Recent trends are making storage devices more aware of
application needs (application-aware) and making devices
actively perform application-specific code on the storage
system itself (active storage) [4, 18]. For instance, rather
than doing encryption in software, Seagate recently
announced a drive that can perform hardware-based

encryption [16]. A drive’s processor is about three
generations behind a high-end modern CPU [1], and it is
currently underutilized. Sivathanu et al. model a
semantically-smart disk using a Pentium III 550 Mhz
processor, and this trend of increasing processing power
should continue as Application-Specific Integrated Circuit
(ASIC) technology continues to provide higher speeds within
disk power constraints [18]. We have the opportunity to
have work done in the disk processor nearly for free. A
moderate amount of extra computation on the hard drive
CPU scales better than a larger I/O load, since we can hide
the processing with the physical data transfers that will incur
longer mechanical delays. In using the disk processor to aid
malware detection, the I/O is already transferred by the disk,
so the only cost is what we incur by also examining the
request and data.

The next three sections explore areas in malware detection
that significantly benefit from additional processing power.
Section 2 deals with the issues in partitioning the AV engine
workload between the primary CPU and the disk drive. If the
AV engine can let an active disk perform work on its behalf
while freeing up the host CPU to service application tasks,
then this will increase overall system throughput. Section 3
discusses augmenting low-level protection of machines from
rootkits. Many rootkit detection tools depend on a true low-
level view of the system, and the closest component of the
non-volatile state of the system is the disk drive. Our last
example discusses the dynamic analysis of disk I/O.

2. Partitioning Workload
Some of the main actions that an AV engine performs are
heuristic scanning, signature matching, and emulation [19].
Heuristic scanning is used to quickly identify traits of a
program to act as a filter to more expensive scanning
techniques (like emulation), but the most dominant action is
simple string matching. Emulation is also an expensive
action, and the AV software must be selective on the
programs it chooses to emulate and how long it performs
emulation. On a single processor system, the AV engine
overhead can cost up to 129% [21]. Although the disk drive
processor is a suitable place to offload some of the burden of
an AV engine, we must first address several issues including:
partitioning the workload between the AV engine and the
disk processor, minimizing I/O delay, and the interaction
between the AV and the disk.

Partitioning malware scanning is especially important if we
can exploit parallelism for the scanning process. For this
design, we envision an active and application-aware disk
where the disk acts independently of the host AV engine.

Since we are using a disk processor, we are limited to a small
cache, typically 8–16MB. This limits the disk scanning to
use a smaller signature database. The size of the Symantec
AV update executable for October 8, 2005 is 8.86 MB [12],
but our signatures will be at the lower level of disk blocks.
We face the challenge of creating small signatures with low
false positive rates. While using the disk cache for
signatures, we will also need to study the trade-off of the OS
using the disk block cache.

Some polymorphic malware may be difficult to identify,
since encryption can be used before writing to the disk.
Although knowing the content of I/O traffic can be more
useful, the disk may still identify malware according to the
location of a written block even if the block is encrypted.
Some malware can be recognized through simple string
matching, enabling the disk to recognize the malware
whenever a known string is written to the disk. Of course
this would not work for encrypted I/O, so a signature for
encrypted I/O could capture the ways in which the PE file
was being manipulated. For instance, one questionable PE
file modification is overwriting the entry point of execution.
We must be careful to keep the false positive rate low if we
use these types of heuristic defenses.

These designs warrant further study into how to minimize
I/O delay from regular disk requests and how to set up the
communication channel between the disk and the OS or AV
engine. We cannot overload the disk processor to the point
where regular I/O suffers, but we will harness the idle
processing power currently available. The second problem
of establishing a secure line of communication is not possible
with current PC design, but there are some things we can do
to raise the bar for a successful system compromise discussed
in the following section.

3. Dynamic Analysis of I/O Requests
In this application area, we use the drive in a more active
capacity to scan the disk traffic for malicious activity in

conjunction with the host AV engine. Higher-level detection
code may not easily detect the malicious behavior, but the
disk may see malicious I/O and stop it before anything bad
happens.

For example, the W32/Funlove virus infects local and
networked drives by adding a small amount of data (“Fun
Loving Criminal”) to the end of each PE file [6]. As the
virus enumerates the network shares, it writes to remote PE
files through memory mapped file I/O. On-access virus
scanners work by catching certain file events like open,
close, and create, and they could not detect the virus without
more information. Funlove used memory-mapped I/O to
compromise remote machines, so traditional scanners could
not recognize the virus until it had already infected the disk
[19]. Szor goes on to recommend other defense mechanisms
including behavior blocking and a network IDS, but an active
disk scanning for anomalous traffic (e.g., malicious traffic
that installs itself as a Windows service) can prevent
intrusions like Funlove with much less cost than an IDS.

One consequence of scanning I/O patterns at the disk-level is
that we lose semantic information that we would otherwise
have in a typical AV engine. The disk will only receive
requests that read or write blocks at a given location, but the
disk needs to know what these blocks map to in order to do
something useful. One way in which we could bootstrap the
disk is by providing a mapping of disk blocks to applications
at OS installation. Without talking to the OS, we will need to
provide all necessary semantic information about the file
system at the OS installation. This comes at a cost – not
being able to securely update the disk software after
installation. If we need a more extensible design, then we
can allow interaction between the AV and disk drive, but we
run the risk of having these interfaces compromised.

Some current, and most future PCs, are likely to support a
Trusted Platform Module (TPM) that enables a secure
bootstrapping process. This has benefits in preventing virus
propagation, but as long as users are able to install additional
software, TPMs will not stop all viruses. However, we can
use a TPM like Intel’s LaGrande for secure communication
between the AV and the disk [10]. If the AV engine has a
trusted part of code protected by hardware, then the AV
engine can attest the calls the disk makes and notify the user
to take additional actions if necessary.

4. Detecting Rootkits
Rootkits are a form of malware that are installed by an
attacker to keep stealth or secretive access to a machine.
This is often accomplished by altering some part of the OS
[9]. Rootkit detection tools like Strider Ghostbuster [22],
RootkitRevealer [3], and Blacklight [5] perform a high-level
scan and a low-level scan of a machine looking for a
discrepancy between the scan reports. The high-level scan
will use the Windows API or a command like “dir /s /b”, and
the low-level scan will read the Master File Table (MFT),
raw hive files (Windows registry), and the kernel process list.

The security of these mechanisms relies on the difficulty of
implementing code that could intercept these low-level reads
and construct false MFT, hive, or process data. While this

may give detection tools the ability to detect most current
rootkits, it is only a matter of time until rootkits are
developed that can fool the low-level scans. The rootkit
detector will call some API to read the low-level data, and
this can always be hooked. The detector could implement
the functionality of a disk device driver itself to communicate
directly to the hardware, but some rootkits are now unhiding
files when they detect a rootkit detector performing a file
system scan, so the rootkits remain undectected while the
unhidden files do not get reported as a difference between the
two scans [15]. This battle between rootkits and detection
tools will inevitably continue.

To setup the disk to perform a low-level scan, the disk must
have more information about the disk blocks. We bootstrap
this information at the OS installation, and the disk then has
the associations for registry data and the MFT. The kernel
process information is kept in memory at run-time, so this
information is not accessible from the disk. Since the disk
will be performing the file system scan, the scan has the
advantage of remaining undetected from any rootkit.

To recover from a low-level malware infection, we can set up
the disk to protect certain disk blocks associated with core
OS files again specified at OS installation time. Although
the OS may have system restore data (e.g., MS Windows),
these blocks would not be writable to any code outside of the
disk drive. The main problem is performing an update to a
protected OS file. Assuming no rootkit has compromised the
machine, the user could download an update and override the
protection mechanism to apply the update. Of course, this
does force the user to trust the OS to not have been
compromised. Any time one of the protected blocks is
overwritten, the disk can make a backup to some portion of
the disk that is not accessible to the OS, in case restoration is
needed later. If the disk does indeed find a discrepancy
between the high and low level scans, then the latest known
clean block can be restored, and we can perform another
system scan to make sure all traces of the malware are
removed.

The advantages of this approach far outweigh the overhead
of storing a few KB/MB on the disk. Capacity is not at a
premium, since we currently have consumer disks reaching
as high as one-half TB now [8]. The main weaknesses in this
approach are updates of registry data and communication
between the AV engine and the disk. When the user installs
an application it can potentially destroy the integrity of the
registry, but the disk may be able to detect a malicious update
to the registry in some cases. For the updates that are not
deemed malicious, we must either depend on the recovery
mechanism in case it is later identified as malicious or allow
the disk to receive updates about the protected disk blocks
from the OS.

To compare the high-level and low-level scan, the OS will
need the low-level scan information, or the disk will need
high-level scan information. Because the design requires
comparing the results from the OS and disk, the
communication link is again a vulnerable target. As
suggested in the previous section, we can make use of a
TPM. If a TPM is not available, then we have at least raised

the bar of system compromise.

Another example of low-level AV software being
circumvented by rootkits is within a filesystem filter driver
[9]. To process an I/O request packet (IRP) in Windows, the
IRP is passed through a chain of filter drivers before reaching
the lowest-level device driver [11]. Many AV engines install
their own filter driver in this chain to process incoming IRPs,
but even these filters could be circumvented. Using the disk
for scanning ensures that malicious traffic can be scanned
while the scan itself cannot be circumvented.

5. DADDIO
We are building a new tool to Dynamically Analyze Disk
Drive I/O (DADDIO) while offloading the CPU workload
and aiding in low-level malware detection. DADDIO can
provide interfaces to the AV engine to perform string
matching and for viewing the low-level filesystem details,
and it will analyze disk I/O for malicious activity. If the AV
uses software interfaces to DADDIO, then we must use a
TPM to use DADDIO securely.

We may be able to leverage DADDIO without a TPM, but
we will lose the capability to communicate securely with the
host OS. To perform services on behalf of the host AV
engine, DADDIO will throttle its own execution workload if
the I/O performance suffers. DADDIO’s other main action
of scanning for malicious disk I/O will be performed during
each write to the disk. Reads do not matter if we assume no
malicious blocks exist on the disk before DADDIO is
activated and DADDIO can prevent malicious writes to the
disk.

Recovery from detected malicious I/O traffic can be done
without interaction from the AV engine. Without communi-
cation with the host OS, we do not risk compromise of the
communication channel, but DADDIO has no way of
indicating a problem to the user. At the worst, DADDIO can
simply suspend all disk I/O. Once users observe the system
has frozen from the suspended disk, they will most likely
perform a reboot, erasing the malware from the system. Note
that this eradicates the malware, since DADDIO prevented it
from ever writing to the disk. If the virus activity can be
isolated, DADDIO can continue to service regular disk I/O
while denying disk access to the malicious process
performing I/O. One possibility is to adopt the failure-
oblivious computing approach introduced by Rinard et al.
[14], and simply write different data on the drive than the
malicious code. This approach has proven effective in
masking memory errors to keep a faulty server running [14].
Our aim is to allow the OS to safely continue execution
without malicious corruption.

6. Related Work
Others have also studied the idea of providing AV services
outside of the host machine AV engine. Work by Pennington
et al. studied an AV implementation on an NFS server [13].
In hardware, Silberstein [17], Tarari [20], Symantec [7] have
proposed ideas to offload AV computation from the main
host.

Silberstein observes the signature matching overhead for the
open-source AV tool, ClamAV [2], can be as high as 40%.
He suggests using a hardware coprocessor to assist in string
matching.

Pennington's implementation of an IDS uses an NFS server
to support a rule-based IDS system [13]. For their IDS, they
require a filesystem separate from the host, so they can
guarantee protection for the IDS administration system even
if the host has been compromised. However, this protection
does not extend to the client, so a compromised client (e.g.,
trojan) could allow unauthorized access to data on the NFS
server [Gobioff99]. Our design protects the local machine by
placing an AV engine directly on the disk drive that can
partition the workload between the main AV engine and the
disk drive AV engine.

The Tarari [20] and Symantec [7] implementations describe
designs that can also be used as a hardware or networked
offloading engine, respectively. Both designs are for
offloading the workload of AV engines, but neither one
provides for offloading on the local machine.

One critical difference is that our design can capitalize on the
disk already being on the critical path of the data, so we are
now analyzing the data rather than just performing data
transfers. We avoid the potential bottlenecks of having to
pass data through dedicated (and more expensive) hardware
solutions.

7. Conclusion
Active and application-aware disks can be useful in malware
detection by offloading part of the AV’s offload, providing a
closer view of the low-level filesystem, and scanning for
malicious disk access patterns using low-level disk I/O. We
advocate using the disk drive processor for malware
detection, and we have presented three motivating examples
showing the advantages of using the disk processor for
detecting viruses and rootkits. Current virus scanning can be
expensive (e.g., emulation and string scanning), and the virus
scanner must minimize its own overhead. Lowering the host
AV scan-time frees up more processing time for more
analysis or for performing other application tasks. If we can
capitalize on detailed dynamic analysis of disk I/O, we may
be able to avoid more viruses like W32/Funlove. We are
currently investigating ways to partition the load between the
host CPU and the disk drive CPU and are identifying the best
techniques that can benefit from low-level disk block
information.

Acknowledgements
The authors thank Peter Szor for helpful discussions
regarding this work. This work was supported in part by
grants from the National Science Foundation (NSF CAREER
CCR-0092945 and NSF ITR EIA-0205327).

References
[1] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active

Disks. Eigth Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
October 1998.

[2] Clam AntiVirus. http://www.clamav.net/.
[3] Bryce Cogswell and Mark Russinovich. SysInternals

RootkitRevealer. http://www.sysinternals.com/utilities/rootkitr
evealer.html.

[4] Information Storage Industry Consortium. Data Storage and
Systems (DS2) Roadmap. January 2005.

[5] F-Secure. Blacklight. http://www.f-secure.com/blacklight/.
[6] F-Secure Virus Descriptions: FunLove. http://www.f-

secure.com/v-descs/funlove.shtml.
[7] John K. Hile, Matthew H. Gray, and Donald L. Wakelin, In

Transit Detection of Computer Virus with Safeguard. US
Patent 5319776.

[8] Hitachi Deskstar 7K500. http://www.hitachigst.com/portal/sit
e/en/menuitem.8f07a3c3d3a7a12d92b86b31bac4f0a0/.

[9] Greg Hoglund and James Butler. Rootkits: Subverting the
Windows Kernel. Addison-Wesley, 2005.

[10] Intel Corporation. Lagrande Technology Architectural
Overview. September 2003.
http://www.intel.com/technology/security/downloads/LT_
Arch_Overview.pdf.

[11] Rajeev Nagar. Windows NT File System Internals. O’Reilly,
September 1997.

[12] Norton AntiVirus Virus Definitions. October 8, 2005.
http://definitions.symantec.com/defs/20051008-002-i32.exe.

[13] Adam G. Pennington, John D. Strunk, John Linwood Griffin,
Craig A.N. Soules, Garth R. Goodson, and Gregory R.
Granger. Storage-based Intrusion Detection: Watching
Storage Activity for Suspicious Behavior. 12th USENIX
Security Symposium. Washington D.C. August 2003.

[14] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M.
Roy, Tudor Leu, and William S. Beebee, Jr. Enhancing
Server Availability and Security Through Failure-Oblivious
Computing. Sixth Symposium on Operating Systems Design
and Implementation (OSDI), December 2004.

[15] Joanna Rutkowska. Thoughts about Cross-view based Rootkit
Detection. June 2005.
http://invisiblethings.org/papers/crossview_detection_thoughts.
pdf.

[16] Seagate Press Release. Hardware-based Full Disc Encryption
Security. June 8, 2005.
http://www.seagate.com/cda/newsinfo/newsroom/releases/articl
e/0,,2732,00.html.

[17] Mark Silberstein. Designing a CAM-based Coprocessor for
Boosting Performance of Antivirus Software. March 2004.
http://www.technion.ac.il/~marks/docs/AntivirusReport_r
evised_version.pdf.

[18] Muthian Sivathanu, Vijayan Prabhakaran, Florentina
Popovici, Timothy Denehy, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Semantically-Smart Disk
Systems. Second USENIX Conference on File and Storage
Technologies (FAST), March 2003.

[19] Peter Szor. The Art of Computer Virus Research and Defense.
Addison-Wesley, 2005.

[20] Tarari. Anti-virus Content Processor.
http://www.tarari.com/antivirus/index.html.

[21] Derek Uluski, Micha Moffie, and David Kaeli.
Characterizing Antivirus Workload Execution. Workshop on
Architectural Support for Security and Anti-Virus (WASSA).
October 2004.

[22] Yi-Min Wang, Doug Beck, Binh Vo, Roussi Roussev, and
Chad Verbowski. Detecting Stealth Software with Strider
Ghostbuster. MSR-TR-2005-25.

