
Fidelius Charm: Isolating Unsafe Rust Code

Hussain M. J. Almohri
Department of Computer Science

Kuwait University
almohri@ieee.org

David Evans
Department of Computer Science

University of Virginia
evans@virginia.edu

Abstract

The Rust programming language has a safe mem-
ory model that promises to eliminate critical memory
bugs. While the language is strong in doing so, its
memory guarantees are lost when any unsafe blocks
are used. Unsafe code is often needed to call library
functions written in an unsafe language inside a Rust
program. We present Fidelius Charm (FC)1, a sys-
tem that protects a programmer-specified subset of
data in memory from unauthorized access through
vulnerable unsafe libraries. FC does this by limiting
access to the program’s memory while executing un-
safe libraries. FC uses standard features of Rust and
utilizes the Linux kernel as a trusted base for split-
ting the address space into a trusted privileged region
under the control of functions written in Rust and a
region available to unsafe external libraries. This pa-
per presents our design and implementation of FC,
presents two case studies for using FC in Rust TLS
libraries, and reports on experiments showing its per-
formance overhead is low for typical uses.

1 Introduction

Rust is designed to provide strong memory safety, but
provides a way to escape its strict checking rules using
an explicit unsafe keyword. This enables systems-
level Rust programming, and supports easy integra-
tion with libraries written in unsafe languages such
as C. Code within an unsafe region can use all mem-
ory in the Rust program’s process in arbitrary ways,
jeopardizing all the safety guarantees made by the
Rust compiler. Unsafe regions enable calling unsafe
and untrustworthy external libraries through Rust’s
foreign function interface (FFI). When using FFI, the
Rust compiler cannot reason about memory vulner-

1A first version of this work was accepted for the proceed-
ings of CODASPY’18.

abilities, repudiating all the safety guarantees Rust
programmers work so hard to obtain.

The goal of this work is to enable FFI calls while
isolating some of the already allocated memory, limit-
ing the potentially-vulnerable external code (running
within the same address space) from reading sensi-
tive data. Rust has no mechanism to isolate an un-
safe external function or limit its impact. A practical
isolation mechanism must be able to limit the data
available to an unsafe external function while allow-
ing it to execute normally without the need to modify
or even inspect the unsafe code (which may only be
available as a binary). Traditional ways to address
this problem use computationally-intensive runtime
systems for compartmentalization of untrustworthy
code, or complex (and seldom usable) modifications of
the language’s compiler for monitoring and sandbox-
ing vulnerable or unsafe regions of the code. These
solutions would require major changes to either the
Rust compiler or the unsafe code itself, both of which
we want to avoid. Instead, we focus on a solution
that leverages existing language and operating sys-
tem mechanisms.

While no prior work addressed memory isolation
for unsafe Rust regions in particular, several previous
works have sought to confine code executing within a
single address space. Recent work such as Shreds [7],
lwC [14], and SpaceJMP [12] provide thread-like ab-
stractions for isolating memory. Codejail [29], a mem-
ory sandbox system, has fewer dependencies and pro-
vides a sandbox of the memory for unsafe libraries.
Our approach reverses the sandbox model by isolat-
ing a subset of the trusted region of the program and
providing the rest of the memory to the unsafe li-
braries.

All the previous works, except Codejail, require
some static analysis or special abstractions. We aim
to have a practical and lightweight solution that al-
lows programmers to make choices about which parts
of the memory to protect, that requires only mem-

Page 1

ory page permissions that are supported by modern
hardware, and that avoids hard modifications to the
operating system, only involving simple kernel exten-
sions. Our approach is to (i) move sensitive program
data to protected pages before entering unsafe code,
(ii) allow unsafe code to run normally without modi-
fications, (iii) restore visibility of the protected state
when unsafe code execution completes, and (iv) in-
corporate a precise and efficient kernel-level monitor
to ensure unsafe code cannot circumvent protections.

Threat Model Our solution assumes a trusted
starting state in which the operating system, and
underlying hardware, are not malicious and are im-
plemented correctly. FC is designed to protect the
memory of processes executing FC-ified Rust pro-
grams, in which sensitive memory regions are pro-
tected by isolated secure compartments when inter-
acting with foreign function interfaces. Thus, we as-
sume the code written in Rust is trusted except when
using an unsafe block to call an external library func-
tion.

We assume attackers are remote and do not have
root privileges on the target machine (that is, the ma-
chine on which FC operates and is subject to attacks)
or any way to interfere with program execution other
than through the foreign function called by the Rust
program. We assume the attacker can use memory
vulnerabilities in the unsafe code to access data allo-
cated by the trusted program region, for example, us-
ing poorly checked memory boundaries. Thus, the at-
tacker has access to all memory pages available to the
process in which the untrusted code executes, except
memory pages that are under FC’s protection. The
attacker aims to exploit vulnerabilities in untrusted
code to gain control over the program state in a Rust
program.

Contributions We present Fidelius Charm2, a
Rust language library and kernel extension support
for creating in-memory secure compartments by pro-
tecting sensitive data in memory from an unsafe func-
tion execution. We discuss the design decisions made
for developing FC, which intends to hide a subset of
the trusted memory regions allocated while executing
Rust code. In particular, our work has four primary
contributions:

• Extending Rust’s memory ownership by al-
lowing functions to own their allocated data in
secure compartments and limit access from unau-
thorized functions (Section 2).

2The name Fidelius Charm is inspired by Harry Potter’s
Fidelius Charm, which is a complex spell to conceal a secret in
a person.

• Designing strong kernel-level protection to
maintain the integrity of FC’s secure compart-
ments by monitoring and protecting the under-
lying APIs, such as mprotect, as well as perform-
ing stack inspection to ensure that access can be
re-enabled only by the intended safe Rust code
(Section 2.4).

• Controlling data sharing between a Rust
function and a unsafe library function while pro-
viding strong isolation of the safe and unsafe
code using a narrow and controlled data inter-
face (Section 2).

• Testing FC in case studies to explore its effec-
tiveness and implementation efforts (Section 3).

FC’s on-demand secure compartments ensure
memory protection and isolation within a single pro-
cess using architectural support for memory page per-
missions. FC’s design is cross-platform and thread-
safe, and requires no modification to the Rust com-
piler. Our implementation uses a Rust library and
kernel extension, both of which are available under an
open source license. Using FC involves mostly simple
modifications to the program’s source code, and low
run-time overhead (Section 4).

2 Design

To control access to memory allocated in Rust while
calling an unsafe code, we designed a compartmental-
ization technique which splits the address space into
three regions: (i) a private region that is inaccessi-
ble from unsafe functions and is fully accessible from
safe functions, (ii) an immutable region that could
be read from any part of the program, and (iii) an
exposed region, which is accessible from any part of
the program. The private and the immutable regions
comprise secure compartments, which are collections
of continuous memory pages with specific permission
bits. These compartments isolate sensitive data from
unsafe code by arranging memory appropriately on
pages and changing their permission bits to read-only
or no access. When an unsafe function executes, de-
pending on the program’s policies (specified by the
programmer), it has limited access to the secure com-
partments.

2.1 Motivating Example

Consider developing a TCP server using worker
threads, excerpted in Figure 1. It uses a Worker struc-
ture to hold data for a client session, and a Server

Page 2

fn process_traffic(traffic: [u8; TSIZE],
 worker: &Worker)
 -> [u8; TSIZE]{
 fc_immutable(&traffic);
 let dec = unsafe {
 decrypt_traffic(&traffic
 worker.session_key);
 }
 fc_normal(&traffic);
 dec
}
fn main() {
 ...
 fc_private(&server.key);
 let dec=decrypt(&traffic, &worker);
 fc_normal(&server.key);
 ...
}

.t
ex

t
.d

at
a

Unsafe
library

Rust
code

Available
memory

FC-ified Rust program

Re
ad

-o
nl

y

FC

SC

mprotect

User space

Is
ol

at
io

n
m

od
e

Kernel

FC

Figure 1: FC’s user space and kernel components create and maintain secure compartments in the Rust pro-
gram’s process. Access to mprotect calls is restricted to a specific region in the code, which controls the secure
compartments. The FC-ified program shows a simplified usage of FC’s interfaces to create a private (no per-
mission) secure compartment and an immutable (read-only) secure compartment.Other details of using FC are
described in Section 3.

structure to hold data for the main server program.
To store client’s message for processing, define an ar-
ray, let traffic = [0; TSIZE]. Also, consider a
Rust function process_traffic that invokes the un-
safe external function decrypt_traffic, which de-
crypts traffic using Worker.session_key.

This simple example includes several aspects that
motivate the need for FC. First, when decrypting the
traffic using an unsafe library function, the Rust func-
tion only needs to share the client’s session key in
Worker.session_key, hiding the server’s private key
(Server.key). Second, the Rust function must pro-
tect the original copy of the client’s traffic and send
it as a read-only input to decrypt_traffic. Third,
when processing a Worker’s client, the Rust function
must isolate the sensitive data, for example the ses-
sion keys of another Worker’s client. Also, the list of
Workers, and other server-related data stored in an
instance of Server should be secured before execut-
ing unsafe code. In Section 3, two case studies show
the of FC on actual Rust-based TLS servers.

Since the external library implemented in an unsafe
language may have serious security flaws that could
allow arbitrary access to memory [25], any call to
decrypt_traffic using unsafe in Rust potentially
exposes all of program’s memory. FC isolates data ob-
jects (i.e., individual variables, referred to as bindings
in Rust) to minimize the exposure when calling unsafe
code. For example, when calling decrypt_traffic

to decrypt a client’s message using its session key,
only the worker.session_key is exposed to the un-
safe code; Server.key and all other sensitive data ob-
jects stay in an isolated secure compartment and are
temporarily inaccessible throughout the entire pro-

gram.

2.2 Architecture of FC

FC consists of a user space library, a modified Rust
program that links to the library, and a kernel module
that maintains access control for the program’s safe
(written in Rust) and unsafe code (arbitrary libraries)
regions. Prior to an unsafe call, the programmer adds
calls to FC’s user space component, which are inter-
faces linked to the Rust program and facilitate creat-
ing secure compartments. As shown in Figure 1, the
user memory’s data section is divided into pages that
form secure compartments and exposed pages with
read and write access.

The second component of FC is the modified Rust
program that wraps unsafe calls with invocations of
FC’s functions. For example, in the FC-ified pro-
gram of Figure 1, process_traffic creates a read-
only secure compartment. The code following a call
to fc_immutable changes the program’s state to the
isolated mode, in which some of the original memory
page permission bits are modified. A subsequent call
to fc_normal reverses the program’s state to exposed
mode with all data section page permissions are re-
versed to read and write. The main function creates
a private secure compartment that hides the server’s
sensitive data.

FC’s user space library serves as a client for its
third component, a kernel module that implements a
mandatory access control by separating the code sec-
tion of the user space into two groups: (i) the code
written in Rust that has the right to issue mprotect

calls and modify page permissions, and (ii) the code

Page 3

written in arbitrary languages, which cannot make
mprotect calls on pages that are tagged as secure
compartments. As detailed in Section 2.4, the ker-
nel module maintains the secure compartments and
mediates access to memory page permissions.

2.3 Secure Compartments

FC enables two memory permission modes for its se-
cure compartments: immutable (read-only) and pri-
vate (inaccessible). The default memory permissions
are set by the process at the time of allocating mem-
ory pages, which FC does not change. The design
of FC faces a key challenge to maintain the integrity
of the secure compartments within a single virtual
address space by preventing the unsafe foreign func-
tions from accessing the enclosed memory pages. The
problem is that both the trusted Rust code and the
untrustworthy foreign function are sharing a process,
giving them equal operating system-level privileges
for modifying memory page permissions. A seemingly
simple solution would be to isolate the unsafe code in
a separate process. However, this solution requires
nontrivial changes to existing code, and can poten-
tially interfere with concurrency in existing Rust pro-
grams, which benefit from Rust’s clear and memory-
safe concurrency model. Our solution preserves the
current concurrency structure of the code while pro-
viding an inexpensive mechanism to maintain the in-
tegrity of secure compartments, specifically by dis-
abling the unsafe code from subverting the policies
set by the Rust code.

Creating and Reversing Secure Compart-
ments As shown in the FC-ified code of Figure 1, one
private secure compartment holds server.key and
an immutable secure compartment holds traffic

and worker.session_key (since both are on the
same memory page, one call to FC will create
a shared secure compartment for traffic and
worker.session_key).

Creating the secure compartments starts with a
trusted Rust function call to fc_immutable(var) (or
fc_private(var)) to provide protection for all data
objects in the memory page where var exists. In
the example code of Figure 1, this is repeated twice
since the secure compartments must be separated by
the level of access provided to the unsafe code (a
secure compartment cannot be both immutable and
private). First, FC examines the number of allocated
pages, determines the page addresses, and applies the
appropriate permissions to the pages (i.e., PROT_READ
for immutable and PROT_NONE for private), creating
two secure compartments. Next, FC issues a system
call, sending the kernel a list of page addresses that

will be in the program’s secure compartments (re-
gardless of being in immutable or private compart-
ments) to deny using mprotect on the specified pages.
FC also makes a system call to specify a designated
trusted region (an address in the code section pointing
to a function in FC) in the code, which will be allowed
(by the kernel) to make mprotect calls for reversing
page permissions in the secure compartments. The
kernel records the trusted region’s address and page
addresses in a protected address table (Section 2.4)
and monitors requests to modify permissions of the
protected pages.

2.4 Kernel Module

To designate a trusted region for kernel protection,
we implemented a Linux kernel module that traps
all mprotect calls (from those processes carrying a
special signal from FC) and monitors the protected
memory pages. The reason to use a kernel module is
to secure FC’s runtime monitoring within the trusted
operating system without source code modifications.

FC’s kernel module maintains the secure compart-
ments and ensures that only the trusted Rust code
can disable the page protections. The kernel exten-
sion determines when a call to change page access
permissions is legitimate based on code regions. The
idea is to designate a specific address range within
the Rust code at the time FC creates a secure com-
partment. The designated address range is communi-
cated to the kernel extension, which will subsequently
only allow modifications of the secure compartments
to originate and return to the specified address range.
The address range is computed at run time according
to the fully linked executable.

For security, FC’s kernel extension requires that
(i) the loaded code to be immutable across the pro-
cess, except by the operating system or the program
loader, (ii) an address A in the code section (address
of a function in FC’s code, linked to the Rust pro-
gram), which the kernel can trust to allow mprotect

calls to return to, and (iii) the first system call from
the user space FC, which explicitly asks the kernel
to restrict access to mprotect except those returning
to A, is trustworthy (done before any unsafe code is
executing).

Code Section Permissions The page permis-
sions for the code section (.text in the linked ELF)
must be set to PROT_READ, which is ensured by the
Rust compiler.3 FC’s kernel extension monitors the
page permissions for the code section and deny all

3As tested with the Rust’s compiler rustc 1.14.0 (e8a012324
2016-12-16).

Page 4

mprotect calls to them. This monitoring is only for
the parts of the Rust code, which must be given the
rights to call mprotect, which is a small subset of the
READONLY .text section that fits in a memory page.
(there is no theoretical restriction that this code ex-
ceeds one page, but our implementation does not need
more than one).
Designating the Trusted Region As described

in Section 2.3, FC’s user space component invokes
the kernel component with a system call (FC reuses
existing system calls to avoid modifying the kernel)
before executing an unsafe function. After creat-
ing secure compartments, a call to fc_protect(var)

will send the page address on which var exists along
with the address of the trusted region to the kernel
(through a system call). fc_protect(var) computes
the address of the trusted region as a fixed offset rel-
ative to the linked address of fc_protect(var) it-
self. That is, depending on the number of instruc-
tions in fc_protect(var), the offset is manually
computed and hard coded in FC’s code and is rel-
ative to the address given to fc_protect(var) by
the linker. The offset must only be changed if the
logic of fc_protect(var) was changed.

Designating the trusted region must come from a
trusted part of the code, which is code written in Rust
and is assumed to have compile-time memory guar-
antees. As the programs must always start execution
in Rust’s main function, assuming the programmer
has FC-ified the program around all calls to unsafe

foreign functions, the first use of fc_protect(var) is
trusted to be from the Rust program. In the exam-
ple shown in Figure 2, a new line of code is added to
the body of process_traffic (from Figure 1), which
performs the trusted call. Upon receiving the call,
FC’s kernel module disables mprotect and records
the address of the protected page and the trusted re-
gion’s address in the protected address table. The
trusted code region’s address is the address to which
subsequent mprotect calls on the protected memory
pages must return. The call to fc_normal perfroms
a system call asking FC’s kernel module to first allow
calls to mprotect and then reverse page permissions.
Before re-enabling mprotect, the kernel checks the
instruction pointer of the requesting task to verify
the return address from the call against the recorded
address in the protected address table. When a ma-
licious call to fc_normal is made, the instruction
pointer has an invalid address, and FC’s kernel mod-
ule’s policy policy is to kill the process (although
other actions could be used for applications where
fail safety is important). We will further analyze the
security of FC’s kernel module and possible attacks
in Section 2.5.

2.5 Security Analysis

We examine the security guarantees achieved by FC
from an attacker’s perspective. According to our
threat model, the attacker is only capable of a remote
attack, for example by crafting requests to a server.
FC’s effectiveness depends on both the attackers goals
and capabilities, and how much data the program ex-
poses to vulnerable unsafe components.

Protection Against Data Attacks The main
goal of FC’s design is to thwart attacks that depend
on reading or modifying sensitive data in the pro-
gram’s memory. The attacker’s gateway to the pro-
gram’s memory is through unchecked memory bound-
aries in the unsafe external library. Once exploited,
the attacker can potentially search through all acces-
sible memory to find the target data. The attacker’s
task is easier when the calling frame from the trusted
region can be identified (for accessing stack data),
and when a reference to memory allocated on heap is
passed to the unsafe function.

First, identifying the calling frame enables the at-
tacker to access data allocated in the trusted region.
This data is completely protected by FC, except for
any data that is on the calling frame’s page. Pro-
vided that the programmer does not violate FC’s in-
tended usage (by not declaring sensitive data objects
in the calling frame), the attacker cannot manipulate
or read data on the stack. Second, when the unsafe
function has a pointer to a memory allocated in the
heap, the attacker can identify the region of the mem-
ory that is likely to contain sensitive data. As heap
is allocated on consecutive memory addresses, the at-
tacker can attempt to access pages that may belong
to the heap. FC protects memory in the heap as re-
quested by the programmer. Thus, all memory pages
that were designated to move to secure compartments
are not accessible by the attacker, when executing in
isolation mode. One limitation of FC is that there
may be heap memory allocated for libraries that are
not visible to the programmer. It is also important
to note that any data in memory that is used as indi-
rect jump location or memory reference is potentially
sensitive; if such references are exposed to the ad-
versary, they may be corrupted to allow jumps that
bypass FC protections or to copy sensitive data into
locations that are not protected in a future unsafe
call.

Bypassing FC’s protection Bypassing FC in-
volves issuing calls to mprotect with a list of ad-
dresses to be set to PROT_READ OR PROT_WRITE.
First, the attacker is required to identify which mem-
ory pages are of interest. Second, a separate call to
mprotect is needed for each memory page. An alter-

Page 5

fc_immutable(&traffic);
fc_protect(&traffic);
let dec = unsafe {
 decrypt_traffic(&traffic
 worker.session_key);
}
fc_normal(&traffic);

Kernel

FC
fc_protect

Trusted and
immutable

code region
FC-ified Rust program

Protected
Address Table

Trusted calls

Figure 2: The trusted region is an address (in the code of FC’s user space library) to which calls from mprotect

must return to, which is ensured by FC’s kernel module. The kernel module traps and monitor all calls to
mprotect and maintains a list of page addresses in the protected address table for each thread.

native is that the attacker brute-forces the range of
all virtual memory addresses and sets the protection
for all pages to PROT_READ OR PROT_WRITE.

FC’s primary line of defense is the kernel-level dis-
cretionary access control based on code regions. As
explained in Section 2.4, FC’s kernel module only
allows mprotect to succeed on memory pages that
are not in the list of the task’s secure compartments.
Also, FC will not allow such calls to succeed if the cur-
rent task’s instruction pointer does not indicate the
address of FC’s library function in the trusted region,
which renders the attack unfeasible. There is, how-
ever, a possibility of launching a return-oriented pro-
gramming attack by chaining a set of gadgets within
the trusted region to call mprotect and trick the ker-
nel to releasing secure compartments. The limitation
of this attack is that the only possibility of an exe-
cution path is to re-execute the calling trusted func-
tion to first release the secure compartments and then
make a call to the unsafe library function allowing the
attacker to continue execution within the unsafe func-
tion. Such an attack is not possible as calls to FC
should always create the secure compartments first
and then release them, calling the unsafe function in
between. Repeating this execution only trigger’s FC’s
kernel module to be cautious of the process and ter-
minate it as this will involve multiple consequent calls
to create secure compartments.

3 Case Studies

FC assumes a knowledgeable programmer who uses
its core functions to perform the necessary pro-
tections. In general, FC’s protections could be
highly automated, but our current implemention
only automates stack protection. As automat-
ing heap protection involves many low-level de-
tails including implementing a custom memory al-

locator, we leave it for future work. We present
here our experience in FC-ifying a server based
on Rust’s openssl crate (https://github.com/
sfackler/rust-openssl); we also FC-ified a similar
Rust TLS server based on the hyper crate (https:
//github.com/ctz/hyper-rustls/) but since the
experience and results were similar we only describe
openssl in detail here. We show performance results
for both in Section 4.

FC-ifying openssl The openssl crate relies heav-
ily on the foreign function interface to fully implement
a TLS server based on the functionality provided in
the original openssl library implemented in C. Sim-
ilar to hyper, the server using openssl can be FC-
ified for protecting the acceptor object when handling
a client.

An acceptor object contains the server’s creden-
tials. The acceptor is stored in a Mutex, which is in
turn managed by a heap memory under an instance
of Arc. The objective of the FC-ified openssl im-
plementation is to secure the heap page that con-
tains the server’s private key. For each incoming
connection, at the time the client is served in a
dedicated thread, the program no longer needs ac-
cess to the acceptor. Thus, after the thread re-
ceives a pointer to the acceptor (acceptor.clone),
locks the Mutex (acceptor.lock), and finally ac-
cepts the connection (acceptor.accept(stream)),
a call to fc_protect(acceptor_addr) will result
in a secure compartment for the heap page on
which the acceptor resides. This secures the pri-
vate key which will be inaccessible to the un-
safe code. The call to fc_auto_stack and
the corresponding call to fc_auto_stack_reverse

will automatically protect the stack pages, and
the call to kernel_disable! and kernel_enable!

(kernel_disable! and kernel_enable! are macros
to facilitate using FC’s interface with the kernel
fc_protect as described in Section 2.4) that re-

Page 6

strict access to sys_mprotect. The call to a helper
macro, stack_padding! allocates auxiliary memory
on stack, ensuring that the data allocated prior to the
call remains on a separate virtual memory page.

1 fn openssl_listener() {

2 let acceptor = load_ssl_acceptor();

3 stack_padding!();

4 let acceptor = Arc::new(Mutex::new(acceptor));

5 let acceptor_ptr = acceptor.clone();

6 let acceptor_addr = memory_page_addr!(*acceptor_ptr);

7 let listener = TcpListener::bind(SERVER_IP).unwrap();

8 for stream in listener.incoming() {

9 match stream {

10 Ok(stream) => {

11 let acceptor = acceptor.clone();

12 let child = thread::spawn(move || {

13 let acceptor = acceptor.lock().unwrap();

14 let mut stream = acceptor.accept(stream).unwrap();

15 fc_private_u(acceptor_addr);

16 fc_auto_stack();

17 kernel_disable!(acceptor_addr as usize);

18 handle_client(&mut stream);

19 kernel_enable!();

20 fc_auto_stack_reverse();

21 fc_normal_u(acceptor_addr);

22 });

23 child.join().unwrap();

24 }

25 Err(_) => { /* connection failed */ }

26 }

27 break;

28 }

29 }

Figure 3: Starts a FC-ified server, while protecting
the server’s private key after a new client connection
is established. This function is thread-safe and does
not cause segmentation fault for accessing the pro-
tected acceptor.

Attacks Thwarted FC can be used in various
ways depending on the needs. The main goal is
to prevent exposing the server’s credentials and the
program’s state (mainly on stack) when interacting
with untrustworthy clients and executing unsafe code.
For complex servers, the handling function may in-
clude references to commodity unsafe libraries that
can jeopardize the security guarantees of the pro-
gram, causing arbitrary data leak. FC guarantees
that the explicitly protected data remains unreach-
able when such an attack occurs. FC releases the se-
cure compartments, when called through fc_normal,
after completing a client processing. This ensures

that the server’s credentials are only accessible when
the server can make sure a malicious client is no
longer connected. A slight limitation of this imple-
mentation is when serving clients for long periods,
which can cause long delays for concurrently con-
necting clients (as the acceptor object is locked while
serving the client). One can prevent this limitation
by generating multiple copies of the acceptor with a
pool of worker threads model. Each thread would use
FC to protect its own copy.

4 Performance

This section reports on our experiments to evaluate
the run-time cost of FC, first showing results on a set
of microbenchmarks, and then reporting application-
level performance measurements on the openssl and
hyper case study applications from Section 3.

4.1 Microbenchmarks

For the microbenchmarks, our goal is to understand
the cost of each of the operations involved in using
FC. We use Rust’s benchmarking interface to measure
the cost for creating secure compartments, launching
and processing a plain openssl request, and launch-
ing and processing a FC-ified openssl request, as im-
plemented in Figure 3.

Table 1 reports the cost of using FC’s main inter-
faces. The Base benchmark is an empty closure for
measuring the benchmarking interface’s cost. The
Padding benchmark is a closure which isolates two
memory pages using 512 × 64 byte arrays. Creat-
ing Secure Compartment is a closure that introduces
padding, modifies the isolated page’s permissions,
communicates the page address to the kernel module,
and reverses page permissions and requests the kernel
to re-enable access to the specified page address.

The last two rows in Table 1 compare the time re-
quire to launch an openssl-based HTTP server and
processing a single client using a plain Rust imple-
mentation and a FC-enabled implementation. The
results shown are the average over multiples of multi-
iteration tests, in which some of the tests did not
distinguish the difference at all. FC’s cost is neg-
ligible relative to the overall cost of openssl. The
cost of FC is slightly more noticeable in the system
benchmarks presented next. We performed the tests
on a vmware Workstation virtual machine on a local
disk with Ubuntu 15 as the host system, configured
to use two of the available four cores and two GBs of
memory.

Page 7

Experiment Time (ms)
Base 0.000024
Padding 0.0054
Creating Secure Compartment 0.0105
openssl server 14.342
FC-ified openssl server 14.385 (0.29% increase)

Table 1: Microbenchmark results.

4.2 System Benchmarks

In the second and third settings, we test the per-
formance of unsafe operations in TLS-based HTTP
servers, which either use unsafe operations for invok-
ing openssl operations or make calls to Rust’s ring

library, which in turn makes unsafe calls to crypto-
graphic functions. We perform a time comparison
between a plain HTTP server that doesn’t use FC
and an FC-ified HTTP server. FC’s latency includes
the small overhead of the kernel module, which is dis-
abled in experiments without FC.
HTTP server Measuring the throughput of a

openssl-based and a hyper-based HTTP server re-
quired implementing benchmarking tools for a precise
measuring of the contribution of each thread in pro-
cessing the requests. In the openssl-based server, for
each request three secure compartments are created
prior to handling the process and one secure com-
partment is created for handling the process. We
measure the throughput by running the test for 60
seconds while automatically sending HTTP requests
in intervals of 10 milliseconds, collecting the number
of successfully processed requests at the end of the
experiment. In each iteration, all four secure com-
partments are created and destroyed. FC maintains
modest overhead even when handling 128 simultane-
ous request threads, reaching a pick decrease of 5%
in the number of requests processed in 60 seconds.
FC’s overhead was noticeable when every request in-
volved 50 calls to ring for computing a file’s digest,
with an average decrease of 13.69% processed requests
occurred. Finally, when using a duration of 30–100
seconds with a fixed number of 16 simultaneous re-
quests processed in intervals of 10 milliseconds, the
average decrease in the number of requests processed
was 8.30% (Figure 4.

In the hyper-based server, the throughput was
measured similar to the benchmark of Figure 4 in
which a growing number of threads send simultane-
ous requests. All requests were implemented as echo
requests. In the FC-enabled version, during the time
the client is served, the server’s private key is totally
isolated and is unusable. To serve multiple clients,
for each request, the private key is cloned and once

30 40 50 60 70 80 90 100
Processing interval (secs)

1000

2000

3000

4000

5000

6000

7000

R
eq

ue
st

s
pr

oc
es

se
d

Multithreaded HTTPS throughput with 50 digests

Rust
FC

Figure 4: Throughput of an openssl HTTP in 30–
100 seconds. Each request has 50 calls to ring’s di-
gest. In the FC-enabled server, each digest iteration
creates and releases a secure compartment.

the shared key is established, the cloned private key
will be kept in a separate secure compartment. The
result of the experiment is in Figure 5, showing an
average decrease of 1.38% in the number of requests
processed.

1 2 4 8 16 32 64 128
Number of clients

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
eq

ue
st

s
pr

oc
es

se
d

104 Hyper+TLS throughput

Rust
FC

Figure 5: Throughput of a Hyper server using Rust
TLS in 60 seconds. Requests are sent locally using 2k

threads for k ∈ [0,7].

5 Related Work

The goal of isolating code components (also referred
to as application compartmentalization) is a long-
standing goal of our community and has been the
focus of extensive research in operating systems, pro-
gramming languages, and architecture. This is the
first work to focus on isolating unsafe code within a
single address space for Rust programs.

In terms of our memory model and isolation tech-
niques, previous works most similar to FC include Na-
tive Client [30], Codejail [29], HideM [9], SeCage [15],
Shred [7], lwC [14], and SpaceJMP [12]. We discuss
these next, followed by a brief account of classical

Page 8

work on software fault isolation and the principle of
least privilege.

Sandboxing Libraries Native Client [30] pro-
vided memory sandboxing for libraries, allowing lim-
ited interaction with the trusted program using re-
mote procedure calls. Fidelis Charm and Native
Client (NaCI) share the main objective of limiting
external libraries, however, differ in approach and
applicability. In contrast with NaCI’s approach for
loading libraries in limited containers, FC contains
the trusted memory when interacting with unsafe li-
braries. Codejail [29] proposed an enhancement of
the idea by sandboxing a library by disallowing write
access to the program’s data, making the sensitive
memory read-only. The program would selectively
allow write access to its data, when a tight inter-
action with the library is needed. Codejail shares
FC’s goals in (i) proposing a secure memory shar-
ing model that does not require modifications to the
library and (ii) supporting tight and limited interac-
tions with an untrustworthy library. Aside from fo-
cusing on Rust, FC is distinguished in that the mem-
ory of the trusted program is the sandbox, instead of
the library, and unless a data object must be shared
with the library, the entire memory allocated either
on stack or heap of the trusted Rust code is inacces-
sible to the library. This key difference in memory
sandboxing model overcomes Codejail’s limitation of
libraries within a specific memory regions.

Various techniques have been developed for confin-
ing and limiting processes or groups of processes (e.g.,
[19, 8, 1, 13, 10, 23, 18]), aiming for isolating vulner-
able software from critical system resources. In the
design of FC, a sandbox would avoid incuring unnec-
essary latency as our goal is to isolate code at the fine
level of (often frequent) unsafe calls. That said, sand-
boxing using Intel enclaves [13] can provide improved
security for FC’s kernel module.

Memory partitioning Shared memory among
distrustful threads within a single process is ad-
dressed by Arbiter [27], which proposes to use mem-
ory permission bits to protect a thread’s data from
another. Arbiter uses to a policy manager that un-
derstands programmer-annotated privileges and en-
forces them. FC uses memory page padding to sep-
arate and isolate data objects based on a simple bi-
nary permission system (immutable or private). The
kernel component in FC only enforces FC’s integrity
and does not need to enforce application-level poli-
cies. HideM [9] takes a radical approach by using
split-TCB to show different contents of a page for dif-
ferent CPU operations, hiding data when a specified
code region should not have access to it. In contrast,
FC temporarily hides the actual memory page and

isolates the data when an explicit interaction with an
untrustworthy library function occurs. SeCage [15]
is similar to HideM in providing different views of
the memory according to separated privileges. Us-
ing hardware virtualization, SeCage targets a strong
adversary model in which the operating system does
not need to be trusted.

Shred [7], light-weight context (lwC) [14], and
SpaceJMP [12] are new methods for splitting the vir-
tual address space into multiple distinct sections aim-
ing for isolating untrustworthy code. Shreds and lwC
introduce abstractions similar to threads. To protect
data across a program, Shred provides a set of pro-
gramming interfaces to request creating and moving
data into separate Shreds. At runtime, Shreds are
implemented using Intel’s memory protection keys.
A lwC, in contrast, does not work with memory per-
missions directly but creates separate address spaces,
when the programmer requests that using the pro-
gramming interfaces. SpaceJMP is similar to lwCs in
using multiple virtual address space, differing from
lwCs in that SpaceJMP enables memory sharing
across multiple processes. While FC is similar to
these in that it provides an interface for isolating
memory regions, it does not propose a new operating
system model and does not require switches between
address spaces.

Other related work but farther away have pro-
vided interesting contributions for application com-
partmentalization, mainly with narrow and specific
applicability. For example, Mimosa specifically tar-
gets cryptographic keys and uses hardware transac-
tional memory to ensure that no process, other than
Mimosa, can access the keys. Mimosa uses encryp-
tion to hide the keys, when the system is idle. Al-
though FC and Mimosa agree on a high level goal of
hiding data objects in memory, FC differs in that it
uses memory isolation without the need for hardware
transactional memory and works with arbitrary data.
DataShield [5] protects data in C++ programs by dis-
allowing pointer dereferencing based on programmer
annotations. Song et al. propose a data-flow integrity
approach to infer and enforce correct flow of sensitive
data in kernel space [24]. Lastly, SOAAP [11] is a
reasoning tool for assisting programmers in using ap-
plication compartmentalization to avoid security and
correctness errors. We envision a similar tool for our
future work to support programmers with FC and
automate the task of locating unsafe regions and the
data objects that must be isolated.
Software fault isolation has consistently re-

ceived attention during the past decades. Simple so-
lutions such as placing the faulty code, or the un-
safe code, in a separate address space seem viable, al-

Page 9

though for merely a call to an unsafe function, the un-
necessary context switches are too much of a burden.
Wahbe et al. pioneered the design of logically sepa-
rated fault domains within a single address space [26],
which was followed by an effort to isolate addressabil-
ity from accessibility in Opal, a single-address-space
64-bit architecture [6]. The work in [26] described
a model in which fault domains are separated based
on the code region through restricting the execution
of one to jump to another. This model inspired our
kernel-centric code region discrimination design, with
a fundamental difference; FC would not require an
RPC interface to enable cross-domain interactions. In
fact, FC imposes no particular paradigm on the pro-
gram and automates code region separation through
a kernel extension.

The principle of least privilege [22] is the
theme of a number of previous work that promised
least privilege isolation. With resource contain-
ers [2] separating access control from execution, isola-
tion progressed further towards decoupling scheduling
from security requirements, which were a fundamen-
tal design issue with process management in modern
monolithic kernels. The work by Provos et. al set
a clear goal: privilege separation within an applica-
tion forbids programming errors in the lower privi-
leged code from abusing higher privileged code [20].
However, privilege separation was a return back to
the use of processes as basic blocks for isolation,
reusing UNIX per-process protection domains. Priv-
trans [4] automated privilege separation using pro-
grammer annotations, partitioning a program into a
monitor and a slave program, continuing the efforts of
isolation at the process level. Sthreads in Wedge [3]
introduced default-deny compartments within a sin-
gle monolithic program, spawning new threads, not
entire processes, for isolating parts of the program.
Sthreads enjoy programmer tagged memory access
rights, which are enforced at runtime. Programmer
annotated privileges were also introduced for isolat-
ing kernel modules [17] from core kernel services to
prevent privilege escalation. Similarly, Trellis [16] al-
lows code-annotated privileges (mainly for memory
allocations), which are enforced by the kernel at run-
time. CHERI [28], a hardware extension relying on a
capability co-processor, supports compartmentaliza-
tion for in-address-space memory isolation targeting
the C language.

Finally, RustBelt [21] develops a subet of Rust,
namely λRust, and uses to prove the safety of Rust
programs. An important result provided by RustBelt
is verification of safety while using unsafe interactions
with linked libraries. Rustbelt verifies a λRust pro-
gram with unsafe code has safely encapsulated the

externally linked library using within Rust wrappers.

6 Conclusion

Rust provides strong memory guarantees using zero-
cost abstractions, but any non-trivial Rust program
today includes unsafe code and most fall back on us-
ing libraries in unsafe languages. A long-range goal
should be to eliminate the need for any unsafe code—
developing native Rust libraries when possible, and
when arbitrary memory operations are needed using
more powerful formal methods to prove the safety
of code that cannot be proven safe by Rust’s com-
piler. A practical path to dramatic improvements in
program safety and reliability, however, requires com-
bining safe and unsafe code. Incorporating any unsafe
code into a Rust program, however, abandons all of
the safety guarantees. Fidelius Charm provides a step
towards safe incorporation of unsafe code by isolating
sensitive data in memory from the unsafe code. We
achieved a high level of isolation, without requiring
any compiler changes or complex abstractions, and
in a way that can be applied to any Rust program
when interacting with any unsafe library function.

References

[1] H. M. J. Almohri, D. Yao, and D. G. Kafura.
Process authentication for high system assur-
ance. IEEE Trans. Dependable Secur. Comput.,
11(2):168–180, Mar. 2014.

[2] G. Banga, P. Druschel, and J. C. Mogul. Re-
source containers: A new facility for resource
management in server systems. In Proceedings
of the Third Symposium on Operating Systems
Design and Implementation, pages 45–58, 1999.

[3] A. Bittau, P. Marchenko, M. Handley, and
B. Karp. Wedge: Splitting applications into
reduced-privilege compartments. In Proceedings
of the 5th USENIX Symposium on Networked
Systems Design and Implementation, NSDI’08,
pages 309–322, 2008.

[4] D. Brumley and D. X. Song. Privtrans: Au-
tomatically partitioning programs for privilege
separation. In USENIX Security Symposium,
2004.

[5] S. A. Carr and M. Payer. Datashield: Config-
urable data confidentiality and integrity. In Pro-
ceedings of the 2017 ACM Asia Conference on
Computer and Communications Security, ASIA

Page 10

CCS ’17, pages 193–204, New York, NY, USA,
2017. ACM.

[6] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D.
Lazowska. Sharing and protection in a single-
address-space operating system. ACM Trans.
Comput. Syst., 12:271–307, 1994.

[7] Y. Chen, S. Reymondjohnson, Z. Sun, and L. Lu.
Shreds: Fine-grained execution units with pri-
vate memory. In Proceedings of the 2016 IEEE
Symposium on Security and Privacy (SP), pages
56–71, May 2016.

[8] B. Ford and R. Cox. Vx32: Lightweight user-
level sandboxing on the x86. In USENIX 2008
Annual Technical Conference, ATC’08, pages
293–306, Berkeley, CA, USA, 2008. USENIX As-
sociation.

[9] J. Gionta, W. Enck, and P. Ning. Hidem: Pro-
tecting the contents of userspace memory in the
face of disclosure vulnerabilities. In Proceed-
ings of the 5th ACM Conference on Data and
Application Security and Privacy, CODASPY
’15, pages 325–336, New York, NY, USA, 2015.
ACM.

[10] A. Gollamudi and S. Chong. Automatic en-
forcement of expressive security policies using
enclaves. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2016, pages 494–
513, New York, NY, USA, 2016. ACM.

[11] K. Gudka, R. N. M. Watson, J. Anderson,
D. Chisnall, B. Davis, B. Laurie, I. Marinos,
P. G. Neumann, and A. Richardson. Clean ap-
plication compartmentalization with soaap. In
ACM Conference on Computer and Communi-
cations Security, 2015.

[12] I. E. Hajj, A. Merritt, G. Zellweger, D. S. Milo-
jicic, R. Achermann, P. Faraboschi, W. mei
W. Hwu, T. Roscoe, and K. Schwan. Space-
jmp: Programming with multiple virtual address
spaces. In ASPLOS, 2016.

[13] D. Kuvaiskii, O. Oleksenko, S. Arnautov,
B. Trach, P. Bhatotia, P. Felber, and C. Fetzer.
Sgxbounds: Memory safety for shielded execu-
tion. In EuroSys, 2017.

[14] J. Litton, A. Vahldiek-Oberwagner, E. Elnikety,
D. Garg, B. Bhattacharjee, and P. Druschel.
Light-weight contexts: An os abstraction for

safety and performance. In Proceedings of the
12th USENIX Conference on Operating Systems
Design and Implementation, OSDI’16, pages 49–
64, Berkeley, CA, USA, 2016. USENIX Associa-
tion.

[15] Y. Liu, T. Zhou, K. Chen, H. Chen, and
Y. Xia. Thwarting memory disclosure with effi-
cient hypervisor-enforced intra-domain isolation.
In ACM Conference on Computer and Commu-
nications Security, 2015.

[16] A. Mambretti, K. Onarlioglu, C. Mulliner,
W. Robertson, E. Kirda, F. Maggi, and
S. Zanero. Trellis: Privilege separation for multi-
user applications made easy. In International
Symposium on Research in Attacks, Intrusions,
and Defenses, pages 437–456. Springer, 2016.

[17] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zel-
dovich, and M. F. Kaashoek. Software fault
isolation with api integrity and multi-principal
modules. In SOSP, 2011.

[18] E. Pattuk, M. Kantarcioglu, Z. Lin, and H. Ulu-
soy. Preventing cryptographic key leakage in
cloud virtual machines. In USENIX Security
Symposium, 2014.

[19] D. S. Peterson, M. Bishop, and R. Pandey. A
flexible containment mechanism for executing
untrusted code. In USENIX Security Sympo-
sium, 2002.

[20] N. Provos, M. Friedl, and P. Honeyman. Pre-
venting privilege escalation. In USENIX Security
Symposium, 2003.

[21] R. K. D. D. Ralf Jung, Jacques-Henri Jourdan.
RustBelt: Securing the foundations of the rust
programming language. In Proceedings of the
45th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL 2018, New
York, NY, USA, 2018. ACM.

[22] J. H. Saltier and M. P. Schroeder. The protection
of information in computer systems. IEEE CSIT
Newsletter, 3(12):19–19, Dec 1975.

[23] R. Sinha, M. Costa, A. Lal, N. P. Lopes, S. K.
Rajamani, S. A. Seshia, and K. Vaswani. A de-
sign and verification methodology for secure iso-
lated regions. In PLDI, 2016.

[24] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and
W. Lee. Enforcing kernel security invariants with
data flow integrity. In NDSS, 2016.

Page 11

[25] L. Szekeres, M. Payer, T. Wei, and D. X. Song.
Sok: Eternal war in memory. In Proceedings
of the 2013 IEEE Symposium on Security and
Privacy, SP ’13, pages 48–62, Washington, DC,
USA, 2013. IEEE Computer Society.

[26] R. Wahbe, S. Lucco, T. E. Anderson, and S. L.
Graham. Efficient software-based fault isolation.
In SOSP, 1993.

[27] J. Wang, X. Xiong, and P. Liu. Between mu-
tual trust and mutual distrust: Practical fine-
grained privilege separation in multithreaded ap-
plications. In USENIX Annual Technical Con-
ference, 2015.

[28] R. N. M. Watson, J. Woodruff, P. G. Neumann,
S. W. Moore, J. Anderson, D. Chisnall, N. H.
Dave, B. Davis, K. Gudka, B. Laurie, S. J.
Murdoch, R. Norton, M. Roe, S. D. Son, and
M. Vadera. Cheri: A hybrid capability-system
architecture for scalable software compartmen-
talization. 2015 IEEE Symposium on Security
and Privacy, pages 20–37, 2015.

[29] Y. Wu, S. Sathyanarayan, R. H. C. Yap, and
Z. Liang. Codejail: Application-transparent iso-
lation of libraries with tight program interac-
tions. In ESORICS, 2012.

[30] B. Yee, D. Sehr, G. Dardyk, J. B. Chen,
R. Muth, T. Ormandy, S. Okasaka, N. Narula,
and N. Fullagar. Native client: A sandbox
for portable, untrusted x86 native code. 2009
30th IEEE Symposium on Security and Privacy,
pages 79–93, 2009.

Page 12

