
Abstract

Publish-subscribe is a communication paradigm that
supports dynamic, many-to-many communications in a
distributed environment. Content-based pub-sub systems
are often implemented on a peer-to-peer infrastructure
that enables information dissemination from information
producers (publishers) to consumers (subscribers)
through a subscription mechanism. In a wide-area pub-
sub network, the pub-sub service must handle information
dissemination across distinct authoritative domains,
heterogeneous platforms and a large, dynamic population
of publishers and subscribers. Such an environment raises
serious security concerns. In this paper, we investigate
the security issues and requirements that arise in an
internet-scale content-based pub-sub system. We
distinguish among those requirements that can be
achieved with current technology and those that require
innovative solutions.

1 Introduction

Today’s mission-critical systems make extensive use
of distributed computing over large, heterogeneous
networks. A promising technology in achieving
distributed computing is the use of publish-subscribe
mechanisms (hereafter refer to as pub-sub). A pub-sub
system is a communication infrastructure that enables data
access and sharing over disparate systems and among
inconsistent data models [7]. Gnutella [16] is an example
of a pub-sub system. This paper focuses on content-based
publish-subscribe where subscribers register interest to
information and the infrastructure routes the information
to the subscribers based on the information content and
the user subscriptions.

In a wide-area content-based pub-sub network, the
underlying pub-sub infrastructure is often implemented as
a collection of network servers communicating with each

other in a peer-to-peer fashion [8]. In such an
environment, the pub-sub service must handle information
dissemination across distinct authoritative domains,
heterogeneous platforms and a large, dynamic population
of publishers and subscribers. Many security concerns
exist in such an environment. For example, delivering
information to interested (and authorized) parties only is
an information privacy concern, and so is the concern of
keeping the subscription information private.
Additionally, the integrity and availability of the pub-sub
mechanism must be ensured.

The current designs of pub-sub systems tend to focus
on the performance, scalability and expressiveness issues
of the mechanism [8][24]. In this paper, we investigate the
basic security issues for pub-sub systems. We will
distinguish between those that can be achieved with
current technology and those that merit innovative
solutions. We will not, however, attempt to design a
security model in this paper.

2 Publish-subscribe systems

A pub-sub system is a routing network that delivers
datagrams from publishers to interested subscribers.
Unlike multicast group communications where group
addresses and memberships are statically bound, pub-sub
systems use a communication model where the eligibility
of group membership is evaluated dynamically. Such a
communication system has many potential benefits. For
instance, instead of requiring publishers to identify
destination addresses for their messages (potentially
requiring multiple messages to multiple destinations), a
pub-sub network can handle message routing in a way
that avoids unnecessary message replications.

In a content-based pub-sub system, the network
supports a language that specifies the publication and
subscription interface. For example, a subscriber specifies
a subscription function defined over the content of
datagrams. A publisher publishes a datagram composed
from a set of legal vocabularies in the language. When a
publisher sends out a datagram, the network attempts to
deliver that datagram to every interface whose
subscription function returns true when applied to the
content of the datagram.

Communication in a pub-sub system is inherently a
multi-party, many-to-many interaction. In this paper, we

Security Issues and Requirements for Internet-Scale Publish-Subscribe Systems

Chenxi Wang*, Antonio Carzaniga‡, David Evans†, Alexander L. Wolf‡

Email: chenxi@cmu.edu, carzanig@colorado.edu, evans@virginia.edu, alw@colorado.edu

*: Electrical and Computer Engineering Department, Carnegie
Mellon University.

‡: Department of Computer Science, University of Colorado at
Boulder.

†: Department of Computer Science, University of Virginia.

consider a communication model illustrated by the
example in Figure 1. The pub-sub communication
protocol can be viewed as follows:
1) Subscribers S1, S2, and S3, send subscriptions f1, f2,

and f3 respectively to some hosts in the network.
2) Publisher P1 sends a datagram d to some entry point

of the network, with f1(d) ∧ f2(d) ∧ ¬ f3(d); that is, d
matches subscriptions f1 and f2 but not f3.

3) The network determines the matching relationships
and sends d to S1 and S2.

Note that the publisher only sends d into the network
once and need not know anything about the subscribers or
subscription functions.

We use two example applications throughout this
paper. We believe that they are typical of many of the
ways that pub-sub will be used. In the later part of this
paper, whenever possible we will discuss the security
issues within the context of these examples.

Stock quotes dissemination: Consider an application
that uses a pub-sub system to disseminate real-time stock
quotes. Subscribers specify the stock symbol and a
schema (e.g., the frequency of quotes) based on which
they will receive quotes.

Human resource resume circulation: Consider an
application that allows users (publishers) to post their
resumes and sells the resume information to interested
human resource offices (subscribers). Subscribers specify
key words indicating a particular background to search for
relevant resumes.

3 Security requirements

The security requirements for a pub-sub system can be
divided into the requirements for a particular application
involving publishers and subscribers, and the
requirements for the pub-sub infrastructure:
• The application, comprising the publishers and

subscribers. Publishers and subscribers may not trust
each other, and may not trust the pub-sub network.

• The infrastructure, consisting of the pub-sub network
that provides services to the application. The
infrastructure may not trust publishers and
subscribers. Components of the infrastructure may
not necessarily trust each other.

For example, providing a mechanism that defines who
has what access to what information is mostly an
application-level concern. It requires a definition of
identity, authorization and access control within the pub-
sub infrastructure. In the meantime, controlling who is
able to change the subscription database maintained by
the pub-sub service and restricting channel utilization are
infrastructure-level protection issues.

In this section, we explore the various security issues
and requirements in the two categories. The general
security needs of the application include confidentiality,
integrity, and availability, while the security concerns of
the infrastructure focus primarily on system integrity and
availability.

Other important issues stem from the fact that the pub-

publisher P1 subscriber S1

publish-subscribe network

publisher P2

subscriber S2

subscriber S3

d

d

d

f1

f2

f3

Figure 1: A publish-subscribe system

sub system is a service layer. Invariably, it must deal with
applications with varying security needs and
requirements. It is therefore inappropriate for the pub-sub
system to dictate a global security policy that will be
implemented to disseminate information for every
application. A major challenge in designing a security
architecture for pub-sub is the provision of a flexible
security framework allowing diverse policies and
mechanisms to be implemented within the same pub-sub
infrastructure.

In Section 4, we discuss security issues faced by pub-
sub systems that are similar to those present in traditional
network security. The content-based routing and dynamic
subscription properties of pub-sub systems introduce
many new security requirements and challenges. While
some of these issues are new, there appear to be several
opportunities to adapt known solutions to address these
problems. Section 5 discusses specific confidentiality
concerns for pub-sub systems. Section 6 considers
accountability and billing issues. Section 7 explores
denial-of-service vulnerabilities particular to pub-sub
systems.

4 Generic issues

Some security issues in pub-sub systems are not unlike
those that appear in other distributed systems that cross
administrative domains. In some cases, existing
approaches can be adopted to achieve these goals, often
with only minor modification. We discuss those cases
below.

Authentication. Authentication establishes the identity
of the originator of an action. In pub-sub, we consider two
flavors of authentication, end-to-end and point-to-point.
End-to-end authentication in this context means that if
subscriber A receives a message claiming to have
originated from publisher B, A can verify that B is indeed
the publisher of the message. Point-to-point authentication
is concerned only with the immediate end points of a
communication: if A receives a message from B, A can
verify that B is indeed the sender of the message where A
and B can be publishers, subscribers or network servers.

End-to-end authentication can be implemented outside
of the pub-sub domain. If a PKI exists independent of the
pub-sub network, end-to-end authentication can be
accomplished by having publishers sign messages using
their private keys. The subscribers can then verify a
publisher’s identity by verifying the digital signatures
attached to the message. The signing and verification
operations occur outside of the pub-sub domain, and they
can be administered independently.

If the pub-sub infrastructure is trusted, end-to-end
authentication can be replaced with point-to-point
authentication. Point-to-point authentication is a well-
understood practice, and standard techniques should apply

here.
There have been instances of pub-sub systems

implemented using Opengroup’s Distributed Computing
Environment (DCE) [18] and its security features
[4][21][24]. The potential size of an Internet-scale pub-
sub system may give rise to scalability problems for DCE
that are not present in smaller-scale systems. The pros and
cons of using DCE (and other existing technologies) to
outfit a pub-sub system need to be investigated closely
before more informed assessment can be made.

Information integrity. The standard means to provide
information integrity is by using digital signatures. A
digital signature, when signed on the message digest with
the sender’s private key, provides two pieces of evidence:
a) the message content has not been changed since it is
signed, and b) the message indeed originated from the
sender.

The provision of digital signatures can be largely
independent of the pub-sub infrastructure. Consider again
using a PKI for publishers and subscribers. Message
integrity can be enforced by having the sender digitally
sign every outgoing message. The establishment and
management of the PKI can be performed independently
of the pub-sub layer.

Subscription integrity. In a pub-sub system, the user
subscriptions kept by the network form the basis for
routing and forwarding — therefore the subscriptions
must be protected from unauthorized modifications. This
is a traditional access-control issue that can be solved with
traditional means providing proper authentication and
rights management. For most realistic cases, it is
reasonable to assume that subscribers can trust the pub-
sub infrastructure to implement subscription functions
without malice.

Service integrity. Integrity of the pub-sub service can
be put at risk if malicious faults arise at the infrastructure
level (e.g., infrastructure hosts are compromised). A
malicious server can insert bogus subscriptions and act as
a bogus subscriber to neighboring servers. Moreover, it
can ignore the routing algorithm entirely and route
messages to arbitrary destinations or drop them
completely.

Protecting the pub-sub network from malicious
intrusions is not unlike protection of other large networks.
However, if the infrastructure is compromised, pub-sub
systems present new research questions regarding
mechanisms that preserve services in the presence of
malicious infrastructure servers. This topic is investigated
in depth in the following sections.

We note that this is not solely a security architecture
issue. For example, one can design the routing algorithm
in such a manner that there is never a single route between
any pair of publisher and subscriber, and that each
message is routed on multiple routes to its destination. At
the price of increased resource consumption, this

mechanism ensures a high probability that a message will
be delivered to its intended parties despite a small number
of malicious servers.

To begin tackling the problem of service integrity in
the presence of malicious infrastructure hosts, a
comprehensive fault analysis is needed in which the
malicious faults are enumerated and consequences
examined. We can then begin to understand the extent to
which the existing infrastructure may be able to tolerate
such malicious faults and subsequently design
mechanisms to increase this tolerance.

User anonymity: User anonymity in pub-sub can be
achieved with various anonymizing techniques developed
for distributed systems [22][25]. It is also worth noting
that the pub-sub routing and forwarding mechanism can
be used as a lightweight anonymity tool. For example, in
the Siena system the publications travel along a shortest
path from the publisher to the subscribers [8]. Because of
the way the routing mechanism works, a pub-sub server in
Siena only knows its immediate predecessor and
successor in the path. End-point anonymity is preserved in
any path that has more than two hops. It is possible that
with some strengthening, the pub-sub routing and
forwarding algorithm can be used as a full-fledged
anonymity tool without introducing much extra cost.

5 Confidentiality

Pub-sub systems introduce three novel confidentiality
issues:
- Can the infrastructure perform content-based routing,

without the publishers trusting the infrastructure with
the content? (Information confidentiality)

- Can subscribers obtain dynamic, content-based data
without revealing their subscription functions to the
publishers or infrastructure? (Subscription
confidentiality)

- Can publishers control which subscribers may receive
particular publications? (Publication confidentiality)

Each of these poses new problems, but there appear to
be opportunities to adapt well-known approaches towards
satisfactory solutions.

Information confidentiality. When information being
published contains sensitive content, publishers and
subscribers may wish to keep information secret from the
pub-sub infrastructure. This is especially important in a
large pub-sub system where information may travel
through network segments that are not necessarily trusted.
Recall the resume circulation example from Section 2. It
is conceivable that suppliers of resumes may wish to keep
the resume content private from the routing
infrastructure—an untrustworthy infrastructure server
may copy every resume that routes through it and then

sell them for a profit.
The requirement of confidentiality against the

infrastructure is in a fundamental conflict with the pub-
sub model. By definition, the pub-sub network routes
information based on dynamic evaluations of information
content against user subscriptions. Keeping the
information private from the routing hosts may hinder
such evaluations and hence routing. In particular, routing
and forwarding optimizations such as the ones performed
by Gryphon [3] and Siena [8] will be impossible to carry
out if the infrastructure hosts do not have access to the
information content.

Further note that the legitimate receivers of the
information (i.e., the subscribers) must be able to read the
information content, which may require an out-of-band
agreement among the publishers and the subscribers so
that the subscribers can recover the content of the
publication (such as using a key). Incorporating an out-of-
band key distribution or a similar scheme takes away the
benefits of the basic pub-sub model—it follows a point-
to-point communication model rather than the many-to-
many model in a true publish-subscribe system.

A potentially promising technique in providing
information confidentiality against the infrastructure is
computing with encrypted data [1][13]. In general, a
function f can be computed with encrypted data (a.k.a: f is
encryptable) if there exists two functions E and D such
that
- E and D are two polynomial time algorithms

- E maps x to an encrypted instance y

- D maps f(y) to f(x)

- Nothing about x is revealed by y except what is
implied by the result of f(y)

Abadi et al. proved that all functions in ZPP1 are
encryptable [1]. In other words, there exist E and D for
every polynomial-time boolean function such that the data
can be hidden from the function evaluator. However, a
protocol between the publishers and subscribers is still
needed so that E and D can be agreed upon and computed
accordingly. We pointed out earlier that this conflicts with
the many-to-many communication model. In addition,
these secure computation protocols are often
computationally intensive and require a large amount of
communication overhead, which could be prohibitively
expensive to carry out.

Subscription confidentiality. User subscriptions can
reveal sensitive information about the user, in which case
the subscriber may wish to keep the subscriptions private.
Consider the human resource resume example. An HR
person, upon being told that her company is starting a top-

1 The class ZPP consists of boolean functions that can be computed

in polynomial time with zero probability of error.

secret new project, wants to enter a new subscription that
allows her to receive resumes with a particular
background. Because of the sensitive nature of the
project, she may wish to keep her subscription private
even from the pub-sub system—after all, the system may
turn around and sell this knowledge to her competitors.

More formally, subscription confidentiality against the
infrastructure can be viewed as follows:

The subscriber S would like the network N to compute
f(x) without revealing f to N. Here, x is the publication
information and f is the subscription function.

A closely related topic of interest to subscription
confidentiality is secure circuit evaluation [2], which has
been studied in various models [4][9][27]. Secure circuit
evaluation hides the circuit2 from the circuit evaluator. In
theory, if computing with encrypted data can be achieved,
hiding the circuit can be implemented as encoding the
circuit itself as an input to a universal circuit evaluation
function [2]. In practice, however, it is difficult and often
impractical to encode the function as an input to a
universal circuit; the proposed schemes often involve an
expensive protocol.

Another related subject of interest is Private
Information Retrieval (PIR) [11][12]. PIR mechanisms
allow a user to retrieve records from a database, and in the
meantime, hide what she retrieves from the database.
Studies on PIR schemes showed that PIR is at least as
hard as Oblivious Transfer [12], which implies the
existence of one-way functions. A close examination of
subscription confidentiality suggests that close relations
exist between PIR and subscription confidentiality. For
example, one can easily construct a PIR mechanism using
a black box that implements subscription confidentiality
simply by inputting every database record as a publication
into the black box. Conversely, a simple case of a
subscription function that matches a finite number of pre-
defined strings can be reduced to PIR with publications
modeled as databases and subscriptions as PIR queries.

The construction of PIR from subscription
confidentiality suggests that the latter cannot be achieved
using weak computational primitives—it is at least as
hard as PIR schemes. A more general reduction from
subscription confidentiality to PIR can be the starting
point of constructing realistic confidentiality mechanisms
to hide user subscriptions from the pub-sub infrastructure.
However, all PIR-based schemes move some filtering
operations from the database to the user, which implies
more communication overhead as well as user-side
computation load. Therefore challenges regarding
performance and efficiency will still remain even if a
general reduction can be constructed.

It is worth noting that the combination of information

2 Circuit here means a function that can be represented as a binary

circuit.

and subscription confidentiality against the infrastructure
achieves a fairly strong level of user privacy—the most
other people can deduce is that you are associated with
this particular pub-sub system, however, they will not be
able to find out how you are using the service (e.g.,
publishing what or subscribing to what). This can be a
viable alternative to straightforward user anonymity.

Publication confidentiality. In many pub-sub
applications, publishers do not know and perhaps do not
care to know the identity of the subscribers who receive
their information. In those applications, there is no need
for subscription control — anybody can subscribe to
anything. In other applications, however, it is important
that publications be kept secret from ones who are not
legitimate subscribers (the concept of legitimacy should
be application specific). Consider the stock quote
example. For billing purposes, quotes should be sent to
paying customers only. Therefore they must be kept
confidential from other users.

Publication confidentiality can be handled independent
of the pub-sub infrastructure. For example, the publisher
can distribute a group key to the subscribers using some
out-of-band channel and encrypt the information content
with the key. This ensures that only the subscribers with
the right key can read the message. The drawback of this
scheme is obvious: setting up a group key a priori, in
essence, transforms the communication model into a
traditional multicast model, and therefore minimizes the
benefits of publish and subscribe.

Alternatively, publishers can trust the infrastructure to
maintain publication confidentiality. For example, instead
of registering with the stock quote provider, a user can
register with the pub-sub system for the stock quote
service. Publishers enter the quotes into the system
without knowing who will be receiving them. It is then up
to the pub-sub system to ensure that only registered users
receive the appropriate quotes.

A potential solution here is to let the application
choose an appropriate mechanism. That is, applications
that do not care about publication confidentiality should
not have to pay the cost associated with exerting
confidentiality control. Meanwhile, for applications that
desire publication confidentiality, the pub-sub layer must
provide a) an interface for the application to specify a
control policy, and b) a mechanism that supports such
policies. Designing such a flexible security framework is
no trivial undertaking—the interface must be expressive
and easy to use, and the system must be prepared to carry
out a whole spectrum of mechanisms desired by the
applications. There is also the question of whether to
implement an inexpensive policy as the default case—the
default case can always be overwritten, but the specifics
of a default policy must be carefully laid out so that it
does not detract from the system flexibility.

6 Accountability

In commercial pub-sub applications, publishers may
want to charge subscribers for the information they
provide. The nature of the pub-sub system, however,
means there may be no direct relationship between a
publisher and subscriber. Further, a publisher has no way
of knowing which subscribers receive (and should be
charged for) particular datagrams.

Out-of-band solutions. The most obvious solution to
accountability is for publishers to bill subscribers by
selling keys that decrypt selected data, which is similar to
the publication confidentiality discussed earlier. Again
consider the stock quote example. A subscriber could pay
the supplier of stock quotes a monthly fee for the relevant
keys. Publishers would send quotes into the pub-sub
network encrypted with the appropriate key so that only
subscribers who had paid for that information would be
able to decrypt it. This ensures only paying subscribers
will be able to view the information, but sacrifices many
of the advantages of a pub-sub network. It requires
subscribers to reveal their identity and interests to
publishers, and demands a direct publisher-subscriber
relationship. Further, it eliminates the possibility of per-
data payment schemes and dynamic subscriptions.

Infrastructure-based accountability. If both
subscribers and publishers trust the pub-sub infrastructure
to account fairly, the pub-sub infrastructure can bill
subscribers according to the amount of information they
receive and pay publishers according to the information
they provide without there being any direct relationship
between publishers and subscribers. In the stock quote
application, the infrastructure would keep track of who
received what quotes at what frequency and who
publishes them. Periodically the system would bill the
subscribers and send a portion of the payment to the
appropriate publishers.

This type of account management can be carried out at
the entry points of the system where the network interacts
with the publishers and the subscribers. An important
issue here is for the system to demonstrate that its
accounting is conducted in a fair way (see the discussion
of auditability below.)

In addition to user account management, accountability
can also extends to pub-sub servers when the message
routing network spans distinct domains that include
possibly competing and mutually suspecting
organizations. In these cases, auditing needs to take place
at the interfacing points of the various subsystems.

The various issues with accountability in pub-sub
remain much the same as those in other distributed
systems. The techniques in these other systems, such as
the market-based pricing account management scheme in
[20], can be adopted here (see [6][20]).

Auditability. If the pub-sub infrastructure is used to

bill subscribers and reward publishers, publishers may
wish to audit the accounting to verify that they are being
paid fairly for the subscriptions they satisfy. Complete
auditability is impossible if we wish to provide
subscription confidentiality. Auditing based on statistical
sampling at trusted points within the pub-sub network
could provide a satisfactory solution, however. A
publisher could examine logs from points in the network
and compare the number of datagrams present to the fees
collected from the pub-sub infrastructure. This would
give the publisher a confident lower bound on the number
of subscriptions satisfied. The pub-sub infrastructure
could still cheat when a single datagram satisfies many
subscriptions. However, if the log points were located
throughout the network, it would be difficult for the pub-
sub infrastructure to conduct any large-scale cheating
without being detected. There is a natural tension between
auditability (which improves as log points are moved
closer to subscribers) and subscriber confidentiality
(which is compromised by logging close to subscribers).

Another potential scheme for auditing is the use of
verifiable secure computation [15]. If the accounting
operation is viewed as a function and the logs are an input
to the function, verifiable secure computation techniques
allow the result of the accounting to be verified without
disclosing the inputs (logs) to the function.

7 Availability

As in other communication systems, denial-of-service
attacks remain as a significant risk for pub-sub systems.
In addition to the standard infrastructure attacks to which
all distributed applications are vulnerable (as discussed in
Section 4), pub-sub systems open up some new classes of
attacks. In particular, malicious publications and
subscriptions can be used to overload the system.

Denial-of-service attacks are impossible to prevent in
the general case. However, certain measures can be taken
to minimize the probability of a wide spread denial-of-
service attack. We discuss three different measures here.
From the simplest to the most sophisticated, each scheme
results in a certain level of publication bandwidth control.

Limited publication. This is a straightforward
measure that simply limits the size of each publication
[25]. Variations of this scheme may limit the frequency of
publication or both size and frequency.

CPU-cycle-based payment scheme. This is a more
sophisticated scheme that combines payment with
publication control. Hash Cash is one such scheme [17].
The basic idea behind Hash Cash and other CPU cycle
based payment schemes is that it requires the publisher to
perform some complex computational tasks (e.g. finding
collisions in the hash function) before publishing. The
more complex the task, the more control the system has
over the publication process.

Customized publication control. The primary
drawback of the previous two schemes is that they are
both one-size-fits-all solutions and therefore lack the
flexibility of differentiating among different publications.
A customized publication control does just that; it allows
subscribers to specify which publisher is allowed to
publish information. Bogus publications can be weeded
out at the system entry points. Consider the scenario in
which a subscriber wishes to accept notifications from
publishers who know a certain secret. This criterion can
be expressed as part of the subscription. In addition to the
normal subscription function, the subscriber specifies a
challenge clause, which the servers use to challenge the
sender of the publications. More specifically, consider
two functions, f and g, with the following two properties:
- f and g are hard to invert,

- g(f(x), f(y)) = f(g(x,y))

The publish and subscribe protocol behaves as follows:
When subscriber A initiates a challenged subscription, A
establishes a filter that includes g as the challenge
function.
- preprocessing step: All legitimate publishers know a

secret function f, which is distributed in an out-of-
band method.

- subscriber network: {subscription, g}

- publisher network: {x, f(x)}, x is a random number
chosen by the publisher.

- network publisher: {y, g(x, y)}, y is a random
number chosen by the network and g is the challenge
function in the subscription.

- publisher network: {f(y), f(g(x,y))}

- the network server can now compute g(f(x), f(y)) and
compare that with f(g(x,y)). The server allows
publication only if the two match.

In the last step, the network server verifies that the
publication indeed should be forwarded to the subscribers
by engaging in a challenge-and-response protocol with the
publisher. With this scheme, bogus notifications will not
generate unnecessary message traffic within the network.
Note that this scheme is very similar to a public-key
authentication mechanism. The only difference is that we
might be able to find two functions f and g that are more
efficient than the public key operations. A more detailed
description of such an authentication mechanism can be
found in [26].

We note that subscribers can specify any arbitrary
function in place of the challenge-and-response example.
Also note that such a function can be easily incorporated
as an extension to the subscription semantics—basically
as an extension to the language to allow the specification
of an extra clause. The more complex the function, the

more expressive the subscription language needs to be,
which will further constrain the types of optimization the
network is able to perform in terms of routing and
forwarding. The tradeoff between the power of
publication control versus amenability for optimization
must be examined if such mechanism is to be adopted.

8 Summary

This paper presents a general discussion of the security
issues and requirements in an Internet-scale pub-sub
system. The dynamic content-based routing mechanism in
such networks poses both opportunities and challenges for
security. The nature of pub-sub systems present several
apparent security paradoxes, among them routing based
on content while keeping the content confidential, routing
based on subscriptions without revealing the subscription
functions, accounting based on subscriptions satisfied
without revealing the subscription functions. We have not
presented full solutions to any of these problems, but have
suggested approaches based on new applications of well-
known mechanisms that may lead to solutions.

We intend this paper to be an initial roadmap of
establishing a comprehensive security architecture for
large-scale pub-sub systems. These systems raise
numerous interesting and important security issues for
further research.

9 Acknowledgements

The authors thank John Knight for discussions that
helped shaping some of the ideas here.

The work of Chenxi Wang was completed when she
was a research scientist at the University of Virginia. Her
work was supported in part by the Defense Advanced
Research Agency, under the agreement number F30602-
96-1-0314.

The work of David Evans was supported by in part by
the National Science Foundation and NASA under
agreement numbers NSF CCR-0092945 and NASA NRC
99-LaRC-4.

The work of A. Carzaniga and A.L. Wolf was
supported in part by the Defense Advanced Research
Projects Agency, Air Force Research Laboratory, Space
and Naval Warfare System Center, and Army Research
Office under agreement numbers F30602-01-1-0503,
F30602-00-2-0608, N66001-00-1-8945, and DAAD19-
01-1-0484.

The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research

Projects Agency, Air Force Research Laboratory, Space
and Naval Warfare System Center, Army Research
Office, National Science Foundation, NASA or the U.S.
Government.

10 References

[1]. M. Abadi, J. Feigenbaum, and J. Kilian. “On Hiding
Information from an Oracle”. In the proceedings of the
Ninth Annual ACM Conference on Theory of
Computing. May, 1987. New York, pages 195-203.

[2]. M. Abadi and J. Feigenbaum. “Secure Circuit
Evaluation”. Journal of Cryptology, Vol 2. No. 1: pages
1-12. 1990.

[3]. M. Aguilera, R. Strom, D. Sturman, M. Astley, and T.
Chandra. “Matching Events in a Content-based
Subscription System”. In the conference proceedings of
the Principles of Distributed Computing, 1999.

[4]. M. Ben-Or, S. Goldwasser, and A. Wigderson.
“Completeness Theorems for Non-cryptographic Fault-
tolerant Distributed Compuation,” Proceedings of the
20th Annual ACM Symposium on Theory of Computing,
1988, pages 1-10.

[5]. B. Blakley. “CORBA security”. Addison-wesley.
August 1999.

[6]. S. Brands. “Untraceable off-line cash in wallets with
observers”, In Advances in Cryptology: Proceedings of
Crypto’93, pages 302-318. Springer-Verlag (LNCS773),
1993.

[7]. A. Carzaniga, D. Rosenblum and A. Wolf. “Achieving
Scalability and Expressiveness in an Internet-Scale
Event notification service”. In Proceedings of the 2000
ACM Conference of PODC 2000. Portland Oregon.
Pages 219 –227. 2000.

[8]. A. Carzaniga, D. Rosenblum and A. Wolf. “Design and
Evaluation of a Wide-Area Event Notification Service".
ACM Transactions on Computer Systems, 19(3):332-
383, Aug 2001.

[9]. S. Chapin, C. Wang, W. Wulf, and A. Grimshaw. “A
New Security Model for Distributed Meta Systems”. In
Future Generations of Computer Science. October
1998.

[10]. D. Chaum, C. Crepeau, and I. Damgard. “Multiparty
Unconditionally Secure Protocols,” In the proceedings
of the 20th Annual ACM Symposium on Theory of
Computing, 1988, pages 11-19.

[11]. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.
“Private Information Retrieval”. In the proceedings of
the 36th IEEE Conference on the Foundations of
Computer Science (FOCS). Pages 41-50. October 1995.

[12]. G. Di Crescenzo, T. Malkin, and R. Ostrovsky. “Single-
database private information retrieval implies oblivious
transfer”. In Advances in Cryptology—
EUROCRYPT’00.

[13]. J. Feigenbaum. “Encrypting problem instances, or…,
Can you take advantage of someone without having to
trust him?” In the proceedings of Crypto’ 85, Springer-
Verlag, 1986, pages 477-488.

[14]. M. Franklin and M. Yung. “Secure and Efficient Off-

line Digital Money”. In the proceedings of the Annual
International Colloquium on Automata, Langaues and
Programming. 1993.

[15]. R. Gennaro, S. Micali, “Verifiable Secret Sharing as
Secure Computation”, Eurocrypt '95, LNCS 921,
Springer-Verlag, Berlin 1995, pages 168-182.

[16]. Gnutella. http://www.gnutellanews.com.
[17]. Hash Cash. http://www.cypherspace.org/-

~adam/hashcash.
[18]. Opengroup. Distributed Computing Environment.

http://www.opengroup.org/dce.
[19]. D. Rosenblum and A. Wolf. A design framework for

Internet-scale event observation and notification. In
Proceedings of the Sixth European Software
Engineering Conference. LNCS, number 1301, pages
344-360. Springer-Verlag, 1997.

[20]. J. Sairamesh, D. Ferguson, and Y. Yemini, “An
Approach to Pricing, Optimal Allocation, and Quality of
Service Provisioning in High-Speed Networks”, In the
Proceedings of INFOCOM'95.

[21]. Bill Segall and David Arnold. “Elvin has left the
building:
A publish/subscribe notification service with
quenching”. In the Proceedings of AUUG ‘97,
Brisbane, Australia, September 1997.

[22]. P.F. Syverson, D.M. Goldschlag, and M.G. Reed.
“Anonymous connections and onion routing”. In
Proceedings of the 1997 IEEE Symposium on Security
and Privacy, May 1997.

[23]. Transarc, IBM white paper. June 1998.
http://www.transarc.ibm.com/library

[24]. Talarian middleware whitepaper.
http://www.talarian.com

[25]. M. Waldman, A. Rubin, L. Cranor. “Publius, A robust,
tamper-evident, censorship-resistant web publishing
system”. In the proceedings of the 9th USENIX Security
Symposium. August, 2000.

[26]. W. Wulf, A. Yasinsac, K. Oliver, and R. Peri. “Remote
Authentication without prior shared knowledge”. In the
proceedings of the Network and Distributed Systems
Security Conference, February 1994. San Diego,
California.

[27]. A. Yao. “How to generate and exchange secrets,”
Proceedings of the 27th Annual IEEE Symposium on
Foundations of Computer Science, 1986, pages 162-167.

