
Effectiveness of Moving Target Defenses

David Evans, Anh Nguyen-Tuong, John Knight

Abstract Moving target defenses have been proposed as a way to make it much
more difficult for an attacker to exploit a vulnerable system by changing aspects
of that system to present attackers with a varying attack surface. The hope is that
constructing a successful exploit requires analyzing properties of the system, and
that in the time it takes an attacker to learn those properties and construct the exploit,
the system will have changed enough by the time the attacker can launch the exploit
to disrupt the exploit’s functionality. This is a promising and appealing idea, but
its security impact is not yet clearly understood. In this chapter, we argue that the
actual benefits of the moving target approach are in fact often much less significant
than one would expect. We present a model for thinking about dynamic diversity
defenses, analyze the security properties of a few example defenses and attacks, and
identify scenarios where moving target defenses are and are not effective.

1 Introduction

The idea of security through diversity is to automatically generate variants of a
target program or system that alter certain properties of the system. These alterations
are designed to preserve the essential semantics of the original program on normal
inputs, but to alter its behavior on malicious inputs. A widely deployed example is
address space randomization, forms of which are included in most modern operating
systems including Mac OS X, Ubuntu, Windows Vista, and Windows 7. Address
space randomization thwarts exploits that depend on known absolute addresses for
objects in memory by randomizing the locations of those objects. As we discuss
in Section 4, although address space randomization does disrupt many attacks, it
is vulnerable to brute force attacks because of the limited entropy used in many
address space randomization implementations, and vulnerable to probing attacks.

University of Virginia
e-mail: [evans, nguyen, knight]@virginia.edu

81

82 David Evans, Anh Nguyen-Tuong, John Knight

Moving target defenses seek to overcome the limitations of static diversity de-
fenses by dynamically altering properties of programs. For long-running server pro-
cesses, this requires dynamically altering the running execution (or, more disrup-
tively, periodically restarting the process with a new randomization). If the attack
surface changes rapidly enough, the hope is that dynamic diversity defenses can
protect systems even in situations where static diversity would be vulnerability to
low entropy or probing attacks.

In this chapter we develop a model for moving target defenses, and analyze their
effectiveness against sophisticated attackers. We argue that in many cases the added
security a dynamic diversity defense provides against such attackers is quite limited
and can be quantified. In other scenarios, where there are good reasons to believe
the time required to develop an effective exploit is high, dynamic diversity defenses
can provide significant benefits over static diversity.

2 Diversity Defenses

The goal of a diversity defense is to present attackers with an unpredictable target,
thereby making it difficult for an exploit to have the desired malicious behavior. Di-
versity techniques may be applied at a low-level, where the standard semantics of
the programming language are preserved but its undefined semantics altered. This
has the advantage that it can be done automatically, without needing any behavioral
specification of the target program other than belief that its behavior does not de-
pend on undefined language semantics. The limitation of such low-level diversity
techniques is that they can only change behavior for exploits that exploit the altered
undefined semantics. This covers many important classes of attacks including most
code injection and memory corruption attacks, but does not include any attacks that
exploit the application’s higher-level semantics.

The other type of diversity defense attempts to alter that applications’ higher-
level behavior. This depends on a sufficiently clear understanding of the applica-
tion’s required behavior to be able to alter the application’s semantics in ways that
may disrupt attacks but do not impact its essential functionality. The drawback of
higher-level diversity defenses is that they typically require manual effort to pro-
duce the variants, and because they are constructed in ad hoc ways it is much more
difficult to reason about the security they provide. It is also difficult to use such an
approach in a dynamic diversity scenario since it requires a large number of variants
to provide a moving target.

In this chapter, we focus on low-level, automatic, diversity defenses. The idea
of automatically generating diverse variants of a program to disrupt exploits was
introduced by Forrest et al. [32], and many subsequent works considered various
ways for automatically generating useful diversity in program executions. Here we
describe three common types of automatic diversity techniques. Although the model
and analysis we present applies to a wide range of diversity techniques, our exam-
ples focus on the most commonly used techniques described here.

Effectiveness of Moving Target Defenses 83

2.1 Address Space Randomization

Address space randomization or address space layout randomization (ASLR) is the
most successful and widely deployed diversity technique. The basic idea is simple:
randomize the locations of objects in memory so an attack that depends on know-
ing the address of these objects will fail. Address space randomization was first
implemented by PaX for Linux [35] in 2000, and has since been implemented in
most major operating systems including Windows (first in Windows Vista in 2007,
and later in Windows Server 2008 and Windows 7), Linux (partially included in
the Linux kernel since 2005, and more complete implementations in most hardened
Linux distributions), and Mac OS (in a limited form since OS X 10.5).

The simplest ASLR implementations just randomize the base address for large
memory areas. For example, PaX randomizes the base addresses for the executable
area containing the program’s code and static data structures, the stack area contain-
ing the execution stack, and the mapped memory area containing the heap as well
as shared memory and dynamically-loaded libraries. The address of each of these
areas is randomized by adding a randomly generated offset to the address. Within
each area, though, the layout is unchanged. The advantage of such an approach is it
can be implemented by the loader without any changes needed to the executable.

Other implementations of ASLR more comprehensively randomize the address
layout. For example, address obfuscation randomizes the both the absolute loca-
tions of data and code as well as their relative locations [3]. This can be done by
randomly permuting the order of variables on the stack or in a structure, as well
as by adding random padding between objects. Unlike randomizing segment base
addresses, however, making such changes requires deeper analysis of the target pro-
gram.

2.2 Instruction Set Randomization

Instruction set randomization is a general technique for thwarting code injection
attacks by obscuring the instruction set of the target [14, 12, 13]. An attacker who
knows an exploit that allows code constructed by the attacker to be injected into
the target application will not be able to create code that has the desired behavior
without knowing the target instruction set.

An example implementation of instruction set randomization is Barrantes et al.’s
RISE [12]. The instruction set is randomized by generating a sequence of random
bytes and XORing each instruction in the program with a corresponding random
byte when the code text is loaded. Then, the program is executed in an emulator
that XORs the instruction with the random byte to obtain the original instruction.
A code injection attack that does not know the randomization key will not be able
to generate the desired behavior, since the injected instructions will be XORed with
random bytes before they are executed.

84 David Evans, Anh Nguyen-Tuong, John Knight

Other implementations of instruction set randomization us block encryption in-
stead of bytewise XORs. For example, Hu et al. implemented a form of instruc-
tion set randomization by encrypting program code with AES at the granularity of
128-bit blocks [36]. Higher-level instruction sets can also be randomized. For ex-
ample, SQL injection attacks can be thwarted by adding random nonces to SQL
commands [33] and Perl injection attacks can be thwarted by randomizing parts of
the Perl language [4].

2.3 Data Randomization

Another type of low-level diversification is altering how data is stored in memory.
An early instantiation of this idea was PointGuard [8], which attempts to thwart
pointer corruption attacks by storing pointers in memory XORed with a random
key. When a pointer value is loaded into a register, it is XORed with the key to
produce the actual pointer value. A more general technique we developed by Cadar
et al. [10]. They XORed data in memory with random masks, selected based on the
memory object’s class. This requires a static analysis of the program to determine
memory regions that are associated with particular objects, so that attempts to write
outside objects will be disrupted since different random masks are applied.

3 Model

We consider a model involving two players: an attacker and a defender. The de-
fender’s goal is to provide a service, S, with a high reliability and performance. The
attacker’s goal is to successfully exploit the server. We assume the service has at
least one vulnerability which is known to the attacker but not to the defender. An
attacker with knowledge of the full state of the system can launch an exploit that
compromises the server. We define te as the time between starting to launch the
exploit and the system compromise. For our purposes, it is not necessary to spec-
ify the actual harm the compromise causes, but we can think of this as obtaining
confidential account information from the server.

In a static diversity defense, instead of running S, the defender generates a ran-
dom secret key, k ∈ K, and executes STk where T is a key-dependent transforma-
tion. The transform preserves the essential semantic of S; that is, for all legitimate
inputs x ∈N , S(x) ≈ STk(x), where ≈ indicates a loose semantic equivalence test
that may be service-specific. The intent of the transformation is to alter the service’s
response to attack inputs. For a particular targeted class of attack inputs, a ∈ A ,
S(a) 6= STk(a). In particular, while S(a) constitutes compromise behavior, STk(a) is
harmless behavior.

An attacker who can determine k, or possibly only determine some informa-
tion about k, can construct an exploit ak that achieves the desired compromise:

Effectiveness of Moving Target Defenses 85

S(a) ≈ STk(ak). Thus, the diversity defense succeeds when all the attacker’s ex-
ploits are in the target class of attack input A and the attacker has not learned
enough information about k to construct the exploit ak.

Consider the lifetime of a particular service, shown in Figure 1. At time t0, the
defender has generated a random key k0 and launches the diversified service, STk0

.
The attacker knows a vulnerability in S and an attack a ∈A that exploits that vul-
nerability but is thwarted by the diversification. Starting at time t0, the attacker at-
tempts to exploit the running service. This may be done by generating variants of a
transformed around guessed randomization keys. It may also involve sending probe
packets designed to leak information about k.

t0
Time

STk0
STk1

STk2
Service

Thwarted

Attack
probing constructing launching

t2 t2 + te

Successful

Attack
probing construct launching

t1
t1 + te

Fig. 1 Attack Lifetime

The probability of the attack succeeding is a function of the amount of infor-
mation the attacker has obtained about k. Assuming a simple defense where the
attacker needs to guess all bits of k completely for the attack to succeed, but has
zero probability of success otherwise:

Pr[STk(akg)≈ S(a)] = Pr[kg = k] (1)

If the attacker has no information about k but must guess k exactly to construct a
successful attacks, when |K|= 2N (that is, k has N bits of entropy) Pr[kg = k] = 1

2N .
The attacker may be able to obtain information about k by sending probes. This

increases Pr[kg = k] over time as the attacker learns more about the target service. At
some later time, t1, the attacker finds a successful exploit against STk0

and launches
that exploit against the service. This exploit compromises the service at time t1 + te.

If dynamic diversity is employed, the service is periodically rediversified with
a new key. If that transformation happens during the probing phase or the exploit
execution phase, it changes the target system to a new target STk′

. This disrupts the
attack akg since although kg = k the system is now diversified with k′ 6= kg. In the
case of the second attack, t2 + te is past when the service has been rediversified, so

86 David Evans, Anh Nguyen-Tuong, John Knight

although the constructed attack would succeeded if it had been launched at time t1,
it fails when it is launched at time t2.

Our goal is to understand what types of diversity and attacks can be disrupted by
such a strategy, and how the rate if re-diversification impacts the attacker’s success
probability.

4 Attack Strategies

The effectiveness of a moving target defense depends on the attacker’s capabilities,
resources, and strategy. Here, we consider several different broad strategies an at-
tacker may employ against diversity defenses. In Section 5, we consider how much
additional advantage dynamic diversity provides against each attack strategy. Note
that we do not consider denial-of-service attacks here. Low-level diversity defenses
often turn code injection or memory corruption attacks into denial-of-service at-
tacks, which are generally less harmful than injection and corruption attacks since
they do not expose or compromise any confidential data. Hence, although denial-of-
service is undesirable, we consider it a successful attack disruption if an attack that
would normal corrupt or compromise data is transformed into a denial-of-service
by the diversity defense.

4.1 Circumvention Attacks

The first attacker strategy is to circumvent the diversification entirely. This can be
done if the attacker finds any exploit that does not depend on the properties of the
server that are altered by the diversification. For example, an attacker may be able
to circumvent a instruction set randomization defense by avoiding the need to in-
ject code. Instead, the attacker repurposes code already provided by the executing
binary. An early form of this strategy is the return-to-libc attack [1], in which the
attacker replaces the return address on the stack with an address to an exploitable
function in libc and loads the appropriate arguments on the stack. Shacham et al.
introduced a more general form of this attack strategy known as return-oriented
programming. Instead of relying on the functions provided intentionally by libc,
return-oriented programming exploits fragments of code found in the binary (in-
cluding fragments that start in the middle of intended instructions) to provide a
Turing-complete programming system without needing to inject any code. A re-
cent exploit against Adobe Reader/Acrobat used return-oriented programming to
circumvent ASLR in Windows 7 and Windows Vista [21].

Another type of circumvention attack exploits incomplete randomization. For
example, the Mac OS X Snow Leopard implementation of ASLR randomizes li-
braries but does not apply any randomization to the stack, heap, or program code [6].
An attacker can exploit a vulnerability in a program by taking advantage of non-

Effectiveness of Moving Target Defenses 87

randomized portions of memory. The Windows 7 and Ubuntu implementations of
ASLR randomize the operating system components completely, but only randomize
the program image when developers set the appropriate (non-default) compiler flag.
For Ubuntu, this is due to the relatively high performance overhead of position in-
dependent executables on 32-bit architectures, as well as uncertainty about compat-
ibility with all programs. Hence, only certain programs included in Ubuntu that are
deemed to be security critical are compiled as position independent executables, and
other programs are executed without randomizing the program image [18]. Müller
provides examples of many forms of circumvention attacks against PaX ALSR that
find ways to return into non-randomized portions of memory including the program
text, static variable storage (BSS), and heap [20].

Another example of a circumvention attack that exploits incomplete randomiza-
tion is to alter an exploit to depend only on the local relative addresses instead of
global addresses. Standard ASLR implementations may change the absolute address
of a target memory location, but not its relative position to some other objects. For
example, if the value an attacker wants to corrupt is a field in a structure, it may be
possible to overwrite this value by exploiting a buffer overflow vulnerability on a
buffer that is stored as a different field in the same structure. It is not necessary for
the attacker to know the absolute address of either object, only to know their relative
locations. Some proposed implementations of ASLR do provide randomization at
this level such as Bhatkar et al.’s [3], but it is not done by standard implementations
and cannot be done safely in general without a deeper analysis of the program.

Finally, an attacker may circumvent randomization defenses by exploiting the
program at a higher semantic level that is not effected by the randomization. For
example, randomizing the instruction set and address space layout of a web server
provides no mitigation against a SQL injection attack that is exploiting vulnerabil-
ities in the high-level application logic. Randomizing the instruction set to prevent
code injection provides no defense against memory corruption attacks that do not
need to inject any code such as the attacks describe by Chen et al. [7].

4.2 Deputy Attacks

In a confused deputy attack [16], an attacker finds a way to use a benign program in
a malicious way. For randomization defenses, the main fear is that an attacker will
be able to find a way to use the program to apply the randomizing transformation to
the attacker’s data.

For many diversity defenses, the randomization transformation is done at run-
time by the program itself. Hence, the code to perform the transformation (and the
randomization key) is present somewhere in the running program.

One attacker strategy avoids the need to break the diversification entirely. Instead,
the attacker either finds a way to exploit the target system that does not depend on
any properties altered by the diversification, or finds a way to deputize code included

88 David Evans, Anh Nguyen-Tuong, John Knight

in the executing program that performs the transformation to transform the injected
attack.

An attack that is somewhat like a deputy attack is a partial overwrite attack. Un-
like a deputy attack which repurposes existing code to launch an attack, the partial
overwrite attack coopts existing data. Consider a program that is protected by a
coarse-grained variant of address-space randomization. A partial overwrite attack
that modifies the least-significant byte of an address A so that the program trans-
fers control flow to a targeted function F would bypass any protection afforded by
address-space randomization. The address of the targeted function, while random-
ized, would still be at a known offset from A. Durden descries a partial overwriting
attacks against PaX ALSR [11].

4.3 Brute Force and Entropy Reduction Attacks

A brute force attack simply attempts all possible randomization keys until an ex-
ploit is found that succeeds. If the key space is small enough, such an attack may be
practical. For example, Shacham et al. demonstrated an effective brute force attack
against an Apache server protected using PaX ASLR [29]. A 32-bit architecture
provides at most 32 bits of entropy for address randomization, but because of lim-
itations on address mapping that actual entropy provided by PaX is only 16 bits
for the executable and memory mapped areas, and 24 bits for the stack. Since the
shared libc library is stored in a memory mapped area, is it only necessary to search
16 bits to locate the library and launch a return-to-libc attack. On average, their at-
tack succeeds against a vulnerable Apache server in approximately 216 seconds on
average.

For larger key spaces, attackers may find ways to reduce the effective key space
by designing attacks that work for a set of possible keys. This changes the success
probability in the original model from Equation 1 to:

Pr[STk(akg)≈ S(a)] = Pr[k ∈Wa(kg)]

where Wa(k) is the set of keys that are equivalent to k with respect to attack a. The
attacker’s goal is to construct an attack a for which⋃

kg∈G
Wa(kg) = K

for the smallest possible set G .
A longstanding example of an entropy reduction attack is a NOP sled, widely

used in standard stack smashing buffer overflow attacks to overcome uncertainty
about memory layout even without the use of ASLR. With a NOP sled, the attacker
inserts a series of one-byte NOP (No Operation Performed) instructions before the
attack code. To avoid intrusion detection systems that alert on suspected NOP sleds,
attackers can use other instructions that have no or limited sematic impact, or se-

Effectiveness of Moving Target Defenses 89

quences of multi-byte instructions that can be interpreted as NOPs starting at any of
their bytes [25, 24].

Since each instruction in the NOP sled is choosen to have no semantic effect, if
the attacker can redirect execution to jump to any location in the NOP sled it will
have the same behavior as jumping to the specific location where the attack code
begins. The longer the NOP sled, the higher the probability a jump to a randomized
location will land within the NOP sled and reach the attack code. For example, if a
127-byte NOP sled is used, |Wa(kg)| ≈ 128, effectively reducing the randomization
entropy by up to 7 bits (the actual reduction is probably less, for example, if the
randomization offsets must be word-aligned).

A more extensive form of entropy reduction is heap spraying in which an attacker
attempts to fill up a large fraction of memory in a way that increases the likelihood of
reaching a target object. An early example of heap spraying was Govindavajhala and
Appel’s attack to circumvent type safety mechanisms on Java virtual machines [15].
The attack was not designed to overcome intentional address space randomization,
but instead to take advantage of random bit errors (caused, by example, by heating
up memory until there is a high liklihood of single bit errors).

Several recent attacks have used heap spraying from JavaScript to launch attacks
on ASLR-protected web browsers [38, 19]. In a JavaScript heap spraying attack, the
attacker uses JavaScript code executed by the browser to allocate a large number of
objects in the heap [26]. Each object is constructed to include a NOP sled, followed
by the attack code. This increases the likelihood that a jump to a randomized address
will reach one of the copies in memory of the exploit code. A sophisticated version
of the attack known as heap feng shui takes advantage of the way the heap allocator
and garbage collector work to control more of memory and how the attack objects
are arranged [30].

The effectiveness of randomization defenses is severely reduced by these types
of entropy reduction attacks. In many cases, a well constructed heap sprying exploit
succeeds on the first attempt with high probability.

4.4 Probing Attacks

A probing attack attempts to overcome a diversity defense by using probe packets
to learn properties of the randomized execution needed to construct an attack. A
probe attack is distinguished from a standard entropy reduction attack in that the
probe packets are designed only to obtain information about the target, rather than
to produce the desired malicious behavior.

Shacham et al.’s attack on ASLR used probes to find the randomization offset
for the memory map region, which could then be used to learn the locations of all
libc functions and construct the attack [29]. The probe packets attempted to find the
usleep function in libc by jumping to randomized addresses. The remoted attacker
could observe when the usleep function was found since the call to usleep causes the
connection to hang; if the guessed address is incorrect the server child process will

90 David Evans, Anh Nguyen-Tuong, John Knight

(most likely) crash. Once the usleep address is obtained, the attacker has enough
information to compute the address of all the other libc functions, including the
system function used to obtain a shell. In this case, probing does not have much
advantage over just sending the guessed attack directly (that is, it is not any easier
to guess the location of usleep than it is to guess the location of system), but does
enable an attacker to use smaller, possibly harder to detect, packets to probe the
system to learn the randomization key rather than needing to send the full attack
payload with each guess attempt.

For the previous example, the amount of information the attacker receives for
each probe attempt is very limited — if the guess is incorrect the server crashes
and the attacker learns nothing more other than that this guess was not the correct
offset. In some cases, though, probe attacks may be possible where each probe ob-
tains a great deal of information. It may be possible to use information contained
in server error messages returned to the attacker to learn addresses, or to exploit a
format string vulnerability to obtain the address of a targeted object. Müller pro-
vides two examples based on pointer redirecting to obtain addresses of randomized
functions [20].

Strackx et al. developed buffer overread attacks to expose randomized addresses
in memory [34]. The attack takes advantage of a property of the strncpy library
function, as well as other similar functions in the standard C library. These functions
take a size parameter indicating the size of the output buffer to protect against buffer
overflows, but do not automatically add a null terminator at the end of the result if
the string being copied exceeds the size of the output buffer. Thus, when the string
is printed, it will contain subsequent data in memory until the next NULL byte. This
data may contain addresses, revealing the actual locations of randomized addresses.
Similar attacks are also possible against instruction set randomization [37].

4.5 Incremental Attacks

An increment attack is a form of probing attack where more than one successful
probe is needed to obtain sufficient information to construct the exploit. For exam-
ple, this occurs when the randomization key is many bytes long, but each successful
probe packet obtains only a single key byte. This is the case for implementations of
instruction set randomization that use an XOR mask to randomize the instructions.
In Kc et al.’s proposed hardware design, the XOR mask is a four-byte value that
is stored in a dedicated register [14]; in Barrantes et al.’s software implementation,
RISE, the XOR mask can be as long as the program text [12].

Sovarel et al. developed an incremental attack against instruction set randomiza-
tion [31]. The attack uses probes to determine key bytes until a large enough region
of key bytes is known to inject the attack code. In one version of the attack, a single
byte instruction (the 0xc3 return instruction) is guessed, and for some vulnerabili-
ties it may be possible to incrementally break the randomization key one byte at a
time. For most vulnerabilities, though, the difference in behavior from a correct and

Effectiveness of Moving Target Defenses 91

incorrect guess of the return instruction is indistinguishable (both are likely to cause
the server to crash, since the return instruction leaves the stack in a corrupted state).
An alternate attack uses the two-byte short jump instruction with offset -2 (0xebfe)
which jumps back to itself, causing the server to enter an infinite loop which can be
distinguished by the attacker from the crash that usually results from an incorrect.
By this method, a many byte key can be broken incrementally in two-byte chunks.

5 Analysis

The value of a moving target defense depends on the class of attack. For each attack
strategy described in Section 4, we consider the impact of dynamic diversity over
static diversity. In the first three cases, dynamic diversity appears to have little ben-
efit; for incremental probing attacks, however, the situation is more interesting and
dynamic diversity appears to have substantial value.

5.1 Circumvention Attacks

In a circumvention attack, the transformation Tk does not diversify any aspects of
S that is required for a successful attack. Hence, there is no benefit to changing the
diversification. Since the diversity transformation does not cover the attack class,
reapplying the transformations with varying keys yields no benefits.

5.2 Deputy Attacks

In a deputy attack, an attacker is able to induce the target program to apply the
diversity transformation to the attack input. If the diversification key changes, this
has no impact on the attack since the attacker is exploiting the actual transformation
code in the program. Similarly to circumvention attacks, dynamic diversity provides
no advantage for deputy attacks.

5.3 Brute Force and Entropy Reduction Attacks

As noted in Section 4.3, Shacham et al. showed that PaX ASLR provides only
enough entropy to slow the spread of a worm. Dynamic diversity provides mod-
est benefit against a brute force or entropy reduction attack. Even if the target is
rerandomized after every attack attempt, the maximum impact on the attacker is
changing the random search from random sampling without replacement to random

92 David Evans, Anh Nguyen-Tuong, John Knight

sampling with replacement. This adds at most a single bit of entropy to the search
space.

Hence, dynamic diversity provides little benefit as a defense mechanism against
these attacks above and beyond the baseline static version. If the effective entropy of
a diversity transform is low, the expected time to mount a successful attack would be
relatively short, and therefore a factor of two would be of little value. When entropy
is high, the expected time to mount a successful attack would be long, and again a
factor of two provides limited additional benefit.

As we discuss in Section 6.1, if multiple diversity techniques are composed in
a way that requires an attacker to incrementally break each of them, there may be
more substantial gains possible by dynamically re-diversifying each technique in an
interleaved way.

5.4 Probing Attacks

Dynamic diversity could be useful against a probing attack if the time between a
successful probe and completing an exploit is long. In practice, however, exploits
can be constructed automatically based on the probe information, so the time be-
tween the probe and attack launch is effectively just the network latency for two
round trips between the server and attacker’s client. If the re-randomization can be
done frequently enough, it may be possible to ensure that the system has always
been re-randomized between the probe and exploit. Such frequent re-randomization
is too expensive for most services, but perhaps could be done in some scenarios. This
would be most effective against probing attacks such as the buffer overread attack
that depend on using a first request to leak information about the randomization, and
use that information to construct a targeted attack.

5.5 Incremental Attacks

Dynamic diversity seems most promising against incremental attacks since these at-
tacks require a lot of preparation by the attacker before enough information about
the randomization is obtained to construct the attack. Here, we develop a model
to analyze the effectiveness of dynamic diversity against incremental attacks. Our
model applies to the Sovarel et al. attack described in Section 4.5, but should also
apply to any incremental attack that involves sending a large number of probe pack-
ets to gradually acquire information about the randomization.

We model an incremental attack as a series of b state-space searches where the
states are of the same size s. A state-space search is carried out as a series of probes,
and each state-space search is designed to reveal a single key fragment. Hence the
key length is b fragments. We define a successful attack as a sequence of successful
state-space searches of the b spaces.

Effectiveness of Moving Target Defenses 93

We assume that:

• the adversary proceeds sequentially from space to space determining one frag-
ment for each space,

• the adversary knows when a fragment has been revealed, and,
• each probe of a space requires the same time.

These assumptions simplify the analysis, but do not meaningfully limit the class of
incremental attacks.

In this case, the quantity of interest is the probability of a successful attack occur-
ring in some specific number of probes, say L, or less. With that probability known,
re-randomization could be triggered after the adversary had an opportunity to per-
form L probes and thereby limit the probability of a successful attack. Thus, our first
goal in the analysis is to determine this probability. Clearly, we cannot know how
many probes have occurred, but we can estimate the number of opportunities that
the adversary had.

Searching each space will terminate with a successful probe, and each successful
probe will be preceded by from zero to s−1 probes that fail. The initial step in the
model is to determine the probability of a successful attack in exactly L probes. Such
an attack will experience a total of k−b probe failures across all b spaces together
with b successful probes. Thus, the total number of different sequences of probes
that can lead to a successful attack in L probes is the number of ways that L− b
failing probes can be distributed across b spaces with no more than s−1 occurring
in any single space. This number can be dervied using the Balls In Bins analysis [5]:

N(L) =
b

∑
t=0

(−1)t
(

b
t

)(
L− ts−1

b−1

)
In this expression, binomial coefficients are defined to be zero if the upper

operand is smaller than the lower operand.
The probability of a successful attack occurring in exactly L probes for b≤ L≤ sb

is:

p(L) =
N(L)
2sb

The probability of a successful attack occurring in L probes or less for b≤ L≤ sb
is:

P(L) =
L

∑
i=b

p(i)

This is the probability we sought, and with this probability we can determine the
effect of periodic re-randomization as a defense against an incremental attack.

We model the effect of re-randomization by treating an attack as a series of in-
dependent trials by the adversary each of length m probes where the key is changed
after each trial, i.e., after m probes. Thus, the effect of re-randomization is to force

94 David Evans, Anh Nguyen-Tuong, John Knight

Fig. 2 Effectiveness of dynamic diversity

the adversary to restart the attack after each series of m probes if the attack was not
successful at that point.

The probability of a successful attack in m or fewer probes is P(m). With re-
randomization after each trial (each m probes), the probability of an attack succeed-
ing in jm probes or fewer is:

M(jm) = 1− (1−P(m)) j

Note that this probability is defined only for every m probes. In order to derive the
probability of a successful attack in L or fewer probes, we need to add the probability
of a successful trial (determining a single fragment of the key) in L− jm probes
where L− jm lies between 0 and m−1, i.e., between the points at which the key is
changed. Adding this yields:

M(L) = 1− (1−P(m)) j(1−P(L− jm))

M(L) is the probability of a successful attack in L or fewers probes with re-
randomizing every m probes and P(L) is that probability without re-randomization.
With these two probabilities, we can determine the effectiveness of dynamic diver-
sity.

As an example, consider the case in which b = 4 and s = 256. This corresponds
to a key that is four bytes long which would be expected to have a search space of
size 232. However, the incremental attack proceeds one byte at a time so that there
are four searches each of spaces of size 256. Obviously, the probability of success
in 1024 probes or less is one.

Effectiveness of Moving Target Defenses 95

Figure 2 shows the probability of attack success, M(L), for values of m = 4, 25,
50, and 100. Note that the Y axis is a logarithmic scale. The dashed vertical line is
1024 on the X axis. This is the point at which an attack is expected to succeed with-
out dynamic diversity, and the intersection of the dashed line with the four curves
shows the relative advantage of re-randomization. The case in which m is set to 4 is
the limiting case in this example. Four is the least number of probes within which
an attack might succeed since there are four bytes in the key and the adversary has
to determine all four in sequence. Thus, the curve in Figure 2 for m = 4 is the best
that dynamic diversity can do in this example.

The effectiveness of dynamic diversity against incremental attacks in this case
depends critically on the rate of re-randomization. Varying this rate from every 100th

probe to every 4th probe spans 6 orders of magnitude. Moreover, the probability of
attack success when re-randomizing only every 100th or 50th probe quickly exceeds
90%, i.e., dynamic diversity in these cases is ineffective.

For a server responding to network inputs, a network message corresponds to
a probe in the model. Re-randomizing on every 4th or 25th network messages
would seem prohibitively costly. However, our results show that it is possible to
re-randomize XOR keys used in instruction-set randomization at the rate of ev-
ery 100 ms with an average cost of 14% overhead over native execution [23]. Re-
randomization may be triggered based on events instead of the current time-based
scheme. For example, many probe attacks result in process crashes when the guess
is incorrect, so it makes sense to rerandomize after a crash. Rerandomization may
also be triggered by particular system calls (e.g., opening a file) or when an anomaly
detector flags a packet as suspicious. The risk in any event-based rerandomization
scheme is that a sophisticated attacker may be able to develop a probe attack that
does not produce the trigger event. Hence, some combination of time-based and
event-based rerandomization seems most promising.

5.6 Summary

Table 1 summarizes the effectiveness of dynamic diversity against the five attack
classes. For circumvention and deputy attacks, dynamic diversity yields no bene-
fit since the attack does not depend on guessing the randomization key. For brute
force and entropy reduction attacks, the benefits of dynamic diversity are marginal
and only increase the attacker’s workload by at most a factor of two. Dynamic di-
versity holds the most promise for probing and incremental attacks. The rate of
re-diversification required to obtain tangible benefits, especially against probing at-
tacks, appears to be very high, but for some types of implementation it may be pos-
sible to achive such a high rate of re-randomization without excessive performance
overhead [23].

96 David Evans, Anh Nguyen-Tuong, John Knight

Circumvention attacks No advantage
Deputy attacks No advantage

Entropy reducing attacks At most doubles expected attack time
Probing attacks Very high rate of rerandomization may thwart attack

Incremental attacks May provide significant advantage

Table 1 Impact of Dynamic Diversity

6 Discussion

The limited effectiveness of adding dynamic rerandomization to low-level diversity
defenses suggests the need for alternate approaches to increase the effectiveness of
diversity defenses. Some of these depend on designing implementations to maxi-
mize entropy and avoid vulnerabilities, but since the goal of these defenses is to
harden systems that have unknown vulnerabilities it is unsatisfying to rely solely on
this approach. In addition, for schemes like adress space randomization the max-
imum amount of entropy available is limited by properties of the hardware and
underlying operating system. Next, we discuss two approaches that can improve
the effectiveness of diversity defenses. The first, composition, amplifies the value
of rerandomization; the second requires an attacker to simultaneously compromise
multiple variants, avoid the need to keep any secret key.

6.1 Composition

Our analysis so far assumed a single diversity defense was deployed, and an attacker
who can overcome that defense will succeed. One way to sbstantially increase the
attacker’s difficulty is to compose multiple diversity defenses. If the defenses are
orthogonal, they will compose multiplicatively not additively. That is, it will be
necessary for the attacker to simultaneously break both defenses, so the effective
search space is the product of each defense’s search space individually. This assumes
the attacker cannot probe each defense separately, making the attack difficulty the
sum of the two defenses. Worse, if the composition is not done in a careful way, the
composed defense may provide the attacker with new opportunities that would not
be effective against either defense individually.

Address space randomization and instruction set randomization can be com-
posed. This would thwart many attacks on instruction set randomization, since the
attacker cannot probe for the ISR key without also knowing the target address. If
either the key or target address is incorrect, the server is likely to crash and the at-
tacker does not learn if either key guess by itself is correct. Simplistically, if the
address space randomization has 24 bits of entropy and the attacker can use a one-
byte incremental probing attack, the combined defense provides 32 bits of entropy.
On the other hand, combining address space randomization with instruction set ran-

Effectiveness of Moving Target Defenses 97

domization does not provide any benefit against attacks such as return-oriented pro-
gramming that do not need to inject code. The problem for the attacker is the same
as with address space randomization alone, since there is no need for the attacker to
break both defenses.

If defenses can be composed multiplicatively, however, many low-entropy de-
fense may be combined to provide a high-entropy defense. Holland et al. pro-
posed schemes for randomizing many properties of an execution using a virtual
machine [17]. Many of the individual diversification strategies provided little en-
tropy (for example, altering the number of registers and machine word size), but
they argued that by composing them they could provide a large machine space where
attackers may need to guess all the diversification parameters.

It is difficult to reason precisely about the orthogonality and multiplicity of a
composition of diversity defenses, but it is a promising way to increase the en-
tropy facing an attacker. Adding dynamic rerandomization to composed defenses is
promising, since if the composition does have the property that an attacker much
simultaneously break all of the diversity techniques, it is only necessary to schedule
the rerandomizations of each defense in a tiled way to limit the amount of time all
of the diversity parameters are unchanged.

6.2 N-Variant Systems

Whereas composition strategies attempt to require the attacker to simultaneously
break multiple different diversity defenses, the N-Variant Systems approach is de-
signed to require an attacker to simultaneously break multiple variants of the same
diversity defense [9]. The idea is to run multiple instantiations of the server in syn-
chrony, each of which is diversified using a different randomization key. The vari-
ants are run in a framework that sends the same inputs to each variant, and monitors
that they behave similarly. Any divergence considered a signal of a possible attack,
since the variants should behave identically on non-attack inputs. This requires that
the variants are kept closely synchronized and that any other sources of nondeter-
minism are removed.

If the attack spaces for the variants are disjoint with respect to some attack class,
then no single input can simultaneously compromise all the variants. A simple ex-
ample is to use two variants with disjoint address spaces (for example, one variant
has only addresses beginning with a 0, and the other variant has only addresses
starting with a 1). Then, any attack that depends on injecting an absolute address
must fail — there is no address that is simultaneously valid in both variants. Several
opportunities for disjoint attack spaces are possible including address spaces [9], in-
struction sets [9], and how data is represented [22]. When fully disjoint attack spaces
cannot be found, a similar approach can also be used probabilistically. Examples in-
clude changing the direction of the stack [27] or diversifying the relative positions
in memory (as done by DieHard [2], which focused on software debugging rather
than attack detection).

98 David Evans, Anh Nguyen-Tuong, John Knight

A key advantage of this approach (at least for disjoint attack spaces) is that it
eliminates the need to keep any secrets at all. This means brute force, entropy re-
duction, probing, and incremental attacks all fail. The main remaining worries are
circumvention attacks, which are possible against any diversity defense if the di-
versification does not impact properties needed by the exploit, and deputy attacks,
especially since each variant includes its own derandomization code or differently
randomized data so may be simlutaneously exploited across the variants. There
are, however, a number of challenges to deploying N-Variant systems in practice.
The first is the close monitoring requires eliminating all causes of nondeterminism.
This is particularly difficult in multi-threaded applications where the interleaving
of threads may lead to divergence. Performance overhead is also a concern, since
the approach requires duplicating each request. This overhead can be fairly low for
I/O bound servers [9], and it may be further reduced by using parallel execution on
multi-core machines [28].

7 Conclusion

Diversity defenses are a promising mechanisms for making vulnerable servers more
difficult for attackers to exploit. The effectiveness of a diversity defense depends
on what properties of the execution it alters, the amount of entropy in the random-
ization, and how resistent the diversity defense is to attempts to probe the system
or to circumvent or deputize the diversity mechanisms. Dynamic diversity can en-
hance the effectiveness of these defenses by rerandomizing the system periodically
or based on trigger events. The effectiveness of dynamic diversity, however, is lim-
ited to scenarios where the attack requires an extended sequence of requests to probe
the system and develop an attack. For many scenarios, dynamic rerandomization
provides less benefit than expected. It provides no benefit against circumvention
and deputy attacks, and against entropy reduction attacks provides at most a fac-
tor of two increase in difficulty. Against other classes of attack, dynamic diversity
defense may provide more substantial advantages, but the defenses must be crafted
carefully to provide the intended benefits.

Acknowledgment

This research has been partially supported by grants from the National Science
Foundation and the US Department of Defense under AFOSR MURI grant FA9550-
07-1-0532. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of the sponsoring agencies.

Effectiveness of Moving Target Defenses 99

References

1. Alexander Peslyak (Solar Designer). Return-to-libc Attack. Bugtraq Mailing List, August
1997.

2. Emery D. Berger and Benjamin G. Zorn. DieHard: Probabilistic Memory Safety for Unsafe
Languages. In ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), June 2006.

3. Sandeep Bhatkar, Daniel DuVarney, and R. Sekar. Address Obfuscation: An Efficient Ap-
proach to Combat a Broad Range of Memory Error Exploits. In USENIX Security Symposium,
2003.

4. Stephen W. Boyd, Gaurav S. Kc, Michael E. Locasto, Angelos D. Keromytis, and Vassilis Pre-
velakis. On The General Applicability of Instruction-Set Randomization. IEEE Transactions
on Dependable and Secure Computing, 7(3), 2010.

5. Kevin Brown. Balls In Bins with Limited Capacity.
http://www.mathpages.com/home/kmath337.htm.

6. Brian X. Chen. Apple’s Snow Leopard Is Less Secure Than Windows, But Safer. Wired,
September 2009.

7. Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer. Non-Control-
Data Attacks Are Realistic Threats. In USENIX Security Symposium, 2005.

8. Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. PointGuard: Protecting Point-
ers from Buffer Overflow Vulnerabilities. In 12th USENIX Security Symposium, 2003.

9. Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu, Jack Davidson, John
Knight, Anh Nguyen-Tuong, and Jason Hiser. N-Variant Systems: A Secretless Framework
for Security through Diversity. In USENIX Security Symposium, 2006.

10. Cristian Cadar and Periklis Akritidis and Manuel Costa and Jean-Phillipe Martin and Miguel
Castro. Data Randomization. Technical Report TR-120-2008, Microsoft Research, 2008.

11. Tyler Durden. Bypassing PaX ASLR protection. http://www.phrack.com/issues.html?issue=59&id=9/,
2009.

12. Elena Gabriela Barrantes and David Ackley and Stephanie Forrest and Trek Palmer and Darko
Stefanovic and Dino Dai Zovi. Intrusion Detection: Randomized Instruction Set Emulation to
Disrupt Binary Code Injection Attacks. In 10th ACM Conference on Computer and Commu-
nications Security (CCS), 2003.

13. Elena Gabriela Barrantes and David H. Ackley and Stephanie Forrest and Darko Stefanovic.
Randomized Instruction Set Emulation. ACM Transactions on Information and System Secu-
rity, February 2005.

14. Gaurav S. Kc and Angelos D. Keromytis and Vassilis Prevelakis. Countering Code-Injection
Attacks with Instruction-Set Randomization. In 10th ACM Conference on Computer and
Communications Security (CCS), 2003.

15. Sudhakar Govindavajhala and Andrew W. Appel. Using Memory Errors to Attack a Virtual
Machine. In IEEE Symposium on Security and Privacy (Oakland), 2003.

16. Norman Hardy. The Confused Deputy (or why capabilities might have been invented). ACM
SIGOPS Operating Systems Review, 22(4), October 1988.

17. David Holland, Ada Lim, and Margo Seltzer. An Architecture A Day Keeps The Hacker
Away. In Workshop on Architectural Support for Security and Anti-Virus, April 2004.

18. Kubuntu Wiki. Supported Position Independent Executables.
https://wiki.kubuntu.org/SecurityTeam/KnowledgeBase/BuiltPIE, 2011.

19. Microsoft Corporation. Microsoft Security Advisory (961051): Vul-
nerability in Internet Explorer Could Allow Remote Code Execution.
http://www.microsoft.com/technet/security/advisory/961051.mspx, December 2008.

20. Tilo Müller. ASLR Smack and Laugh Reference. Seminar on Advanced Exploitation Tech-
niques, February 2008.

21. Ryan Naraine. Adobe PDF Exploits Using Signed Certificates, Bypasses ASLR/DEP. ZDNet
Zero Day, September 2010.

100 David Evans, Anh Nguyen-Tuong, John Knight

22. Anh Nguyen-Tuong, David Evans, John C. Knight, Benjamin Cox, and Jack W. Davidson.
Security through Redundant Data Diversity. In IEEE/IFPF International Conference on De-
pendable Systems and Networks, June 2008.

23. Anh Nguyen-Tuong, Andrew Wang, Jason D. Hiser, John C. Knight, and Jack W. Davidson.
On the effectiveness of the metamorphic shield. In Proceedings of the Fourth European Con-
ference on Software Architecture: Companion Volume, ECSA ’10, pages 170–174, New York,
NY, USA, 2010. ACM.

24. Pratap V. Prahbu and Yingbo Song and Salvatore J. Stolfo. Smashing the Stack with Hy-
dra: The Many Heads of Advanced Polymorphic Shellcode. Technical Report CUCS-037-09,
Columbia University, August 2009.

25. Rapid7 LLC. Metasploit. http://www.metasploit.com/, 2003–2011.
26. Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin Zorn. Nozzle: A Defense Against

Heap-spraying Code Injection Attacks. In USENIX Security Symposium, 2009.
27. Babak Salamat, Andreas Gal, and Michael Franz. Reverse Stack Execution in a Multi-Variant

Execution Environment. In Workshop on Compiler and Architectural Techniques for Applica-
tion Reliability and Security, June 2008.

28. Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz. Orchestra: Intrusion Detec-
tion using Parallel Execution and Monitoring of Program Variants in User-Space. In ACM
European Conference on Computer Systems (EuroSys), 2009.

29. Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and Dan
Boneh. On the effectiveness of address-space randomization. In ACM Conference on Com-
puter and Communications Security (CCS), CCS ’04, pages 298–307, New York, NY, USA,
2004. ACM.

30. Alexander Sotirov. Heap Feng Shui in JavaScript. http://www.blackhat.com/presentations/bh-
europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf, 2007.

31. Ana Nora Sovarel, David Evans, and Nathanael Paul. Where’s the feeb? the effectiveness
of instruction set randomization. In 14th USENIX Security Symposium, Berkeley, CA, USA,
2005. USENIX Association.

32. Stephanie Forrest and Anil Somayaji and David Ackley. Building Diverse Computer Systems.
In Hot Topics in Operating Systems, 1997.

33. Stephen W. Boyd and Angelos D. Keromytis. SQLrand: Preventing SQL Injection Attacks.
In Applied Cryptography and Network Security (ACNS), 2004.

34. Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven Lachmund, and
Thomas Walter. Breaking the Memory Secrecy Assumption. In Second European Workshop
on System Security, 2009.

35. PaX Team. PaX Homepage. http://pax.grsecurity.net/, 2000.
36. Wei Hu and Jason Hiser and Dan Williams and Adrian Filipi and Jack W. Davidson and David

Evans and John C. Knight and Anh Nguyen-Tuong and Jonathan Rowanhill. Secure and
Practical Defense Against Code-injection Attacks Using Software Dynamic Translation. In
Second International Conference on Virtual Execution Environments, 2006.

37. Yoav Weiss and Elena Gabriela Barrantes. Known/Chosen Key Attacks against Software
Instruction Set Randomization. In Annual Computer Security Applications Conference (AC-
SAC), 2006.

38. Berend-Jan “SkyLined” Wever. MS Internet Explorer (IFRAME Tag) Buffer Overflow Ex-
ploit. http://www.exploit-db.com/exploits/612/, 2004.

