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Abstract 

 
We present an architectural framework for systematically using automated diversity to provide high assurance detec-

tion and disruption for large classes of attacks. The framework executes a set of automatically diversified variants on 

the same inputs, and monitors their behavior to detect divergences. The benefit of this approach is that it requires an 

attacker to simultaneously compromise all system variants with the same input. By constructing variants with disjoint 

exploitation sets, we can make it impossible to carry out large classes of important attacks. In contrast to previous 

approaches that use automated diversity for security, our approach does not rely on keeping any secrets. In this pa-

per, we introduce the N-variant systems framework, present a model for analyzing security properties of N-variant 

systems, define variations that can be used to detect attacks that involve referencing absolute memory addresses and 

executing injected code, and describe and present performance results from a prototype implementation. 

 
1. Introduction 

Many security researchers have noted that the current 

computing monoculture leaves our infrastructure vul-

nerable to a massive, rapid attack [70, 29, 59]. One 

mitigation strategy that has been proposed is to increase 

software diversity. By making systems appear different 

to attackers, diversity makes it more difficult to con-

struct exploits and limits an attack’s ability to propa-

gate. Several techniques for automatically producing 

diversity have been developed including rearranging 

memory [8, 26, 25, 69] and randomizing the instruction 

set [6, 35]. All these techniques depend on keeping cer-

tain properties of the running execution secret from the 

attacker. Typically, these properties are determined by a 

secret key used to control the randomization. If the se-

cret used to produce a given variant is compromised, an 

attack can be constructed that successfully attacks that 

variant. Pointer obfuscation techniques, memory ad-

dress space randomization, and instruction set randomi-

zation have all been demonstrated to be vulnerable to 

remote attacks [55, 58, 64].  Further, the diversification 

secret may be compromised through side channels, in-

sufficient entropy, or insider attacks.  

Our work uses artificial diversity in a new way that does 

not depend on keeping secrets: instead of diversifying 

individual systems, we construct a single system con-

taining multiple variants designed to have disjoint ex-

ploitation sets. Figure 1 illustrates our framework. We 

refer to the entire server as an N-variant system. The 

system shown is a 2-variant system, but our framework 

generalizes to any number of variants. The polygrapher 

takes input from the client and copies it to all the vari-

ants. The original server process P is replaced with the 

two variants, P0 and P1. The variants maintain the cli-

ent-observable behavior of P on all normal inputs. They 

are, however, artificially diversified in a way that makes 

them behave differently on abnormal inputs that corre-

spond to an attack of a certain class. The monitor ob-

serves the behavior of the variants to detect divergences 

which reveal attacks. When a divergence is detected, 

the monitor restarts the variants in known uncompro-

mised states. 

As a simple example, suppose P0 and P1 use disjoint 

memory spaces such that any absolute memory address 

that is valid in P0 is invalid in P1, and vice versa. Since 

the variants are transformed to provide the same seman-

tics regardless of the memory space used, the behavior 
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Figure 1. N-Variant System Framework. 
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on all normal inputs is identical (assuming deterministic 

behavior, which we address in Section 5). However, if 

an exploit uses an absolute memory address directly, it 

must be an invalid address on one of the two variants. 

The monitor can easily detect the illegal memory access 

on the other variant since it is detected automatically by 

the operating system. When monitoring is done at the 

system call level, as in our prototype implementation, 

the attack is detected before any external state is modi-

fied or output is returned to the attacker.  

The key insight behind our approach is that in order for 

an attacker to exploit a vulnerability in P, a pathway 

must exist on one of the variants that exploits the vul-

nerability without producing detectably anomalous be-

havior on any of the other variants. If no such pathway 

exists, there is no way for the attacker to construct a 

successful attack, even if the attacker has complete 

knowledge of the variants. Removing the need to keep 

secrets means we do not need to be concerned with 

probing or guessing attacks, or even with attacks that 

take advantage of insider information. 

Our key contributions are:  

1. Introducing the N-variant systems framework 

that uses automated diversity techniques to pro-

vide high assurance security properties without 

needing to keep any secrets. 

2. Developing a model for reasoning about N-vari-

ant systems including the definition of the nor-

mal equivalence and detection properties used to 

prove security properties of an ideal N-variant 

system (Section 3). 

3. Identifying two example techniques for provid-

ing variation in N-variant systems: the memory 

address partitioning technique (introduced 

above) that detects attacks that involve absolute 

memory references and the instruction tagging 

technique that detects attempts to execute in-

jected code (Section 4). 

4. Describing a Linux kernel system implementa-

tion and analyzing its performance (Section 5).  

In this paper we do not address recovery but consider it 

to be a successful outcome when our system transforms 

an attack that could compromise privacy and integrity 

into an attack that at worst causes a service shutdown 

that denies service to legitimate users. It has not es-

caped our attention, however, that examining differ-

ences between the states of the two variants at the point 

when an attack is detected provides some intriguing 

recovery possibilities.  Section 6 speculates on these 

opportunities and other possible extensions to our work. 

2. Related Work 

There has been extensive work done on eliminating 

security vulnerabilities and mitigating attacks.  Here, we 

briefly describe previous work on other types of de-

fenses and automated diversity, and summarize related 

work on redundant processing and design diversity 

frameworks.  

Other defenses.  Many of the specific vulnerabilities 

we address have well known elimination, mitigation and 

disruption techniques. Buffer overflows have been 

widely studied and numerous defenses have been devel-

oped including static analysis to detect and eliminate the 

vulnerabilities [66, 67, 39, 23], program transformation 

and dynamic detection techniques [19, 5, 30, 45, 49, 57] 

and hardware modifications [38, 40, 41, 64]. There 

have also been several defenses proposed for string 

format vulnerabilities [56, 20, 63, 47].  Some of these 

techniques can mitigate specific classes of vulnerabili-

ties with less expense and performance overhead than is 

required for our approach. Specific defenses, however, 

only prevent a limited class of specific vulnerabilities. 

Our approach is more general; it can mitigate all attacks 

that depend on particular functionality such as injecting 

code or accessing absolute addresses.  

More general defenses have been proposed for some 

attack classes.  For example, no execute pages (as pro-

vided by OpenBSD’s W^X and Windows XP Service 

Pack 2) prevent many code injection attacks [2], dy-

namic taint analysis tracks information flow to identify 

memory corruption attacks [43], and control-flow integ-

rity can detect attacks that corrupt an application to fol-

low invalid execution paths [1]. Although these are 

promising approaches, they are limited to particular 

attack classes. Our framework is more general in the 

sense that we can construct defense against any attacker 

capability that can be varied across variants in an 

N-variant system. 

Automated diversity. Automated diversity applies 

transformations to software to increase the difficulty an 

attacker will face in exploiting a security vulnerability 

in that software.  Numerous transformation techniques 

have been proposed including rearranging memory [26, 

8, 69, 25], randomizing system calls [17], and random-

izing the instruction set [6, 35]. Our work is comple-

mentary to work on producing diversity; we can incor-

porate many different sources of variation as long as 

variants are constructed carefully to ensure the disjoint-
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edness required by our framework. A major advantage 

of the N-variant systems approach is that we do not rely 

on secrets for our security properties. This means we 

can employ diversification techniques with low entropy, 

so long as the transformations are able to produce vari-

ants with disjoint exploitation sets.  Holland, Lim, and 

Seltzer propose many low entropy diversification tech-

niques including number representations, register sets, 

stack direction, and memory layout [31]. In addition, 

our approach is not vulnerable to the type of secret-

breaking attacks that have been demonstrated against 

secret-based diversity defenses [55, 58, 64].  

O’Donnell and Sethu studied techniques for distributing 

diversity at the level of different software packages in a 

network to mitigate spreading attacks [44]. This can 

limit the ability of a worm exploiting a vulnerability 

present in only one of the software packages to spread 

on a network. Unlike our approach, however, even at 

the network level an attacker who discovers vulnerabili-

ties in more than one of the software packages can ex-

ploit each of them independently. 

Redundant execution. The idea of using redundant 

program executions for various purposes is not a new 

one.  Architectures involving replicated processes have 

been proposed as a means to aid debugging, to provide 

fault tolerance, to improve dependability, and more 

recently, to harden vulnerable services against attacks.  

The earliest work to consider running multiple variants 

of a process of which we are aware is Knowlton’s 1968 

paper [37] on a variant technique for detecting and lo-

calizing programming errors. It proposed simultane-

ously executing two programs which were logically 

equivalent but assembled differently by breaking the 

code into fragments, and then reordering the code frag-

ments and data segments with appropriate jump instruc-

tions inserted between code fragments to preserve the 

original program semantics.  The CPU could run in a 

checking mode that would execute both programs in 

parallel and verify that they execute semantically 

equivalent instructions.  The variants they used did not 

provide any guarantees, but provided a high probability 

of detecting many programming errors such as out-of-

range control transfers and wild memory fetches. 

More recently, Berger and Zorn proposed a redundant 

execution framework with multiple replicas each with a 

different randomized layout of objects within the heap 

to provide probabilistic memory safety [7].  Since there 

is no guarantee that there will not be references at the 

same absolute locations, or reachable through the same 

relative offsets, their approach can provide only prob-

abilistic expectations that a memory corruption will be 

detected by producing noticeably different behavior on 

the variants. Their goals were to enhance reliability and 

availability, rather than to detect and resist attacks. 

Consequently, when variations diverge in their frame-

work, they allow the agreeing replicas to continue based 

on the assumption that the cause of the divergence in 

the other replicas was due a memory flaw rather than a 

successful attack. Their replication framework only 

handles processes whose I/O is through standard in/out, 

and only a limited number of system calls are caught in 

user space to ensure all replicas see the same values.  

Since monitoring is only on the standard output, a com-

promised replica could be successfully performing an 

attack and, as long as it does not fill up its standard out 

buffer, the monitor would not notice. The key difference 

between their approach and ours, is that their approach 

is probabilistic whereas our variants are constructed to 

guarantee disjointedness with respect to some property, 

and thereby can provide guarantees of invulnerability to 

particular attack classes. A possible extension to our 

work would consider variations providing probabilistic 

protection, such as the heap randomization technique 

they used, to deal with attack classes for which disjoint-

edness is infeasible. 

Redundant processing of the same instruction stream by 

multiple processors has been used as a way to provide 

fault-tolerance by Stratus [68] and Tandem [32] com-

puters.  For example, Integrity S2 used triple redun-

dancy in hardware with three synchronized identical 

processors executing the same instructions [32]. A ma-

jority voter selects the majority output from the three 

processors, and a vote analyzer compares the outputs to 

activate a failure mode when a divergence is detected. 

This type of redundancy provides resilience to hardware 

faults, but no protection against malicious attacks that 

exploit vulnerabilities in the software, which is identical 

on all three processors.  Slipstream processors are an 

interesting variation of this, where two redundant ver-

sions of the instruction stream execute, but instructions 

that are dynamically determined to be likely to be un-

necessary are removed from the first stream which exe-

cutes speculatively [60].  The second stream executes 

behind the first stream, and the processor detects incon-

sistencies between the two executions.  These devia-

tions either indicate false predications about unneces-

sary computations (such as a mispredicted branch) or 

hardware faults. 

The distributed systems community has used active rep-

lication to achieve fault tolerance [9, 10, 16, 18, 50]. 

With active replication, all replicas are running the 

same software and process the same requests. Unlike 
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our approach, however, active replication does nothing 

to hide design flaws in the software since all replicas are 

running the same software. To mitigate this problem, 

Schneider and Zhou have suggested proactive diversity, 

a technique for periodically randomizing replicas to 

justify the assumption that server replicas fail independ-

ently and to limit the window of vulnerability in which 

replicas are susceptible to the same exploit [51]. Active 

replication and N-variant systems are complementary 

approaches. Combining them can provide the benefits 

of both approaches with the overhead and costs associ-

ated with either approach independently. 

Design diversity frameworks. The name N-variant 

systems is inspired by, but fundamentally different from, 

the technique known as N-version programming [3, 14]. 

The N-version programming method uses several inde-

pendent development groups to develop different im-

plementations of the same specification with the hope 

that different development groups will produce versions 

without common faults. The use of N-version program-

ming to help with system security was proposed by Jo-

seph [33]. He analyzed design diversity as manifest in 

N-version programming to see whether it could defeat 

certain attacks and developed an analogy between faults 

in computing systems that might affect reliability and 

vulnerabilities in computer systems that might affect 

security. He argued that N-version programming tech-

niques might allow vulnerabilities to be masked.  How-

ever, N-version programming provides no guarantee 

that the versions produced by different teams will not 

have common flaws. Indeed, experiments have shown 

that common flaws in implementations do occur [36]. In 

our work, program variants are created by mechanical 

transformations engineered specifically to differ in par-

ticular ways that enable attack detection. In addition, 

our variants are produced mechanically, so the cost of 

multiple development teams is avoided.   

Three recent projects [46, 62, 28] have explored using 

design diversity in architectures similar to the one we 

propose here in which the outputs or behaviors of two 

diverse implementations of the same service (e.g., 

HTTP servers Apache on Linux and IIS on Windows) 

are compared and differences above a set threshold in-

dicate a likely attack. The key difference between those 

projects and our work is that whereas they use diverse 

available implementations of the same service, we use 

techniques to artificially produce specific kinds of 

variation. The HACQIT project [34, 46] deployed two 

COTS web servers (IIS running on Windows and 

Apache running on Linux) in an architecture where a 

third computer forwarded all requests to both servers 

and compared their responses. A divergence was de-

tected when the HTTP status code differed, hence di-

vergences that caused the servers to modify external 

state differently or produce different output pages 

would not be detected. The system described by Totel, 

Majorczyk, and Mé extended this idea to compare the 

actual web page responses of the two servers [62]. 

Since different servers do not produce exactly the same 

output on all non-attack requests because of nondeter-

minism, design differences in the servers, and host-

specific properties, they developed an algorithm that 

compares a set of server responses to determine which 

divergences are likely to correspond to attacks and 

which are benign. The system proposed by Gao, Reiter, 

and Song [28] deployed multiple servers in a similar 

way, but monitored their behavior using a distance met-

ric that examined the sequence of system calls each 

server made to determine when the server behaviors 

diverged beyond a threshold amount.  

All of these systems use multiple available implementa-

tions of the same service running on isolated machines 

and compare the output or aspects of the behavior to 

notice when the servers diverged. They differ in their 

system architectures and in how divergences are recog-

nized. The primary advantage of our work over these 

approaches is the level of assurance automated diversity 

and monitoring can provide over design diversity. Be-

cause our system takes advantage of knowing exactly 

how the variants differ, we can make security claims 

about large attack classes. With design diversity, secu-

rity claims depend on the implementations being suffi-

ciently different to diverge noticeably on the attack (and 

functionality claims depend on the behaviors being suf-

ficiently similar not exceed the divergence threshold on 

non-attack inputs). In addition, these approaches can be 

used only when diverse implementations of the same 

service are available. For HTTP servers, this is the case, 

but for custom servers the costs of producing a diverse 

implementation are prohibitive in most cases. Further, 

even though many HTTP servers exist, most advanced 

websites take advantages of server-specific functionality 

(such as server-side includes provided by Apache), so 

would not work on an alternate server. Design diversity 

approaches offer the advantage that they may be able to 

detect attacks that are at the level of application seman-

tics rather than low-level memory corruption or code 

injection attacks that are better detected by artificial 

diversity. In Section 6, we consider possible extensions 

to our work that would combine both approaches to 

provide defenses against both types of attacks. 
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3. Model 

Our goal is to show that for all attacks in a particular 

attack class, if one variant is compromised by a given 

attack, another variant must exhibit divergent behavior 

that is detected by the monitor. To show this, we de-

velop a model of execution for an N-variant system and 

define two properties the variant processes must main-

tain to provide a detection guarantee. 

We can view an execution as a possibly infinite se-

quence of states: [S0, S1, …]. In an N-variant system, the 

state of the system can be represented using a tuple of 

the states of the variants (for simplicity, this argument 

assumes the polygrapher and monitor are stateless; in 

our implementation, they do maintain some state but we 

ignore that in this presentation). Hence, an execution of 

an N-variant system is a sequence of state-tuples where 

St,v represents the state of variant v at step t: [<S0,0, S0,1, 

… S0,N-1>, <S1,0, S1,1, … S1,N-1>, … ].   

Because of the artificial variation, the concrete state of 

each variant differs. Each variant has a canonicalization 

function, Cv, that maps its state to a canonical state that 

matches the corresponding state for the original process. 

For example, if the variation alters memory addresses, 

the mapping function would need to map the variant’s 

altered addresses to canonical addresses. Under normal 

execution, at every execution step the canonicalized 

states of all variants are identical to the original pro-

gram state:  

∀t ≥ 0, 0 ≤ v < N, 0 ≤ w < N:   

Cv (St, v) = Cw  (St, w) = St. 

Each variant has a transition function, Tv, that takes a 

state and an input and produces the next state. The 

original program, P, also has a transition function, T. 

The set of possible transitions can be partitioned into 

consistent transitions and aberrant transitions. Consis-

tent transitions take the system from one normal state to 

another normal state; aberrant transitions take the sys-

tem from a normal state to a compromised state. An 

attack is successful if it produces an aberrant transition 

without detection. Our goal is to detect all aberrant tran-

sitions. 

We partition possible variant states into three sets: nor-

mal, compromised, and alarm. A variant in a normal 

state is behaving as intended. A variant in a compro-

mised state has been successfully compromised by a 

malicious attack. A variant in an alarm state is anoma-

lous in a way that is detectable by the monitor. We aim 

to guarantee that the N-variant system never enters a 

state-tuple that contains one or more variants in com-

prised states without any variants in alarm states. To 

establish this we need two properties: normal equiva-

lence and detection. 

Normal equivalence. The normal equivalence property 

is satisfied if the N-variant system synchronizes the 

states of all variants. That is, whenever all variants are 

in normal states, they must be in states that correspond 

to the same canonical state. For security, it is sufficient 

to show the variants remain in equivalent states. For 

correctness, we would also like to know the canonical 

state of each of the variants is equivalent to the state of 

the original process. 

We can prove the normal equivalence property stati-

cally using induction:  

1. Show that initially all variants are in the same ca-

nonical state: ∀ 0 ≤ v < N:  Ci (S0, v) = S0. 

2. Show that every normal transition preserves the 

equivalence when the system is initially in a normal 

state:  

   ∀S ∈ Normal, 0 ≤ v < N, Sv  

                where Cv (Sv) = S, p ∈ Inputs:  

       Cv (Tv (Sv, p)) = T (S, p). 

Alternatively, we can establish it dynamically by exam-

ining the states of the variants and using the canonicali-

zation function to check the variants are in equivalent 

states after every step. In practice, neither a full static 

proof nor a complete dynamic comparison is likely to 

be feasible for real systems. Instead, we argue that our 

implementation provides a limited form of normal 

equivalence using a combination of static argument and 

limited dynamic comparison, as we discuss in Section 5. 

Detection. The detection property guarantees that all 

attacks in a certain class will be detected by the 

N-variant system as long as the normal equivalence 

property is satisfied. To establish the detection property, 

we need to know that any input that causes one variant 

to enter a compromised state must also cause some 

other variant to enter an alarm state. Because of the 

normal equivalence property, we can assume the vari-

ants all are in equivalent states before processing this 

input. Thus, we need to show:  

∀S ∈ Normal, 0  ≤ v < N,  Sv where Cv (Sv) = S,  

∀p ∈ Inputs:    

      Tv (Sv, p) ∈ Compromised ⇒  

          ∃w such that Tw (Sw, p) ∈ Alarm and Cw (Sw) = S 

If the detection property is established, we know that 

whenever one of the variants enters a compromised 
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state, one of the variants must enter an alarm state. An 

ideal monitor would instantly detect the alarm state and 

prevent all the other variants from continuing. This 

would guarantee that the system never operates in a 

state in which any variant is compromised.  

In practice, building such a monitor is impossible since 

we cannot keep the variants perfectly synchronized or 

detect alarm states instantly. However, we can approxi-

mate this behavior by delaying any external effects (in-

cluding responses to the client) until all variants have 

passed a critical point. This keeps the variants loosely 

synchronized, and approximates the behavior of in-

stantly terminating all other variants when one variant 

encounters an alarm state. It leaves open the possibility 

that a compromised variant could corrupt the state of 

other parts of the system (including the monitor and 

other variants) before the alarm state is detected. An 

implementation must use isolation mechanisms to limit 

this possibility. 

4. Variations 

Our framework works with any diversification tech-

nique that produces variants different enough to provide 

detection of a class of attack but similar enough to es-

tablish a normal equivalence property. The variation 

used to diversify the variants determines the attack class 

the N-variant system can detect. The detection property 

is defined by the class of attack we detect, so we will 

consider attack classes, such as attacks that involve exe-

cuting injected instructions, rather than vulnerability 

classes such as buffer overflow vulnerabilities.  

Next, we describe two variations we have implemented: 

address space partitioning and instruction set tagging. 

We argue (informally) that they satisfy both the normal 

equivalence property and the detection condition for 

important classes of attacks. The framework is general 

enough to support many other possible variations, 

which we plan to explore in future work. Other possible 

variations that could provide useful security properties 

include varying memory organization, file naming, 

scheduling, system calls, calling conventions, configura-

tion properties, and the root user id. 

4.1 Address Space Partitioning  

The Introduction described an example variation where 

the address space is partitioned between two variants to 

disrupt attacks that rely on absolute addresses. This 

simple variation does not prevent all memory corruption 

attacks since some attacks depend only on relative ad-

dressing, but it does prevent all memory corruption at-

tacks that involve direct references to absolute ad-

dresses. Several common vulnerabilities including for-

mat string [56, 54], integer overflow, and double-free 

[24] may allow an attacker to overwrite an absolute 

location in the target’s address space. This opportunity 

can be exploited to give an attacker control of a process, 

for example, by modifying the Global Offset Table [24] 

or the .dtors segment of an ELF executable [48]. Re-

gardless of the vulnerability exploited and the targeted 

data structure, if the attack depends on loading or stor-

ing to an absolute address it will be detected by our 

partitioning variants. Since the variation alters absolute 

addresses, it is necessary that the original program does 

not depend on actual memory addresses (for example, 

using the value of a pointer directly in a decision). Al-

though it is easy to construct programs that do not sat-

isfy this property, most sensible programs should not 

depend on actual memory addresses. 

Detection. Suppose P0 only uses addresses whose high 

bit is 0 and P1 only uses addresses whose high bit is 1. 

We can map the normal state of P0 and P1 to equivalent 

states using the identity function for C0 and a function 

that flips the high bit of all memory addresses for C1 (to 

map onto the actual addresses used by P, more complex 

mapping functions may be needed). The transition func-

tions, T0 and T1 are identical; the generated code is what 

makes things different since a different address will be 

referenced in the generated code for any absolute ad-

dress reference. If an attack involves referencing an 

absolute address, the attacker must choose an address 

whose high bit is either a 0 or 1. If it is a 0, then P0 may 

transition to a compromised state, but P1 will transition 

to an alarm state when it attempts to access a memory 

address outside P1’s address space. In Unix systems, 

this alarm state is detected by the operating system as a 

segmentation fault. Conversely, if the attacker chooses 

an address whose high bit is 1, P1 may be compromised 

but P0 must enter an alarm state. In either case, the 

monitor detects the compromise and prevents any ex-

ternal state modifications including output transmission 

to the client.  

Our detection argument relies on the assumption that 

the attacker must construct the entire address directly. 

For most scenarios, this assumption is likely to be valid. 

For certain vulnerabilities on platforms that are not 

byte-aligned, however, it may not be. If the attacker is 

able to overwrite an existing address in the program 

without overwriting the high bit, the attacker may be 

able to construct an address that is valid in both vari-

ants. Similarly, if an attacker can corrupt a value that is 

subsequently used with a transformed absolute address 

in an address calculation, the detection property is vio-



 7 

lated. As with relative attacks, this indirect memory 

attacks would not be detected by this variation. 

Normal equivalence. We have two options for estab-

lishing the normal equivalence property: we can check 

it dynamically using the monitor, or we can prove it 

statically by analyzing the variants. A pure dynamic 

approach is attractive for security assurance because of 

its simplicity but impractical for performance-critical 

servers. The monitor would need to implement C0 and 

C1 and compute the canonical states of each variant at 

the end of each instruction execution. If the states 

match, normal equivalence is satisfied. In practice, 

however, this approach is likely to be prohibitively ex-

pensive. We can optimize the check by limiting the 

comparison to the subset of the execution state that may 

have changed and only checking the state after particu-

lar instructions, but the overhead of checking the states 

of the variants after every step will still be unacceptable 

for most services. 

The static approach requires proving that for every pos-

sible normal state, all normal transitions result in 

equivalent states on the two variants. This property re-

quires that no instruction in P can distinguish between 

the two variants. For example, if there were a condi-

tional jump in P that depended on the high bit of the 

address of some variable, P0 and P1 would end up in 

different states after executing that instruction. An at-

tacker could take advantage of such an opportunity to 

get the variants in different states such that an input that 

transitions P0 to a compromised state does not cause P1 

to reach an alarm state. For example, if the divergence 

is used to put P0 in a state where the next client input 

will be passed to a vulnerable string format call, but the 

next client input to P1 is processed harmlessly by some 

other code, an attacker may be able to successfully 

compromise the N-variant system. A divergence could 

also occur if some part of the system is nondeterminis-

tic, and the operating environment does not eliminate 

this nondeterminism (see Section 5). Finally, if P is 

vulnerable to some other class of attack, such as code 

injection, an attacker may be able to alter the transition 

functions T0 and T1 in a way that allows the memory 

corruption attack to be exploited differently on the two 

variants to avoid detection (of course, an attacker who 

can inject code can already compromise the system in 

arbitrary ways). 

In practice, it will not usually be possible to completely 

establish normal equivalence statically for real systems 

but rather we will use a combination of static and dy-

namic arguments, along with assumptions about the 

target service. A combination of static and dynamic 

techniques for checking equivalence may be able to 

provide higher assurance without the overhead neces-

sary for full dynamic equivalence checking. Our proto-

type implementation checks equivalence dynamically at 

the level of system calls, but relies on informal static 

arguments to establish equivalence between them. 

Implementation. To partition the address space, we 

vary the location of the application data and code seg-

ments. The memory addresses used by P0 and P1 are 

disjoint: any data address that is valid for P0 is invalid 

for P1, and vice versa. We use a linker script to create 

the two variants.  Each variant loads both the code and 

data segments of the variants at different starting ad-

dresses from the other variant. To ensure that their sets 

of valid data memory addresses are disjoint, we use 

ulimit to limit the size of P0’s data segment so it cannot 

grow to overlap P1’s address space.  

4.2 Instruction Set Tagging 

Whereas partitioning the memory address space dis-

rupts a class of memory corruption attacks, partitioning 

the instruction set disrupts code injection attacks. There 

are several possible ways to partition the instruction set. 

One possibility would be to execute the variants on dif-

ferent processors, for example one variant could run on 

an x86 and the other on a PowerPC. Establishing the 

security of such an approach would be very difficult, 

however. To obtain the normal equivalence property we 

would need a way of mapping the concrete states of the 

different machines to a common state. Worse, to obtain 

the detection property, we would need to prove that no 

string of bits that corresponds to a successful malicious 

attack on one instruction set and a valid instruction se-

quence on the other instruction set. Although it is likely 

that most sequences of malicious x86 instructions con-

tain an invalid PowerPC instruction, it is certainly pos-

sible for attackers to design instruction sequences that 

are valid on both platforms (although we are not aware 

of any programs that do this for the x86 and PowerPC, 

Sjoerd Mullender and Robbert van Renesse won the 

1984 International Obfuscated C Code Contest with an 

entry that replaced main with an array of bytes that was 

valid machine code for both the Vax and PDP-11 but 

executed differently on each platform [35]).  

Instead, we use a single instruction set but prepend a 

variant-specific tag to all instructions. The diversifica-

tion transformation takes P and inserts the appropriate 

tag bit before each instruction to produce each variant.  
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Detection. The variation detects any attack that in-

volves executing injected code, as long as the mecha-

nism used to inject code involves injecting complete 

instructions. If memory is bit-addressable, an attacker 

could overwrite just the part of the instruction after the 

tag bit, thereby changing an existing instruction while 

preserving the original tag bit. If the attacker can inject 

the intended code in memory, and then have the pro-

gram execute code already in the executable that trans-

forms the injected memory (for example, by XORing 

each byte with a constant that is different in the two 

variants), then it is conceivable that an attacker could 

execute an indirect code injection attack where the code 

is transformed differently on the two variants before 

executing to evade the detection property. For all 

known realistic code injection attacks, neither of these 

is considered a serious risk.  

Normal equivalence. The only difference between the 

two variants is the instruction tag, which has no effect 

on instruction execution. The variants could diverge, 

however, if the program examines its own instructions 

and makes decisions that depend on the tag. It is 

unlikely that a non-malicious program would do this. As 

with the memory partitioning, if the instruction tags are 

visible to the executing process an attacker might be 

able to make them execute code that depends on the 

instruction tags to cause the variants to diverge before 

launching the code injection attack on one of the vari-

ants. To prevent this, we need to store the tagged in-

structions in memory that is not readable to the execut-

ing process and remove the tags before those instruc-

tions reach the processor. 

Implementation. To implement instruction set tagging, 

we use a combination of binary rewriting before execu-

tion and software dynamic translation during execution. 

We use Diablo [61, 22], a retargetable binary rewriting 

framework, to insert the tags. Diablo provides mecha-

nisms for modifying an x86 binary in ELF format. We 

use these to insert the appropriate variant-specific tag 

before every instruction. For simplicity, we use a full 

byte tag even though a single bit would suffice for two 

variants. There is no need to keep the tags secret, just 

that they are different; we use 10101010 and 01010101 

for the A and B variant tags.  

At run-time, the tags are checked and removed before 

instructions reach the processor. This is done using 

Strata, a software dynamic translation tool [52, 53]. 

Strata and other software dynamic translators [4, 11] 

have demonstrated that it is possible to implement soft-

ware dynamic translation without unreasonable per-

formance penalty. In our experiments (Section 5), 

Strata’s overhead is only a few percent. The Strata VM 

mediates application execution by examining and trans-

lating instructions before they execute on the host CPU. 

Translated instructions are placed in the fragment cache 

and then executed directly on the host CPU. Before 

switching to the application code, the Strata VM uses 

mprotect to protect critical data structures including the 

fragment cache from being overwritten by the applica-

tion. At the end of a translated block, Strata appends 

trampoline code that will switch execution back to the 

Strata VM, passing in the next application PC so that 

the next fragment can be translated and execution will 

continue. We implement the instruction set tagging by 

extending Strata’s instruction fetch module. The modi-

fied instruction fetch module checks that the fetched 

instruction has the correct tag for this variant; if it does 

not, a security violation is detected and execution ter-

minates. Otherwise, it removes the instruction tag be-

fore placing the actual instruction in the fragment cache. 

The code executing on the host processor contains no 

tags and can execute normally. 

5. Framework Implementation 

Implementing an N-variant system involves generating 

variants such as those described in Section 4 as well as 

implementing the polygrapher and monitor. The trusted 

computing base comprises the polygrapher, monitor and 

mechanisms used to produce the variants, as well as any 

operating system functionality that is common across 

the variants. An overriding constraint on our design is 

that it be fully automated. Any technique that requires 

manual modification of the server to create variants or 

application-specific monitoring would impose too large 

a deployment burden to be used widely. To enable rapid 

development, our implementations are entirely in soft-

ware. Hardware implementations would have security 

and performance advantages, especially in monitoring 

the instruction tags. Furthermore, placing monitoring as 

close as possible to the processor eliminates the risk 

that an attacker can exploit a vulnerability in the moni-

toring mechanism to inject instructions between the 

enforcement mechanism and the processor. 

The design space for N-variant systems implementa-

tions presents a challenging trade-off between isolation 

of the variants, polygrapher, and monitor and the need 

to keep the variant processes synchronized enough to 

establish the normal equivalence property. The other 

main design decision is the granularity of the monitor-

ing. Ideally, the complete state of each variant would be 

inspected after each instruction. For performance rea-

sons, however, we can only observe aspects of the state 

at key execution points.  Incomplete monitoring means 
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that an attacker may be able to exploit a different vul-

nerability in the server to violate the normal equivalence 

property, thereby enabling an attack that would have 

otherwise been detected to be carried out without detec-

tion. For example, an attacker could exploit a race con-

dition in the server to make the variants diverge in ways 

that are not detected by the monitor. Once the variants 

have diverged, the attacker can construct an input that 

exploits the vulnerability in one variant, but does not 

produce the detected alarm state on the other variants 

because they started from different states.   

In our first proof-of-concept implementation, described 

in Section 5.1, we emphasized isolation and executed 

the variants on separate machines. This meant that any 

nondeterminism in the server program or aspects of the 

host state visible to the server program that differed 

between the machines could be exploited by an attacker 

to cause the processes to diverge and then allow a suc-

cessful attack. It also meant the monitor only observed 

the outputs produced by the two variants that would be 

sent over the network. This enabled certain attacks to be 

detected, but meant a motivated attacker could cause the 

states to diverge in ways that were not visible from the 

output (such as corrupting server data) but still achieved 

the attacker’s goals. 

Our experience with this implementation led us to con-

clude that a general N-variant systems framework 

needed closer integration of the variant processes to 

prevent arbitrary divergences. We developed such a 

framework as a kernel modification that allows multiple 

variants to run on the same platform and normal equiva-

lence to be established at system call granularity. This 

eliminates most causes of nondeterminism and improves 

the performance of the overall system. Section 5.2 de-

scribes our Linux kernel implementation, and Section 

5.3 presents performance results running Apache vari-

ants on our system.  

5.1 Proof-of-Concept Implementation 

In our proof-of-concept implementation, the variants are 

isolated on separate machines and the polygrapher and 

monitor are both implemented by the nvd process run-

ning on its own machine. We used our implementation 

to protect both a toy server we constructed and Apache. 

In order for our approach to work in practice it is essen-

tial that no manual modification to the server source 

code is necessary. Hence, each server variant must exe-

cute in a context where it appears to be interacting nor-

mally with the client. We accomplish this by using di-

vert sockets to give each variant the illusion that it is 

interacting directly with a normal client. To implement 

the polygrapher we use ipfw, a firewall implementation 

for FreeBSD [27] with a rule that redirects packets on 

port 80 (HTTP server) to our nvd process which adjusts 

the TCP sequence numbers to be consistent with the 

variant’s numbering. Instead of sending responses di-

rectly to the client, the variant’s responses are diverted 

back to nvd, which buffers the responses from all of the 

variants. The responses from P0 are transmitted back to 

the client only if a comparably long response is also 

received from the other variants. Hence, if any variant 

crashes on a client input, the response is never sent to 

the client and nvd restarts the server in a known uncom-

promised state. 

We tested our system by using it to protect a toy server 

we constructed with a simple vulnerability and Apache, 

and attempted to compromise those servers using pre-

viously known exploits as well as constructed exploits 

designed to attack a particular variant. Exploit testing 

does not provide any guarantees of the security of our 

system, of course, but it does demonstrate that the cor-

rect behavior happens under the tested conditions to 

increase our confidence in our approach and implemen-

tation. Our toy server contained a contrived format 

string vulnerability, and we developed an exploit that 

used that vulnerability to write to an arbitrary memory 

address. The exploit could be customized to work 

against either variation, but against the N-variant system 

both versions would lead to one of the variants crash-

ing. The monitor detects the crash and prevents com-

promised outputs from reaching the client. We also 

tested an Apache server containing a vulnerable 

OpenSSL implementation (before 0.9.6e) that contained 

a buffer overflow vulnerability that a remote attacker 

could exploit to inject code [13]. When instruction set 

tagging is used, the exploit is disrupted since it does not 

contain the proper instruction tags in the injected code.  

We also conducted some performance measurements on 

our 2-variant system with memory address partitioning. 

The average response latency for HTTP requests in-

creased from 0.2ms for the unmodified server to 2.9ms 

for the 2-variant system.  

The proof-of-concept implementation validated the N-

variant systems framework concept, but did not provide 

a practical or secure implementation for realistic ser-

vices. Due to isolation of the variants, various non-

attack inputs could lead to divergences between the 

variants caused by differences between the hosts. For 

example, if the output web page includes a time stamp 

or host IP address, these would differ between the vari-

ants. This means false positives could occur when the 

monitor observes differences between the outputs for 
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normal requests. Furthermore, a motivated attacker 

could take advantage of any of these differences to con-

struct an attack that would compromise one of the vari-

ants without leading to a detected divergence. 

5.2 Kernel Implementation  

The difficulties in eliminating nondeterminism and pro-

viding finer grain monitoring with the isolated imple-

mentation, as well as its performance results, convinced 

us to develop a kernel implementation of the framework 

by modifying the Linux 2.6.11 kernel. In this implemen-

tation, all the variants run on the same platform, along 

with the polygrapher and monitor. We rely on existing 

operating system mechanisms to provide isolation be-

tween the variants, which execute as separate processes. 

We modified the kernel data structures to keep track of 

variant processes and implemented wrappers around 

system calls. These wrappers implement the polygraph-

ing functionality by wrapping input system calls so that 

when both variants make the same input system call, the 

actual input operation is performed once and the same 

data is sent to all variants. They provide the monitoring 

functionality by checking that all variants make the 

same call with equivalent arguments before making the 

actual system call.  

This system call sharing approach removes nearly all of 

the causes of nondeterminism that were problematic in 

the proof-of-concept implementation. By wrapping the 

system calls, we ensure that variants receive identical 

results from all system calls. The remaining cause of 

nondeterminism is due to scheduling differences, in 

particular in handling signals. We discuss these limita-

tions in Section 6. 

In order to bring an N-variant system into execution we 

created two new system calls: n_variant_fork, and 

n_variant_execve. The program uses these system calls 

similarly to the way a shell uses fork/execve to bring 

processes into execution. The n_variant_fork system call 

forks off the variants, however instead of creating a 

single child process it creates one process per variant. 

The variants then proceed to call n_variant_execve, 

which will cause each of the variants to execute their 

own diversified binary of the server. Note that our ap-

proach requires no modification of an existing binary to 

execute it within an N-variant system; we simply invoke 

a shell command that takes the pathnames of variant 

binaries as parameters and executes n_variant_execve.  

Next, we provide details on the system call wrappers 

that implement the polygraphing and monitoring. The 

Linux 2.6.11 kernel provides 267 system calls. We gen-

eralize them into three categories based on the type of 

wrapper they need: shared system calls, reflective sys-

tem calls, and dangerous system calls.   

Shared System Calls. For system calls that interact 

with external state, including I/O system calls, the 

wrapper checks that all variants make equivalent calls, 

makes the actual call once, and sends the output to all 

variants, copying data into each of the variants address 

space if necessary. Figure 2 shows pseudocode for a 

shared call, in this case the read system call. The actual 

wrappers are generated using a set of preprocessor mac-

ros we developed to avoid duplicating code. The first if 

statement checks whether this process is part of an 

N-variant system. If not, the system call proceeds nor-

ssize_t sys_read(int fd, const void *buf, size_t count) { 
   if (!hasSibling (current)) { make system call normally } // not a variant process 
   else {  
      record that this variant process entered call 
      if (!inSystemCall (current->sibling)) { // this variant is first 
          save parameters 
          sleep // sibling will wake us up 
          get result and copy *buf data back into address space 
          return result; 
      } else if (currentSystemCall (current->sibling) == SYS_READ) { // this variant is second, sibling waiting 
          if (parameters match) { // what it means to “match” depends on variation and system call 
              perform system call 
              save result and data in kernel buffer 
              wake up sibling 
              return result; 
          } else { DIVERGENCE ERROR! } // sibling used different parameters 
      } else { DIVERGENCE ERROR! } } } // sibling is in a different system call 

Figure 2. Typical shared system call wrapper. 
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mally. Hence, a single platform can run both normal and 

N-variant processes. If the process is a variant process, 

it records that it has entered this system call and checks 

if its sibling variant has already entered a system call. If 

it has not, it saves the parameters and sleeps until the 

other variant wakes it up. Otherwise, it checks that the 

system call and its parameters match those used by the 

first variant to make the system call. If they match, the 

actual system call is made. The result is copied into a 

kernel buffer, and the sibling variant process (which 

reached this system call first and went to sleep) is 

awoken. The sibling process copies the result from the 

kernel buffer back into its address space and continues 

execution. 

Reflective System Calls. We consider any system call 

that observes or modifies properties of the process itself 

a reflective system call. For these calls, we need to en-

sure that all observations always return the same value 

regardless of which variant reaches the call first, and 

that all modifications to process properties are done 

equivalently on all variants. For observation-only re-

flective calls, such as getpid, we check that all variants 

make the same call, and then just make the call once for 

variant 0 and send the same result to all variants. This is 

done using wrappers similar to those for shared system 

calls, except instead of just allowing the last variant that 

reaches the call to make the actual system call we need 

to make sure that each time a reflective call is reached, 

it is executed for the same process. 

Another issue is raised by the system calls that create 

child processes (sys_fork, sys_vfork, and sys_clone). 
The wrappers for these calls must coordinate each vari-

ant’s fork and set up all the child processes as a child 

N-variant system before any of the children are placed 

on the run queue. These system calls return the child 

process’ PID. We ensure that all the parents in the 

N-variant system get the same PID (the PID of variant 

0’s child), as with the process observation system calls.  

The other type of reflective system call acts on the 

process itself. These system calls often take parameters 

given by the reflective observation system calls. In this 

case, we make sure they make the same call with the 

same parameters, but alter the parameters accordingly 

for each variant. For example, sys_wait4 takes a PID as 

an input. Each of the variants will call sys_wait4 with 

the same PID because they were all given the same 

child PID when they called sys_fork (as was required to 

maintain normal equivalence). However, each variant 

needs to clean up its corresponding child process within 

the child system. The wrapper for sys_wait4 modifies 

the PID value passed in and makes the appropriate call 

for each variant with its corresponding child PID. Simi-

lar issues arise with sys_kill, sys_tkill, and sys_waitpid. 

Finally, we have to deal with two system calls that ter-

minate a process: sys_exit and sys_exit_group. A termi-

nating process does not necessarily go through these 

system calls, since it may terminate by crashing. To 

ensure that we capture all process termination events in 

an N-variant system we added a monitor inside the 

do_exit function within the kernel which is the last func-

tion all terminating processes execute. This way, if a 

process receives a signal and exits without going 

through a system call, we will still observe this and can 

terminate the other variants. 

Dangerous System Calls. Certain calls would allow 

processes to break assumptions on which we rely. For 

example, if the process uses the execve system to run a 

new executable, this will escape the N-variant protec-

tions unless we can ensure that each variant executes a 

different executable that is diversified appropriately. 

Since it is unlikely we can establish this property, the 

execve wrapper just disables the system call and returns 

an error code. This did not pose problems for Apache, 

but might for other applications. 

Other examples of dangerous system calls are those for 

memory mapping (old_mmap, sys_mmap2) which map 

a portion of a file into a process’ address space. After a 

file is mapped into an address space, memory reads and 

writes are analogous to reads and writes from the file. 

This would allow an attacker to compromise one vari-

ant, and then use the compromised variant to alter the 

state of the uncompromised variants through the shared 

memory without detection, since no system call is nec-

essary. Since many server applications (including 

Apache) use memory mapping, simply blocking these 

system calls is not an option. Instead, we place restric-

tions on them to allow only the MAP_ANONYMOUS and 

MAP_PRIVATE options with all permissions and to per-

mit MAP_SHARED mappings as long as write permis-

sions are not requested.  This eliminates the communi-

cation channel between the variants, allowing memory 

mapping to be used safely by the variants. Apache runs 

even with these restrictions since it does not use other 

forms of memory mapping, but other solutions would be 

needed to support all services. 

5.3 Performance  

Table 1 summarizes our performance results. We meas-

ured the throughput and latency of our system using 

WebBench 5.0 [65], a web server benchmark using a 

variety of static web page requests. We ran two sets of 
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experiments measuring the performance of our Apache 

server under unsaturated and saturated load conditions.  

In both sets, there was a single 2.2GHz Pentium 4 

server machine with 1GB RAM running Fedora Core 3 

(2.6.11 kernel) in the six different configurations shown 

in Table 1. For the first set of experiences, we used a 

single client machine running one WebBench client 

engine. For the load experiments, we saturated our 

server using six clients each running five WebBench 

client engines connected to the same networks switch as 

the server.   

Configuration 1 is the baseline configuration: regular 

apache running on an unmodified kernel. Configuration 

2 shows the overhead of the N-variant kernel on a nor-

mal process. In our experiments, it was negligible; this 

is unsurprising since the overhead is only a simple com-

parison at the beginning of each wrapped system call. 

Configuration 3 is a 2-variant system running in our N-

variant framework where the two variants differ in the 

address spaces according to the partitioning scheme 

described in Section 4.1. For the unloaded server, the 

latency observed by the client increases by 17.6%. For 

the loaded server, the throughput decreases by 48% and 

the latency nearly doubles compared to the baseline 

configuration. Since the N-variant system executes all 

computation twice, but all I/O system calls only once, 

the overhead incurred reflects the cost of duplicating the 

computation, as well as the checking done by the wrap-

pers. The overhead measured for the unloaded server is 

fairly low, since the process is primarily I/O bound; for 

the loaded server, the process becomes more compute-

bound, and the approximately halving of throughput 

reflects the redundant computation required to run two 

variants. 

The instruction tagging variation is more expensive 

because of the added cost of removing and checking the 

instruction tags. Configuration 4 shows the performance 

of Apache running on the normal kernel under Strata 

with no transformation. The overhead imposed by Strata 

reduces throughput by about 10%. The Strata overhead 

is relatively low because once a code fragment is in the 

fragment cache it does not need to be translated again 

the next time it executes. Adding the instruction tagging 

(Configuration 5) has minimal impact on throughput  

and latency. Configuration 6 shows the performance of 

a 2-variant system where the variants are running under 

Strata with instruction tag variation. The performance 

impact is more than it was in Configuration 3 because 

of the additional CPU workload imposed by the instruc-

tion tags. For the unloaded server, the latency increases 

28% over the baseline configuration; for the saturated 

server, the throughput is 37% of the unmodified 

server’s throughput. 

Our results indicate that for I/O bound services, N-

variant systems where the variation can be achieved 

with reasonable performance overhead, especially for 

variations such as the address space partitioning where 

little additional work is needed at run-time. We antici-

pate there being many other interesting variations of this 

type, such as file renaming, local memory rearrange-

ment, system call number diversity, and user id diver-

sity. For CPU-bound services, the overhead of our ap-

proach will remain relatively high since all computation 

needs to be performed twice. Multiprocessors may alle-

viate some of the problem (in cases where there is not 

enough load to keep the other processors busy nor-

mally). Fortunately, many important services are largely 

I/O-bound today and trends in processor and disk per-

formance make this increasingly likely in the future. 

6. Discussion 

Our prototype implementation illustrates the potential 

for N-variant systems to protect vulnerable servers from 

important classes of attacks. Many other issues remain 

to be explored, including how our approach can be ap-

plied to other services, what variations can be created to 

detect other classes of attacks, how an N-variant system 

can recover from a detected attack, and how composi-

tions of design and artificially diversified variants can 

provide additional security properties. 

Configuration 1 2 3 4 5 6 

Description 

Unmodified 

Apache, 

unmodified 

kernel 

Unmodified 

Apache, 

N-variant 

kernel 

2-variant 

system, 

address 

partitioning 

Apache 

running 

under 

Strata 

Apache 

with 

instruc-

tion tags 

2-variant 

system, 

instruc-

tion tags 

Throughput (MB/s) 2.36 2.32 2.04 2.27 2.25 1.80 
Unsaturated 

Latency (ms) 2.35 2.40 2.77 2.42 2.46 3.02 

Throughput (MB/s) 9.70 9.59 5.06 8.54 8.30 3.55 
Saturated 

Latency (ms) 17.65 17.80 34.20 20.30 20.58 48.30 

Table 1. Performance Results. 
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Applicability. Our prototype kernel implementation 

demonstrated the effectiveness of our approach using 

Apache as a target application.  Although Apache is a 

representative server, there are a number of things other 

servers might do that would cause problems for our 

implementation. The version of Apache used in our 

experiments on uses the fork system call to create sepa-

rate processes to handle requests.  Each child process is 

run as an independent N-variant system. Some servers 

use user-level threading libraries where there are multi-

ple threads within a single process invisible to our ker-

nel monitor. This causes problems in an N-variant sys-

tem, since the threads in the variants may interleave 

differently to produce different sequences of system 

calls (resulting in a false detection), or worse, interleave 

in a way that allows an attacker to exploit a race condi-

tion to carry out a successful attack without detection. 

One possible solution to this problem is to modify the 

thread scheduler to ensure that threads in the variants 

are scheduled identically to preserve synchronization 

between the variants.   

The asynchronous property of process signals makes it 

difficult to ensure that all variants receive a signal at the 

exact same point in each of their executions. Although 

we can ensure that a signal is sent to all the variants at 

the same time, we cannot ensure that all the variants are 

exactly at the same point within their program at that 

time. As a result, the timing of a particular signal could 

cause divergent behavior in the variants if the code be-

haves differently depending on the exact point when the 

signal is received. This might cause the variants to di-

verge even though they are not under attack, leading to 

a false positive detection. As with user-level threads, if 

we modify the kernel to provide more control of the 

scheduler we could ensure that variants receive signals 

at the same execution points. 

Another issue that limits application of our approach is 

the use of system calls we classified as dangerous such 

as execve or unrestricted use of mmap. With our current 

wrappers, a process that uses these calls is terminated 

since we cannot handle them safely in the N-variant 

framework. In some cases, more precise wrappers may 

allow these dangerous calls to be used safely in an 

N-variant system.  Some calls, however, are inherently 

dangerous since they either break isolation between the 

variants or allow them to escape the framework. In 

these situations, either some loss of security would need 

to be accepted, or the application would need to be 

modified to avoid the dangerous system calls before it 

could be run as an N-variant system. 

Other variations. The variations we have implemented 

only thwart attacks that require accessing absolute 

memory addresses or injecting code. For example, our 

current instruction tagging variation does not disrupt a 

return-to-libc attack (since it does not involve injecting 

code), and our address space partitioning variation pro-

vides no protection against memory corruption attacks 

that only use relative addressing. One goal for our fu-

ture work is to devise variations that enable detection of 

larger classes of attack within the framework we have 

developed. We believe there are rich opportunities for 

incorporating different kinds of variation in our frame-

work, although the variants must be designed carefully 

to ensure the detection and normal equivalence proper-

ties are satisfied.  Possibilities include variations involv-

ing memory layout to prevent classes of relative ad-

dressing attacks, file system paths to disrupt attacks that 

depend on file names, scheduling to thwart race condi-

tion attacks, and data structure parameters to disrupt 

algorithmic complexity attacks [21]. 

Composition. Because of the need to satisfy the normal 

equivalence property, we cannot simply combine multi-

ple variations into two variants to detect the union of 

their attack classes. In fact, such a combination risks 

compromising the security properties each variation 

would provide by itself. By combining variations more 

carefully, however, we can compose variants in a way 

that maintains the properties of the independent varia-

tions. To do this securely, we must ensure that, for each 

attack class we wish to detect, there is a pair of variants 

in the system that differs only in the transformation used 

to detect that attack class. This is necessary to ensure 

that for each variation, there is a pair of variants that 

satisfy the normal equivalence property for that varia-

tion but differ in the varied property. This approach can 

generalize to compose n binary variations using n + 1 

variants. More clever approaches may be able to estab-

lish the orthogonality of certain variations to allow 

fewer variants without sacrificing normal equivalence. 

Another promising direction is to combine our approach 

with design diversity approaches [46, 28, 62]. We could 

create a 3-variant system where two variants are Apache 

processes running on Linux hosts with controlled ad-

dress space partitioning variation, and the third variant 

is a Windows machine running IIS. This would provide 

guaranteed detection of a class of low-level memory 

attacks through the two controlled variants, as well as 

probabilistic detection of attacks that exploit high-level 

application semantics through the design variants. 

Recovery. Our modified kernel detects an attack when 

the system calls made by the variants diverge. At this 
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point, one variant is in an alarm state (e.g., crashed), 

and the other variant is in a possibly compromised state. 

After detecting the attack, the monitor needs to restart 

the service in an uncompromised state. Note that the 

attack is always detected before any system call is exe-

cuted for a compromised process; this means no exter-

nal state has been corrupted. For a stateless server, the 

monitor can just restart all of the variants. For a stateful 

server, recovery is more difficult. One interesting ap-

proach is to compare the states of the variants after the 

attack is detected to determine the valid state. Depend-

ing on the variation used, it may be possible to recover 

a known uncompromised state from the state of the 

alarm variant, as well as to deduce an attack signature 

from the differences between the two variants’ states. 

Another approach involves adding an extra recovery 

variant that maintains a known uncompromised state 

and can be used to restart the other variants after an 

attack is detected. The recovery variant could be the 

original P, except it would be kept behind the normal 

variants. The polygrapher would delay sending input to 

the recovery variant until all of the regular variants 

process it successfully. This complicates the wrappers 

substantially, however, and raises difficult questions 

about how far behind the recovery variant should be. 

7. Conclusion 

Although the cryptography community has developed 

techniques for proving security properties of crypto-

graphic protocols, similar levels of assurance for system 

security properties remains an elusive goal. System 

software is typically too complex to prove it has no vul-

nerabilities, even for small, well-defined classes of vul-

nerabilities such as buffer overflows. Previous tech-

niques for thwarting exploits of vulnerabilities have 

used ad hoc arguments and tests to support claimed 

security properties. Motivated attackers, however, regu-

larly find ways to successfully attack systems protected 

using these techniques [12, 55, 58, 64].   

Although many defenses are available for the particular 

attacks we address in this paper, the N-variant systems 

approach offers the promise of a more formal security 

argument against large attack classes and correspond-

ingly higher levels of assurance. If we can prove that the 

automated diversity produces variants that satisfy both 

the normal equivalence and detection properties against 

a particular attack class, we can have a high degree of 

confidence that attacks in that class will be detected. 

The soundness of the argument depends on correct be-

havior of the polygrapher, monitor, variant generator 

and any common resources.  

Our framework opens up exciting new opportunities for 

diversification approaches, since it eliminates the need 

for high entropy variations. By removing the reliance on 

keeping secrets and providing an architectural and asso-

ciated proof framework for establishing security proper-

ties, N-variant systems offer potentially substantial 

gains in security for high assurance services. 

Availability 

Our implementation is available as source code from 

http://www.nvariant.org. This website also provides de-

tails on the different system call wrappers. 
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