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ABSTRACT 
Dynamic inference techniques have been demonstrated to provide 
useful support for various software engineering tasks including 
bug finding, test suite evaluation and improvement, and 
specification generation. To date, however, dynamic inference has 
only been used effectively on small programs under controlled 
conditions. In this paper, we identify reasons why scaling dynamic 
inference techniques has proven difficult, and introduce solutions 
that enable a dynamic inference technique to scale to large 
programs and work effectively with the imperfect traces typically 
available in industrial scenarios. We describe our approximate 
inference algorithm, present and evaluate heuristics for winnowing 
the large number of inferred properties to a manageable set of 
interesting properties, and report on experiments using inferred 
properties. We evaluate our techniques on JBoss and the Windows 
kernel. Our tool is able to infer many of the properties checked by 
the Static Driver Verifier and leads us to discover a previously 
unknown bug in Windows. 

Categories and Subject Descriptors 

D.2.4 [Software/Program Verification] 

General Terms 

Reliability, Experimentation, Verification 

Keywords 

Dynamic analysis, temporal properties, specification inference. 

1. INTRODUCTION 
Many software tasks require specifications: verifying programs 
requires specifications of their intended behavior, testing programs 
requires specifications to determine the input domain and expected 
outputs, and maintaining programs requires specifications to 
understand what aspects of the behavior can be modified. 
Unfortunately, most programs do not come with precise specifica-
tions. Worse, those that do often fail to preserve the consistency of 
specifications and implementations. As the implementation 
changes, the specification becomes increasingly incorrect.  

As a result, several researchers have been motivated to study the 
problem of specification inference [3, 4, 11, 16, 17, 19, 40, 48, 
49]. Although early work in this area emphasized static analysis of 
the program text [3, 16, 19, 48], more recently several researchers 
have explored the possibility of using a program’s dynamic 
behavior on sample executions to infer a specification [4, 11, 17, 
40, 49]. Dynamic specification inference has shown promising 

results in many areas, including bug detection [25, 36, 37, 39], test 
case selection [24, 26, 50], and program steering [35]. However, 
all of the results to date have been on small programs.   

The scalability and applicability of dynamic inference techniques 
to industrial programs is limited by several issues:  

1. The inference algorithms themselves often scale poorly with 
the size of the program and input trace.  

2. Previous dynamic inference techniques only infer properties 
that are completely satisfied by the execution traces. This 
means they require perfect traces, and do not work well in 
situations where only imperfect traces are available.   

3. Many of the properties that are inferred dynamically are often 
uninteresting. For small programs, it is feasible for the 
developer to manually winnow the set of inferred properties 
down to the interesting ones; for large programs, this 
winnowing must be mostly automated. 

Our work seeks to address these challenges and find ways to 
usefully apply dynamic inference techniques to large programs in 
industrial scenarios. We focus on dynamic inference of temporal 
properties. Temporal properties constrain the order of occurrence 
of program events. For example, acquiring a lock should 
eventually be followed by releasing the lock. Such properties are 
very important in software development. Many programs have 
some inherent temporal behaviors. For example, network protocols 
can usually be described using a finite state machine. Satisfying 
temporal properties is essential for an implementation to be 
correct. Such temporal properties, however, are rarely available. 

Manually specifying temporal properties is an expensive, 
error-prone, and tedious process [28]. In our previous work, we 
proposed a dynamic analysis approach for automatically inferring 
temporal properties from a program’s execution traces [51] and 
demonstrated that the inferred properties are useful for supporting 
program evolution on some small examples [52]. Section 3 sum-
marizes our inference approach and explains how our improved 
inference algorithm scales to large traces and programs. In 
attempting to apply our approach to larger programs, however, we 
encountered the problems identified above. The traces we were 
able to obtain were imperfect, which prevented many important 
properties from being inferred. Of the properties inferred, 
however, a large fraction was uninteresting and for larger 
programs it became increasingly impractical to manually separate 
the interesting and uninteresting properties. 

The key contributions of this paper involve developing solutions to 
the problems encountered when dynamic inference techniques are 
used on industrial programs and evaluating their effectiveness 
experimentally: 

• Addressing the problem of imperfect traces by developing an 
analysis technique for detecting dominant behaviors from a 
program’s potentially imperfect traces (Section 4). 

• Developing two techniques for incorporating contextual 
information into the inference algorithms (Section 5). 
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• Introducing two new heuristics for automatically identifying 
properties that are likely to be interesting and a method for 
logically combining inferred properties (Section 6). 

We have implemented these techniques in our inference engine, 
Perracotta, and evaluated them in three scenarios, including 
experiments on inferring API rules for Daisy file system, Windows 
kernel, and JBoss core components (Section 7). We were able to 
find 56 interesting rules for Windows APIs, including many 
properties checked by the Static Driver Verifier [42]. One 
important use of the inferred properties is to validate the program 
satisfies those properties using static verifiers. This paper describes 
our initial effort to verify inferred temporal properties using a 
static analysis tool. We fed the inferred Windows kernel API rules 
to the ESP verifier which led us to find a significant bug in the 
Windows code. 

2. RELATED WORK 
This section provides background on temporal properties and 
program verification, and discusses related work in static and 
dynamic property inference. 

2.1 Background 
Pnueli developed the theory of temporal logic [38]. Dwyer et al. 
developed a set of temporal property patterns based on a case study 
of hundreds of property specifications [15]. Their Bandera specifi-
cation language facilitates specification of those patterns [12]. 
Smith et al. developed the Propel approach to make writing and 
understanding specification easier [44]. Our work tries to infer 
properties which could be expressed using any of these logics. 
Since the properties we consider in this paper are simple, we can 
describe them with regular expressions. 

Much research has focused on using specifications of temporal 
properties to verify systems, especially concurrent systems [2, 5, 9, 
10, 13, 14, 18, 27, 33, 47]. All these works require a specification 
of properties to check, which is a big burden for users and limits 
the wider adoption of such tools. For our verification experiments, 
we use Java PathFinder [47] (Section 7.1.2) and ESP [13] (Section 
7.3.2). 

Java PathFinder (JPF) is an explicit-state model checker for Java 
programs [47]. It can check deadlock, race conditions, unhandled 
exceptions, and user-specified assertions. Upon finding a violation 
of a property, it produces an execution path illustrating the 
problem. 

ESP is a validation tool for typestate properties [46]. ESP allows a 
user to write a custom specification encoded in a finite state 
machine to describe typestate transitions. ESP employs an 
inter-procedural dataflow analysis algorithm [41] to compute the 
typestate behavior at every program point. ESP uses the property 
simulation method for combining dataflow analysis and symbolic 
evaluation. The algorithm computes two sets of information: (a) 
the property state (typestate according to the specified protocol) 
and (b) the path simulation state. At a merge point in the control 
flow, if two symbolic states have the same property state, ESP 
merges the path simulation states. Otherwise, ESP explores the 
two paths independently as in a full path-sensitive analysis.  

2.2 Static Inference 
Tools can attempt to automatically derive specifications from a 
static analysis of the program text [6, 7, 8] or through a trial and 
error approach with a static analyzer [19]. Alur et al. developed a 
static analysis for synthesizing Java class interfaces for a single 

class [3]. We limit the remainder of our survey to static inference 
work designed to deal with imperfect code, since this work is 
similar in spirit with our goal of handling imperfect traces for dy-
namic inference. 

Engler et al. proposed a method for extracting properties by 
statically examining source code based on a set of pre-defined 
templates [16]. They can infer the kinds of alternating properties 
we focus on in this paper. They use a set of specific names to 
reduce the number of candidate events [16]. They select properties 
based on three program styles. Weimer et al. invented a static ana-
lysis that statistically analyzes incompletely satisfied static proper-
ties by examining a program’s exception handling routines [48]. 
The main difference between these works and ours is that our 
approach uses dynamic traces instead of static analysis of the 
program text. This enables our techniques to be used in more 
scenarios such as when source code is not available. Their 
approaches mainly focus on local properties, while we can identify 
relationships among events that are far removed from each other in 
program text. Some of the techniques we develop in this paper 
could also be applied to possibly improve static inference 
techniques, as we discuss in Section 8. 

2.3 Dynamic Inference 
Another approach for inferring specifications uses program 
execution traces. This paper is the first to present results from 
applying dynamic inference on a real system whose size is 
comparable to Windows. Previous work has attempted to extract a 
complete finite state machine [4, 11, 49], which is historically 
called the grammar inference problem. Gold proved it is NP-hard 
[21, 22]. To achieve better scalability, our work only focuses on 
the relationships among a few events, which represent the majority 
of properties people care about most [15]. Our chaining heuristic 
enables us to compose more complex state machines out of the 
simpler ones. In addition, previous work on dynamic inference 
(except [11], described at the end of this section) assumes the test 
program executions are perfect and will not infer properties that 
are not completely satisfied by the traces. Our inference algorithm 
is designed for imperfect traces typically found in an industrial 
setting and can tolerate bugs in the trace as long as the majority of 
the trace is correct. Next, we survey dynamic inference techniques 
and explain other differences between previous work and this 
work. 

Ammons et al. used an off-the-shelf probabilistic finite automaton 
learner to mine temporal and data-dependence specifications for 
APIs or ADTs from dynamic traces [4]. To handle traces 
containing bugs, their approach required human experts to decide 
whether a violation is actually a bug. In contrast, our techniques 
can automatically tolerate imperfect traces without guidance. Their 
machine learning algorithm has a high computational cost, 
whereas our algorithm scales better to larger traces than theirs. 
Daikon is a tool that automatically infers likely program invariants 
using statistical inference from a program's execution traces [17]. 
Daikon’s effectiveness has been demonstrated for a variety of 
applications, such as assisting new programmers to maintain and 
improve a legacy system [17], test case selection [26], and 
generating annotations for use by static checkers [37]. Whaley et al. 
proposed a static and a dynamic approach for inferring what 
protocols users of a Java class must follow [49]. The protocols 
their approach can find are mainly typestate properties and are 
limited to one class. Our approach is able to discover useful 
properties among methods from different classes. They sliced their 



 3 

dynamic traces based on a class’s field, while we slice based on an 
object’s identity and arguments.  

Cook et al. invented a statistical dynamic analysis for extracting 
thread synchronization models from a program’s execution traces 
[11]. Our work differs from theirs in that we focus on detecting 
API rules and assume the trace already has the thread information. 
Reiss et al. developed a technique to compact large volume of 
execution traces [40]. They use the sequencing properties on 
individual objects, while we detect rules across multiple objects. 
DynaMine extracts usage patterns from a system’s CVS revision 
histories and dynamically validates inferred patterns [36]. Their 
approach is complementary to our work in that examining a CVS 
history is a way to select events to monitor at run-time. Their 
mining algorithm has to filter out a fixed set of frequent events to 
scale to large scenarios, which is not as general as our heuristics. 
The patterns they inferred tend to focus only on methods within a 
class, whereas we can infer properties spanning classes. 

3. APPROACH 
In previous work we proposed a dynamic analysis for auto-
matically inferring simple finite state machines from a program’s 
execution traces [51, 52]. Figure 1 depicts the steps in our 
approach. First, we instrument the target program to monitor 
events and states of interest. Then we run the instrumented 
program through a set of test cases collecting execution traces. Our 
inference engine then tries to match the traces against a set of 
pre-defined property templates. Our post-processing component 
selects and outputs the interesting properties out of the initial 
results. 

For example, the Alternating template constrains two events to be 
in strict alternating order. We can define it in regular expression as 
(PS)*, where P and S are placeholders and represent two different 
events. Suppose we monitor the acquire and release methods of a 
lock class and obtain this trace as follows: lock.acq, lock.rel, 

lock.acq, lock.rel. Our inference engine instantiates the (PS)* 
template with each possible pair of events: (lock.acq lock.rel)* and 
(lock.rel lock.acq)*. The first substitution accepts the trace as a 
valid string, so Alternating property is inferred. We denote it as 

lock.acq→lock.rel. The second substitution rejects the trace as a 
valid string, so no Alternating property is inferred. 

We developed a hierarchy of eight property templates based on the 
Response pattern (whenever P happens, S must also eventually 
happen) [15], of which Alternating is the strictest. We have found 
they are useful for comparing the behaviors of several versions of 
an evolving system [52]. Our inference algorithm infers the 
strictest template that any two events satisfy [51]. In this paper, we 
only consider the Alternating property pattern. It is the strictest of 
the template patterns and has proven the most useful in practice. 

3.1 Implementation 
To enable our approach to scale to large traces, we developed the 
algorithm for inferring two-event properties with a time 

complexity O(nL) and a space complexity O(n2), where n is the 
number of distinct events and L the length of the trace. Our 
algorithm first scans the trace and encodes each distinct event as a 
unique index number and then creates an n by n matrix, M. Each 
row corresponds to a P event, while each column an S event. Each 
cell of M stores the current state of a state machine that represents 
the alternating pattern between the corresponding pair of events. 
The key insight for achieving O(nL) time complexity is that an 
event X from the trace can be treated as either a P event or an S 
event. When we read an X from the trace, we update both the row 
and column corresponding to index(X) of M. We hard-coded the 
templates as tables, so the updating can be done by looking up the 
tables and has O(n) complexity for each event in the trace. Thus, 
the overall complexity is O(nL). At the end of processing the trace, 
the inferred properties are those whose corresponding state 
machines are in accepting states. 

3.2 Limitations 
Although our original technique produced promising results when 
applied to small programs [52], it became ineffective when we 
attempted to use it on larger programs.  

One major limitation of our previous inference algorithm is that it 
requires complete satisfaction [51]. For example, two events must 
always appear in alternating order for our technique to infer the 
Alternating property. Hence, our previous algorithm depends on 
the availability of perfect execution traces. The real world, 
however, is rarely perfect.  

The execution trace may be incomplete because of partial profiling 
in cases where profiling must be turned on or off on a running 
system so it is possible that the trace misses some events. Another 
cause of trace imperfection is missing context information. For 
example, acquiring a lock and releasing a lock only alternate on the 
same lock object. If the trace does not include the identity of the 
lock object, our previous algorithm would not be able to 
distinguish calls to different lock objects and so would not be able 
to infer such properties.  

The most insurmountable cause of traces being imperfect is buggy 
programs, even in test suites. Programmers often forget to release 
allocated resources, especially on rarely executed paths, even 
when traces are collected from test cases thought to exhibit correct 
behavior. As a result, allocation and release of the resource would 
not always alternate with each other in the trace. Our previous 
algorithm would not infer the Alternating property in such cases, 
since a single violation prevents the property from being satisfied. 
To address this limitation, we developed a new statistical 
algorithm that is able to discover the dominant behavior from 
imperfect traces (Section 4).  

One big advantage of dynamic analysis over static analysis is the 
availability of precise context information (e.g. thread, pointers). 
Our previous work did not use such information. In this paper, we 
present two approaches for taking advantage of such information: 
context-neutral and context-sensitive (Section 5).  

Another limitation of our previous dynamic inference techniques is 
noise. For traces with large number of distinct events, the inference 
results typically include many uninteresting properties. As a result, 
the relatively few interesting properties are very difficult to find 
manually. This problem becomes a substantial obstacle when we 
apply inference to systems with a large number of monitored 
events. To address this problem, we developed two heuristics for 
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selecting interesting properties, and a method for combining 
inferred properties (Section 6). 

4. APPROXIMATE INFERENCE 
It is critical that some important system resources are freed after 
they are allocated, but sometimes even expert programmers forget 
to free resources. Similarly, proficient developers often neglect to 
release an acquired lock along exceptional paths. In order to infer 
properties from traces in which these buggy paths are executed, we 
need mechanisms for approximate inference that can infer 
properties that are not completely satisfied. Our technique works 
by identifying the dominant properties of an imperfect trace. 

Consider a trace where P and S alternate n times but the last three 
P’s do not have a corresponding S: PSPS…PSPSPPP. If P 
corresponds to a resource allocation and S to the corresponding 
deallocation, the last three allocations in the example trace are not 
properly deallocated. Intuitively we can see that the dominant 
behavior of P and S on this particular execution path is still 
Alternating. This becomes even more obvious if we partition the 
original trace into small subtraces as follows: PS PS … PS PPP. 

The first n partitions all satisfy the Alternating property, and only 
the final partition does not. 

We generalize the above observation and formally define what 
dominant behaviors are. We use the regular expression P+S+ to 
define a sub-trace because it intuitively corresponds to a satisfied 
or almost satisfied Alternating pattern. We can add the sub-trace 
partitioning as an extra state-machine to our original 
implementation. As a result the complexity of the algorithm is still 
O(nL), where n is the number of distinct events, and L the length of 
the trace. 

After partitioning the original trace into sub-traces, we run our 
inference algorithm on each sub-trace and compute the satisfaction 
rate of each template. The satisfaction rate of the Alternating 
property is pAL= nAL/n where nAL is the number of partitions that 
satisfy the Alternating template and n is the total number of 
partitions. For the PS PS … PS PPP example above, we would 
compute the Alternating satisfaction rate as pAL= n/(n+1), which 
for large n approaches 1. 

Then we can rank all pairs of events based on pAL. We can filter the 
results by setting a threshold for pAL so that we only present those 
pairs of events whose pAL is above the threshold.  

This simple technique does not distinguish between the different 
kinds of imperfection that may be present in the trace (for example, 
it does not matter how many Ps are in the last group). 
Nevertheless, in our experiments it provides an adequate measure 
of approximate satisfaction for identifying useful properties. We 
plan to study other ways to partition a trace in the future. 

The effectiveness of approximate inference depends on picking a 
good satisfaction threshold. If the threshold is too high, interesting 
properties may be missed. But if it is too low, too many false and 
uninteresting properties will be preserved. Our experiments in 
Section 7 reveal the importance of picking an appropriate value for 
pAL. 

5. CONTEXTUAL PROPERTIES 
A monitored event has two types of information: static information 
(e.g., the method entered) and context information (e.g., the 
runtime thread, this object, the real parameters passed to a method, 
and return values). A major advantage of dynamic analysis over 
static analysis is the ready availability of precise context informa-

tion. We can take advantage of this information to infer more 
precise properties. 

In general there are two alternatives: context-neutral and 
context-sensitive. In context-neutral mode, we treat two events that 
have same static information but different context information as 
the same event, whereas context-sensitive mode considers them as 
two distinct events. For example, consider the example trace in 
Figure 2. There are only two distinct events in context-neutral 
mode (lock.acq and lock.rel), but four events if we include the 
object identity in the event context. 

Context-neutral analysis does not find an Alternating pattern 
between lock.acq and lock.rel, where context-sensitive analysis 
finds six Alternating properties shown in Figure 2, of which only 
the two in bold are useful. Neither context-sensitive nor con-
text-neutral analysis, however, is able to detect that lock.acq and 
lock.rel alternate for a same lock object. We can precisely obtain 
this property if we generalize the results of context-sensitive 
analysis based on same object identity. This is equivalent to slicing 
the original trace into separate traces based on object identity. 
Figure 2 shows the two traces obtained by object slicing. Our basic 

analysis infers the lock.acq→lock.rel property from the two new 
traces. In addition to object identities, we can also treat other types 
of context information in a similar way. For example, we can slice 
the trace based on the thread context or based on the value of the ith 
argument to a method. 

The results of context-sensitive analyses are the most complete, 
but are not useful without generalization. Context-slicing can be 
viewed as a simple way to generalize the results of con-
text-sensitive analyses. A limitation of context-slicing is that it 
cannot detect properties that cross contexts, such as an Alternating 
pattern between event P in one thread and event Q in another 
thread. In future work, we plan to study more sophisticated 
generalization heuristics to handle this. For now, we analyze a 
trace using both context-neutral and context-slicing and union their 
results together. We present our experimental results on evaluating 
different context handling methods in Section 7.1. 

6. SELECTION HEURISTICS 
Our inference techniques infer a large number of properties on 
typical traces, most of which are not interesting to developers. This 
section presents two heuristics for selecting interesting properties 
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from the inference results and a chaining method for combining 
properties so properties can be presented in a more useful way. 

6.1 Reachability 
In our preliminary experiments, we found many properties whose 
causing event is the wrapper of the effect event. For example, the 

A→B property in Figure 3 is less interesting than the C→D 
property whose two events don’t have call relationship. The reason 

we think C→D is more interesting than A→B is because C and D 
are in some sense asynchronized calls whose relationship is not 
obvious from inspecting either C or D. Another reason is that the 

C→D scenario represents the two classes of interesting properties: 
resource allocation/deallocation and lock/unlock. 

Our call-graph based heuristic marks a property P→S as probably 
uninteresting if S is reachable from P in the call graph. We apply 
this heuristic by performing a reachability analysis on the static 
call graph of the target for all the inferred properties. Then we only 
focus on those properties that involve pairs of events where the 
second event is not reachable from the first event. 

If there is a function call made through a function pointer, we will 
stop searching on that path. Although a more sophisticated call 
graph construction algorithm would give us more precise results 
[23], in our experiments (Sections 7.2.1 and 7.3.1), we found this 
simple approach allows us to eliminate many uninteresting 
properties without missing interesting ones.  

6.2 Name Similarity 
Many non-trivial software systems are developed by strictly 
following a naming convention such as the Hungarian Naming 
System [43]. Even when such a naming convention is not strictly 
adhered to, developers tend to choose similar names for related 
functions. This makes the code more readable and easier to 
understand and maintain. Our second heuristic takes advantage of 
this practice – we expect a property to be more interesting if it 
involves similarly named events. For example, the event names 
ExAcquireFastMutexUnsafe and ExReleaseFastMutexUnsafe differ 
by only one word, and we would expect properties involving those 
two events to be interesting. 

Our heuristic works by partitioning event names into words. We 
could do the partitioning based on the capitalized letters, under-

scores, or using a dictionary. Suppose we have a property P→S. 
After partitioning, there are wP words in P and wS words in S. 
Suppose there are w common words between P and S. Then we can 
compute the word similarity of P and S as 2w/(wP+wS). For 
example, the word similarity of ExAcquireFastMutexUnsafe and 
ExReleaseFastMutexUnsafe is 0.8 since four out of five words are 
identical.  

To identify properties that are likely to be interesting, we rank the 
inferred properties based on their word similarity scores. We can 
set a threshold (e.g., 0.5 means at least half of the words have to be 
the same) on the similarity score and only focus on those that are 
above the threshold. This works best for identifying properties 
relevant to resource allocation/deallocation and locking disci-

plines, which are some of the most useful properties whose two 
events only differ very little in name. The limitation of this 
heuristic is it can remove important properties whose event names 
are very different. 

6.3 Chaining 
In addition to using heuristics to select properties likely to be 
interesting, we can use logical methods to combine properties to 
reduce the number of inferred properties and present them in a 
more useful way. Our chaining technique combines properties by 
connecting related Alternating properties into chains. For example, 

suppose we infer three Alternating properties: A→B, B→C, and 

A→C. Then we can remove A→C and say A→B→C forms an 
Alternating chain (i.e. (ABC)*). Our algorithm walks through all 
inferred properties and produces a list of Alternating chains. 

The chaining method can significantly reduce the number of 
properties when there are many related properties, since a chain of 
length l replaces ½(l2 + l) Alternating properties.  

A typical finite state machine in a real system has more than just a 
few events. For performance reason, our inference technique is 
limited to inferring properties with only two events. The chaining 
method provides a way to compose more complex finite state 
machines out of many small state machines. This allows us to find 
more complex multi-event properties, without having to suffer 
from the high computational cost of previous approaches [21, 22]. 

7. RESULTS 
To evaluate our approach, we have implemented our inference 
algorithm in a prototype tool called Perracotta (available from 
http://www.cs.virginia.edu/perracotta). It has 12,000 lines of Java 
code. Perracotta takes a program’s function call sequence and 
produces a list of properties. Perracotta scales well to large traces. 
The largest example we have tried is a 10 million lines of trace 
with more than 3,000 distinct events. Perracotta was able to finish 
in 10 hours on a Sun Sparc workstation with 4GB memory. On 
most of the traces in our experiments, Perracotta finishes within a 
few minutes. 

To instrument a Java program, we created a plug-in for the JRat 
bytecode instrumentor [32]. It can record the call sequence, thread 
information, and the object identity (i.e. the hashcode of this 
object). We used Vulcan-based profiling tool from Microsoft to 
instrument Windows kernel binaries [45]. It reports function calls 
with thread information but lacks support for obtaining object 
identity information. 

We report on results from experiments using Perracotta on three 
different programs: Daisy, a toy file system implementation; 
JBoss, a Java application server; and the Windows kernel APIs. 
For Daisy, we fed the inferred properties to the Java PathFinder 
model checker to verify [1, 47]. We found subtle behavioral 
differences in its locking discipline across multiple layers. For 
JBoss, we compared the inferred properties to the J2EE 
specification [29, 30, 31]. Approximate inference allowed us to 
detect properties in the specification that we failed to infer in 
earlier experiments. For Windows kernel, we compared the 
inferred properties to those already documented in MSDN and the 
Static Driver Verifier (SDV for short) [42]. We found a previously 
unknown deadlock bug in the NTFS file system in Windows Vista 
using ESP [13]. 

A() { 

   … 

   B (); 

   … 

X() { 

   … 

   C (); 

   … 

   D (); 

   … 

Figure 3. Reachable and unreachable events 
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7.1 Daisy File System 
Daisy implements a model of a Unix-like file system in 2,000 lines 
of Java code [1]. Daisy’s architecture has four layers. Daisy uses a 
RandomAccessFile object to emulate the hard drive, which is the 
bottom layer. Above it, the Disk layer abstracts the hard drive into 
byte stream. On top of it, there sits the layer that abstracts the byte 
stream into blocks. The top layer provides an abstraction of files 
and directories. We created a test harness that initially creates f 
files on the disk and starts t threads. Each thread makes a sequence 
of n calls to randomly selected APIs of the DaisyDir class. In our 
experiments, we used f = 5, t = 5 and n = 15. We created a wrapper 
for the RandomAccessFile class so that we could monitor its 
methods. We used JRat to instrument all methods (except for 
overridden Object class methods like toString) to record their 
invocations. 

Because the number of properties we inferred for Daisy is small, it 
is possible for us to look at all properties manually before applying 
the heuristics for selecting properties. Hence, the main purpose of 
this experiment is to understand how many interesting properties 
our heuristics are likely to eliminate. 

7.1.1 Inference 
The trace has 70,000 events. We sliced it by thread and obtained 
six sub-traces (five for the child threads and one for the main 
thread). Without applying any object slicing, we ran approximate 
inference with a 0.70 threshold for pAL and 10 for event frequency 
(that is, an event that occurs less than 10 times in the trace will be 
ignored). Perracotta inferred 70 properties for the 40 distinct 
events. Only 18 of the inferred properties have a 100% satisfaction 
rate (pAL=1). Approximate inference enabled us to detect some 
useful properties that would not be found otherwise such as 
DaisyDisk.readAllocBit → DaisyLock.relb (pAL=0.97), and 

LockManager.acq → LockManager.rel (pAL=0.86). 

Since there are many noise properties included in the inferred 
properties, we then applied our chaining method and found nine 
Alternating chains. This significantly reduced the number of 
properties we had to look at manually to nine chains with 30 
properties. Because our chaining method is sound, it does not 
eliminate any interesting properties. 

We then manually inspected the remaining 30 properties and 
determined that the six shortest chains (with length from one to 
three events) are not interesting because they are simple wrapper 
functions. In the remaining three chains, we found they all contain 
redundant edges due to wrapper functions. This left eight pro-
perties that are indeed interesting. This is consistent with the 
results of using Perracotta’s call-graph heuristic.  

Next, we applied contextual slicing on the this object and the first 
argument of a method. This led us to infer, with 100% satisfaction, 
the two properties Mutex.acq→Mutex.rel and LockManager.acq → 

LockManager.rel that approximate inference was able to detect. 
Thus, approximate inference allows us to detect useful properties 
even when important contextual information is unavailable. Object 
slicing, however, would prevent us from inferring some useful 
properties that involve more than one object such as 
LockManager.acq→Mutex.rel.   

The call-graph and chaining heuristics were very helpful for 
reducing the number of properties to consider. Contextual slicing 
can be used when contextual information is readily available. Its 
limitation is that it might miss some useful properties, which could 
prevent us from finding complete chains. So combining the results 

from approximation and contextual slicing can give us both 
precision in important properties without missing useful 
properties. The name similarity heuristic had limited value in this 
experiment. It prioritizes properties relevant to locking discipline, 
but it does not work well for the other types of properties in this 
example. 

7.1.2 Verification 
We selected several properties including both those we deemed 
interesting and uninteresting (e.g., two events are reachable in call 
graph) and validated them using the Java PathFinder. A counter-
example can result from imperfect inference. For example, we 
inferred DaisyLock.acqi→DaisyLock.reli, which acquires and 
releases the lock associated with an inode by calling the 
LockManager. The LockManager then tries to lock/unlock an inode 
by calling the relevant Mutex object’s acq/rel method. As long as 
the implementation of Mutex’s acq/rel method guarantees 
synchronized access to an inode, it is unnecessary for upper level 
methods to be accessed in a synchronized way.  

If JPF does not find any violation of a property, we have increased 
confidence the property is correct. One such interesting property is 
DaisyLock.acqb→DaisyLock.relb. We were surprised that JPF did 
not find a counterexample, because it found a violation of the 
similar property DaisyLock.acqi→DaisyLock.reli. In Daisy, a file is 
associated with a unique inode and block. The inode stores the 
block number which is used to locate the block that stores the data 
of the file. That is, one must first get the inode to be able to access 
the corresponding block (i.e., for read or write). The implementa-
tion enforces that a lock on a block would not be successfully 
acquired unless the lock on the corresponding inode has been 
acquired first. Similarly, a lock on an inode would not be released 
until the lock on the corresponding block has been released. 

7.2 JBoss 
JBoss is currently the most widely used application server, 
middleware that provides APIs for important services like trans-
actions, security, and caching for running web applications [31]. A 
Java application server is a particular class of application server 
that runs on a Java virtual machine. The J2EE specification 
published by Sun is the main document that defines what 
developers of web applications and developers of application 
server should do [30]. We selected the transaction module because 
a transaction typically involves multiple stages that need to occur 
in some constrained order. The Java Transaction API specification 
defines local Java interfaces between a transaction manager and 
the parties involved in a distributed transaction system: the 
application, the resource manager, and the application server [29]. 

7.2.1 Inference Results 
The relevant part of JBoss implementation comprises 100,000 
lines of Java code. We used JRat to instrument all method invoca-
tions and ran the regression test suite that comes with the JBoss 
distribution. This produced a trace containing 2.5 million events 
with 91 distinct events (after dropping events that occur less than 
10 times). Perracotta executes in 80 seconds.  

Figure 4 shows what percent of properties remain as the threshold 
increases from 0 to 1. We used pAL=0.90 to select our properties.  
The initial result has 490 properties, which is too many to 
reasonably inspect by hand. We first applied our chaining heuristic 
on them and produced 17 chains out of 61 properties. We then 
enhanced the result by applying the call-graph based heuristic. 
This brings the number of chains down to 16 with 41 properties. 
We did not find the edit distance heuristic useful in this case since 
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being Java program, JBoss had few properties that deal with 
resource management and locking disciplines. 

7.2.2 Comparison with JTA specification 
One of the most interesting results is that the longest chain we 
inferred is almost identical to an object interaction diagram shown 
in the Java Transaction API (JTA) specification. Our longest 
chain, shown in Figure 5, has 22 properties, which includes not 
only the JTA APIs, but also the internal implementation of JBoss. 
For comparison purposes, we removed those properties about 
internal implementation and present the resulted chain in Figure 6. 
The TxManager and TransactionImpl classes implement the JTA 
TransactionManager and Transaction interfaces respectively. 

The JTA specification has a diagram to illustrate how an applica-
tion server may handle a transactional connection request from an 
application (as clearly indicated in the JTA specification, this is 
just one typical scenario but not prescriptive) [29]. Our inferred 
alternating chain captures most of the scenario. An application 
server starts a transaction by calling the begin method of the 
transaction manager. After getting a transactional resource from 
the resource manager, the application server calls the 
enlistResource method. Then the application does its work. The 
application server calls the delistResource method to release a 
resource and then commit the transaction. Here, Perracotta missed 

the important edge between enlistResource and delistResource 
because whenever enlistResource is called, either delistResource 
or commitResources must be called. In other words, a Resource 
does not have to be delisted. As shown in Figure 6, we successfully 
inferred the alternating relationship between enlistResource and 
commitResource because it is the dominant behavior exposed in 
the trace. 

Our results reveal more than just how the APIs interact. It also has 
information on how internal implementation works, which would 
be useful for new developers to understand how JBoss works. For 
example, we successfully inferred a chain shown in Figure 5 that 
reveals how starting and committing a transaction is implemented 
respectively in JBoss. We also found useful properties like 
TransactionImpl.lock→TransactionImpl.unlock. 

7.3 Windows Kernel 
Our final experiment is to infer API rules for the latest kernel 
(ntoskrnl.exe) and core components (hal.dll and ntdll.dll) of 
Windows Vista. Because of limitations of the tracing tool, we only 
have calling sequence and thread information in our traces and 
cannot distinguish between objects. To our surprise, Perracotta’s 
approximation algorithm was still able to infer many useful 
properties such as locking disciplines that typically only alternate 
for the same object. We compared our inferred properties against 
the list of properties checked by the Static Driver Verifier [42]. We 
found we inferred not only many of those properties, but also 
properties they did not document. We also selected 10 properties 
and fed them to the ESP verifier. We found a serious bug in one of 
the Windows binaries that calls the kernel APIs. Section 7.3.1 
presents our inference results using approximation and the 
heuristics. Section 7.3.2 discusses our ESP verification results. 

7.3.1 Inference results 
We instrumented the APIs of the Windows kernel and core 
components and obtained 17 execution traces by running some 
typical windows applications (e.g., Windows MediaPlayer, 
Windows MovieMaker). The lengths of the traces range from 
300,000 to 750,000 events, for 5.8 million total trace events. The 
number of distinct events in each trace varies from 30 to 1,300. On 
average each execution trace has 500 distinct events. Perracotta 
analyzes all traces in 14 minutes. 

Figure 4 shows what percent of properties remain as the 
satisfaction threshold increases from 0 to 1. As with JBoss, we set 
pAL=0.90, which identified 7,611 properties. This is too many to 
manually inspect, so we applied the call-graph and edit distance 
heuristics to identify the interesting ones. This sharply reduced the 
number of properties to 142.  

Table 1 summarizes the impact of the two heuristics we developed 
for identifying useful properties. Name similarity is very effective 
on the Windows code. For example, for Kernel API only, without 
any heuristics, we inferred 436 properties. Name similarity alone 
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cut down the number to 33, which is a 92% reduction. Although 
the call-graph based heuristic did not have a reduction rate as large 
as editing distance, it is still very helpful for reducing the number 
of properties. For example, we used the call-graph of ntoskrnl.exe 
generated by ESP on the 436 properties. We found there are 89 
properties whose second event is reachable from the first one.  

To demonstrate the need for our inference technique also, we 
conducted an experiment where we applied the name similarity 
heuristics on all possible event pairs. We found there are 656 pairs 
of events that have a similarity score greater than 0.5. We then 
used the call-graph heuristic, which resulted in 572 pairs of events. 
As a result, Perracotta’s inference algorithm was able to cut down 
the properties by 75% even if we apply the two heuristics first. In 
this case, nearly all of the eliminated properties are undesirable 
since they were not satisfied more often than our approximation 
threshold of 0.90. This shows our dynamic inference is necessary 
to find meaningful properties. 

We manually inspected the 142 properties remaining after our 
selecting heuristics and identified 56 apparently useful ones, which 
is 40% of the 142 properties. The properties we deemed interesting 
are relevant to either resource allocation/deallocation or locking 
discipline. Table 2 shows 20 sample properties. We found the 
approximation algorithm is essential for detecting useful properties 
that otherwise would be missing. A surprising result is we were 
still able to infer those type-state properties that only alternate for 
the same object (such as ObpCreateHandle →ObpCloseHandle), 
even though there is no object information in the trace we had. 

It was not feasible to examine all the 7,611 properties initially 
inferred to see how many interesting properties were accidentally 
eliminated. Based on our experiences, however, only about 1% of 
the initially inferred properties appear to be interesting. Our 
selection heuristics are very effective for increasing the density of 
interesting properties in the result to 40%. At this density, it is 
reasonable for a developer to manually inspect the remaining 
properties. 

We compared the properties we inferred to those checked by the 
SDV, and found that Perracotta had inferred four out of the 16 

properties that the SDV checks [42]. For example, 
KeAcquireQueuedSpinLock�KeReleaseQueuedSpinLock. 

Terracotta also inferred many properties that SDV does not check.  
For example, 
   MmSecureVirtualMemory�MmUnsecureVirtualMemory  
is documented as required in MSDN but the SDV does not check 
this because it is not related to device drivers. We missed seven 
properties the SDV checks because our trace does not cover those 
events. For example, KeAcquireSpinLock� KeReleaseSpinLock. 
We missed the other five properties SDV checks because of the 
limitations of our current property templates.  

More interestingly, we inferred some properties SDV could have 
included such as KiAcquireSpinLock�KiReleaseSpinLock and 
KfAcquireSpinLock �KfReleaseSpinLock. The SDV developers did 
not to include these critical properties because they are Windows 
internal functions that are not visible to driver developers.  

7.3.2 Verification 
We manually selected ten of the inferred properties and fed them 
into the ESP verifier, which checks temporal properties on 
Windows binaries [13]. This led us to find one previously 
unknown serious bug in the NTFS file system. The property is a 
typical locking discipline property that constraints acquiring kernel 
Mutex must be followed by releasing the same Mutex. The bug is a 
double-acquire fault on an exceptional path, where a fastmutex is 
acquired twice without being released in between. This bug can 
cause the system to deadlock. ESP clearly showed us an execution 
path that can activate the double acquire bug. The Windows 
development team confirmed it is a real bug and subsequently 
fixed the problem. 

8. DISCUSSION 
In our experience with industrial programs, we found that it was 
not usually possible to obtain perfect traces. Very often some 
important information (e.g., object identity) is missing or 
incomplete in the trace due to limited tracing techniques. Another 
important reason for imperfect traces was exposed in the JBoss 
experiment – tests can fail or be designed to deliberately test 

Name Similarity (>0.5) Call Graph Only Both  
Properties Properties Reduction Unreachable Unknown Total Reduction Properties Reduction 

Kernel 436 33 92.4% 331 16 347 21.2% 32 92.66% 

Non-Kernel 7175 152 97.9% 2949  3310 6259 23.7% 110 98.47% 

Total 7611 185 97.6% 3280 3326 6606 23.5% 142 98.13% 

Table 1. Impact of selection heuristics. 

pAL Property pAL Property 

1.0 ExAcquireFastMutex->ExReleaseFastMutex 0.993 ObpCreateHandle�ObpCloseHandle 

1.0 IoAcquireVpbSpinLock����IoReleaseVpbSpinLock  0.988 GreLockDisplay����GreUnlockDisplay 

1.0 ExAcquireRundownProtectionCacheAwareEx���� 
ExReleaseRundownProtectionCacheAwareEx 

0.985 RtlActivateActivationContextUnsafeFast� 
RtlDeactivateActivationContextUnsafeFast 

1.0 KefAcquireSpinLockAtDpcLevel� 
KefReleaseSpinLockFromDpcLevel  

0.982 KeAcquireInStackQueuedSpinLock� 
KeReleaseInStackQueuedSpinLock 

1.0 KeAcquireQueuedSpinLock�KeReleaseQueuedSpinLock 0.977 SeCreateAccessState�SeDeleteAccessState 

1.0 KfAcquireSpinLock->KfReleaseSpinLock 0.972 IoAllocateIrp�IoFreeIrp 

1.0 KiAcquireSpinLock->KiReleaseSpinLock 0.961 CmpLockRegistry����CmpUnlockRegistry 

1.0 MmSecureVirtualMemory�MmUnsecureVirtualMemory 0.959 ObAssignSecurity����ObDeassignSecurity 

1.0 ObpAllocateObjectNameBuffer����ObpFreeObjectNameBuffer 0.954 ExCreateHandle�ExDestroyHandle 

1.0 SeLockSubjectContext�SeUnlockSubjectContext 0.954 ExpAllocateHandleTableEntry����ExpFreeHandleTableEntry 

 Table 2. Selected Properties Inferred for Windows. Properties in bold are not documented in either MSDN or checked by SDV. 
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improper API usage, thus introducing imperfections in the traces. 
For example, good test suites include intentionally bad call 
sequences to test how the application handles exceptions. Instru-
mentation might also interfere with the normal run and cause the 
test to fail. The last and most fundamental reason for the trace to be 
imperfect is that the program can have bugs. If the buggy path is 
executed, the trace may contain some false behaviors. Ammons et 
al.’s earlier work made the same observation [4]. The imperfect 
trace they had prevented their approach from being fully 
automated. In their case, they were dealing with small programs 
and able to deal with the imperfections with substantial human 
guidance. Our approximate inference is able to tolerate small 
amounts of noise in the trace automatically, so it can be applied 
even when perfect tracing tools or immaculate test programs are 
not available. It works because most realistic programs have been 
through non-trivial testing, which ensures its main paths to be 
correct. The latent bugs that escape from testing typically reside on 
infrequent paths, which do not represent the program’s dominant 
behavior. 

The approximate inference increases the likelihood that important 
properties are found, but those properties are still hidden within the 
excessive number of mostly uninteresting properties that are ty-
pically inferred for large programs. Our chaining method is a 
simple and effective way to synthesize larger state machines from 
small ones to reduce the number of properties.  

Our call-graph heuristic is also a more systematic way to select 
properties than previous work [16]. For the alternating properties, 
Engler et al. used three very specific programming styles to select 
the traces [16]. Our approach does not have that restriction. We 
have found it very effective in both C and Java programs. It works 
because it captures properties for which developers are more likely 
to make mistakes. For example, acquiring a lock and releasing a 
lock is very often performed by two different functions and hence 
even an experienced developer might forget to release a lock or 
accidentally acquire a lock twice. 

Engler’s earlier work used naming conventions to select properties 
in an ad-hoc way by looking for specific keywords [16], while our 
name similarity heuristic is more systematic and general. We 
found this approach works best when there are many properties 
relevant to locking disciplines and resource management since the 
event pairs in these properties have similar names. This was the 
case for the Windows code, but not for Daisy or JBoss since Java 
programs tend not to have such properties. We plan to further 
investigate other selection heuristics that account for class 
hierarchies and multiple events in alternating chains. 

We found the inferred properties can be used effectively to under-
stand and check a program. Feeding properties to a verifier like 
ESP or JPF is a promising way to detect behavioral defects. We 
were able to find a serious bug in Windows using this approach. 
Current program verification tools, however, are not at the point 
where this can be done in a fully automated way. A programmer 
has to manually inspect the counter-example traces to determine 
whether a reported violation is a real defect. Analyzing the ESP 
results for an inferred property consumed about a day of human 
effort. We believe there is a promising future for closer integration 
between static and dynamic techniques. Perhaps it will be possible 
to reduce the false positive rate of static analysis tools by using 
data from dynamic analyses. 

9. CONCLUSION 
Perfect, fully-automatic specification inference for industrial 
programs remains an elusive goal, well beyond the state-of-the-art. 
We have shown, however, that by targeting simple properties that 
can be efficiently discovered and by using approximation 
inference techniques along with heuristics for pruning the set of 
inferred properties, it is possible to obtain useful results even on 
large, complex programs. Some manual effort is still required, but 
after the heuristics are applied the task is fairly manageable even 
for programs as large and complex as JBoss and Windows. 

Our results so far are limited to simple alternating properties 
involving only two events. Despite this, we are encouraged by how 
many useful properties we find. In future work, we plan to extend 
the techniques to deal with more complex properties involving 
three or more events, as well as properties that combine data 
constraints with temporal ones. Our approximation technique and 
selection heuristics are general enough to be applied to other types 
of properties, although it remains to be seen if they will be 
effective in these situations. 
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