
Proceedings on Privacy Enhancing Technologies ; 2018 (1):5–20

Mohammad Etemad*, Alptekin Küpçü, Charalampos Papamanthou, and David Evans

Efficient Dynamic Searchable Encryption
with Forward Privacy
Abstract: Searchable symmetric encryption (SSE) enables a
client to perform searches over its outsourced encrypted files
while preserving privacy of the files and queries. Dynamic
schemes, where files can be added or removed, leak more in-
formation than static schemes. For dynamic schemes, forward
privacy requires that a newly added file cannot be linked to
previous searches. We present a new dynamic SSE scheme that
achieves forward privacy by replacing the keys revealed to the
server on each search. Our scheme is efficient and paralleliz-
able and outperforms the best previous schemes providing for-
ward privacy, and achieves competitive performance with dy-
namic schemes without forward privacy. We provide a full se-
curity proof in the random oracle model. In our experiments on
the Wikipedia archive of about four million pages, the server
takes one second to perform a search with 100,000 results.

DOI 10.1515/popets-2018-0002
Received 2017-05-31; revised 2017-09-15; accepted 2017-09-16.

1 Introduction
Searchable symmetric encryption (SSE) enables a data owner
to outsource private data to an untrusted server, while selec-
tively retrieving data elements matching a query without re-
vealing either the data contents or the search keywords to the
server. Although asymmetric searchable encryption schemes
have been proposed [3, 4], we focus on schemes providing
high efficiency using symmetric encryption.

A naïve solution is to outsource encrypted files to the
server, and store locally an inverted index that associates each
keyword to the set of identifiers of files sharing the keyword.
The client finds the list of files matching a desired query, and
retrieves those encrypted files from the server. This requires
the client to store a large index and perform all required search
and update computations locally. To reduce the client storage
and computation, the index is encrypted and outsourced to the

*Corresponding Author: Mohammad Etemad: University of Virginia,
E-mail: etemad@virginia.edu
Alptekin Küpçü: Koç University, E-mail: akupcu@ku.edu.tr
Charalampos Papamanthou: University of Maryland, College Park,
E-mail: cpap@umd.edu
David Evans: University of Virginia, E-mail: evans@virginia.edu

server. To operate on the index, the server requires a token gen-
erated by the client using its secret key. As the tokens are deter-
ministic, the server learns if multiple searches involve the same
keyword. This is known as search pattern leakage [12, 23].

Efficient symmetric searchable encryption schemes [6, 8,
9, 12, 20, 26, 29] achieve optimal asymptotic search cost O(d),
where d is the number of files in the result. However, this is
achieved at the cost of leaking the list of files sharing the key-
word. This is known as the access pattern leakage [11].

These leakages can be exploited by the adversarial servers
to compromise privacy of the data and queries. Several re-
cent papers have shown how such leakage can be exploited
to learn sensitive information about the queries or file con-
tents [1, 7, 17, 23, 25, 32]. These attacks demonstrate that the
privacy provided by traditional SSE schemes does not satisfy
expectations in practice. On the other hand, data owners want
to fully utilize cloud data services, and rest assured that the
privacy of their data (e.g., emails, business data) is preserved.

Stefanov et al. [29] asserted that a secure SSE scheme
must satisfy both forward and backward privacy. These two
properties capture common expectations for file addition and
deletion, where a user expects that the privacy of newly added
files in the presence of previous queries (forward privacy) and
the privacy of deleted files once they are deleted (backward
privacy) should be preserved. No efficient scheme is currently
known that provides backward privacy, and we do not consider
that in this paper. Our focus is on achieving forward privacy
with an efficient SSE scheme supporting dynamic updates.

Forward privacy is a strong property that states the server
cannot realize whether or not a newly added file contains
any of the keywords used in previous searches. SSE schemes
achieving forward privacy make adaptive attacks less effec-
tive [32]. The first scheme supporting forward privacy is given
by Stefanov et al. [29]. The search and update costs of this
scheme are O(d log3 N) and O(r log2 N), respectively, where r
is the number of unique keywords in the file, d is the number of
files in the result, and N is the number of all (keyword, file ID)
mappings. It requires O(

√
N) client storage. Bost’s Sophos [6]

supports forward privacy by employing trapdoor permutations.
Though the search and update costs are asymptotically opti-
mal (O(d) and O(r), respectively), the client needs to run O(r)
asymmetric cryptographic operations on a file insertion.

Parallelism is an important efficiency factor that is cur-
rently supported by some schemes (e.g., [19, 29]). It requires

Efficient Dynamic Searchable Encryption with Forward Privacy 6

the encrypted index be organized in a way that the server can
access the required parts directly. Then, the provider can dis-
tribute the work on available servers to improve the perfor-
mance [2, 28]. Our scheme supports parallelism by design.

Contributions. Our main contribution is designing the first
asymptotically-optimal parallelizable dynamic SSE scheme
that provides forward privacy. Our scheme outperforms the ex-
isting schemes providing forward privacy [6, 29], and is com-
petitive with the most efficient dynamic SSE schemes without
forward privacy [19, 20] while providing stronger security. In
particular, our scheme:

– provides forward privacy: On each search, a key is revealed
to enable the server operate on the encrypted index. We
“revoke” this key, remove the index entries accessed, and
re-insert them encrypted under a fresh key. The server never
holds a valid key after a search, and hence, cannot decrypt
any part of the updated index to see if a file added later con-
tains a keyword used in a previous search.

– is asymptotically optimal: The update cost is O(r) and the
search cost is O(d).

– is parallelizable: The server’s index is a dictionary of en-
crypted (key, value) pairs where the keys are generated
as outputs of a hash function. Each hash function evalua-
tion is independent, that allows the load to be distributed
over p processors to achieve asymptotically optimal search
(O(d/p)) and update (O(r/p)) cost.

– is efficient: The server only evaluates O(d) hash functions
for a search. For a file insertion, the server only inserts the
O(r) values given inside the token into the index. Unlike
Sophos [6], no asymmetric operations are needed.

– is easily convertible to a scheme in the standard model by
replacing the hash functions with pseudorandom functions
(Section 7). This increases the search token sizes, while re-
ducing the server load.

Approach overview. The server stores an encrypted index that
associates each keyword with a set of file identifiers represent-
ing the files that contain that keyword. The entries associated
with a keyword w are encrypted with a key Kw that depends on
both w and the number of times w has been searched for. Kw

is derived using a pseudorandom function from a master key
that is stored by the client. So, the client must store the num-
ber of times each keyword has been searched for so far. We do
this in a dictionary called SearchCnt. To search for a keyword,
the client generates and reveals the key Kw to enable the server
to operate on the appropriate entries in the encrypted index,
find the identifiers of files sharing the keyword, and return the
corresponding (encrypted) files.

Incrementing the number of times w has been searched
for on each search leads to a new key Kw be generated for w
and invalidates the previous key revealed to the server. This
ensures the freshness of Kw on each search. Therefore, if w
appears in a new file being added, the corresponding entry
will be encrypted under a fresh key and the server cannot link
it to the previous searches and realize that the new file con-
tains w. This provides the essential forward privacy property.
On the downside, this requires another round of interaction (at
the end of search), to encrypt the accessed index entries with
the new key and upload them back to the server. (We ask the
server to remove the accessed entries from the index during a
search. The server can keep the deleted entries, but they have
already been leaked and contain no new information.) Note
that this does not increase the asymptotic search cost. Besides,
we can eliminate the extra round using piggybacking (as in
TWORAM [14]) and upload the current updated entries to-
gether with the next search token. The whole process ensures
that no entry of the outsourced index is encrypted under a re-
vealed key. Further, the revealed keys will never be used again.

Another requirement for forward privacy is that the iden-
tifiers of all files containing a keyword cannot be stored in
an easily linkable fashion (e.g., in a set or a file). Otherwise,
adding a new file would trivially reveal which of the previ-
ously searched for keywords are contained in this new file.
It may further leak information about other files the new file
shares keywords with. This requires the identifiers of all files
containing each keyword w to be stored at random locations in
the index that are also determined by Kw.

This solution immediately enables parallelism for effi-
ciency. A sequence number is assigned to each file ID among
the set of files containing a given keyword. These sequence
numbers are used to generate the addresses at which the re-
spective encrypted file IDs will be stored. Therefore, given the
total number of file IDs, the provider can divide it by the num-
ber of available servers and ask each one to extract a subset of
identifiers of files to be returned. As before, the client needs
to store the total number of file IDs sharing a keyword in a
dictionary named FileCnt (detailed in Section 3).

Our scheme can be extended to support deletion, as dis-
cussed in Section 6. This improves efficiency over keeping
deleted files in the index and filtering out deleted responses,
but does not provide backward privacy (which remains an im-
portant, but elusive goal). An important consequence of re-
moving the index entries on each deletion is that our scheme
keeps the index up-to-date, and there is no need to do periodic
rebuilds to remove the deleted entries and cleanup the index,
as in other schemes [8].

Note that the size of both SearchCnt and FileCnt is O(m)

for a total number of m keywords. Hence, it is reasonable to
store both of them even at the client. In our construction, we

Efficient Dynamic Searchable Encryption with Forward Privacy 7

Fig. 1. The client and server indexes after adding all files.

Fig. 2. The client and server indexes after searching for w1. (The
gray boxes represent changes after a search.)

assume they are stored by the client, and later show how to
outsource them as well (Section 3.3).

Example. We give an example to better illustrate the client and
server indexes and how the protocols operate on them. Assume
there are three files and four keywords: f1 contains w1,w3,w4,
f2 contains w1,w2, and f3 contains w1,w4. Let g(w, f , i) denote
the masked version of the ID of a file f after the jth search for
w, to be stored in DictW. Hence, g(w1, f1,0), g(w3, f1,0), and
g(w4, f1,0) are added into DictW for f1. Figure 1 shows the
client and server indexes when all files are processed.

Now, the client searches for w1. It sends the server the key
k1 and the number of files w1 appears in, 3. The server locates
the given number of DictW entries, decrypts the contents, and
finds out that f1, f2 and f3 are the target files. It deletes the
accessed entries from DictW and sends the files to the client.
The client increments the number of times w1 is searched for
as: SearchCnt[w1]++. Then, it re-encrypts the received pairs
with a fresh key generated using the updated SearchCnt[w1],
and sends them back to the server. The server stores them in
their new locations in DictW. The client and server storage
after this operation are shown in Figure 2.

2 Background
This section introduces our notation and provides a formal
model for SSE and its security definitions.

2.1 Preliminaries

Notation. We use x←X to show x is sampled uniformly from
the set X , |X | to represent the number of elements in X ,
and || to show concatenation. λ is the security parameter,
and PPT stands for probabilistic polynomial time. A function
ν(k) : Z+ → [0,1] is negligible if ∀ positive polynomials p,
∃ constant c such that ∀ k > c, ν(k)< 1/p(k).

File collection. The client owns n files F = { f1, f2, ..., fn},
each with an identifier id(f j). The files are encrypted us-
ing a CPA-secure symmetric encryption scheme, making the
collection of encrypted files C = {c1,c2, ...,cn}, where c j =

EncK(f j). In a dynamic setting, we represent the set of out-
sourced files at time t as Ft . The set of all m unique keywords
in all files in F is represented as W = {w1,w2, ...,wm}. N is the
number of all existing mappings from W to {id(f j)}n

j=1.

Interactive protocols. We describe our scheme as a set
of interactive protocols demonstrating the interaction be-
tween the client and the server to perform a functionality:
(Outclient)(Outserver)← Protocol(Inclient)(Inserver).

Symmetric-key Encryption. A symmetric-key encryption
scheme SKE = (Gen,Enc,Dec) consists of three PPT algo-
rithms. Gen takes the security parameter as input and gener-
ates a key. Enc receives the key and a message m as input, and
encrypts m to the respective ciphertext c. Dec takes as input
a key and a ciphertext c, and retrieves the message m. SKE is
required to be CPA-secure. Refer to Katz and Lindell [21] for
formal definitions.

Pseudorandom function (PRF). Let GenPRF(1λ) ∈ {0,1}λ

be a key generation function and G: {0,1}λ×{0,1}l′→{0,1}l

be a family of pseudorandom functions mapping l′-bit strings
to l-bit strings. Define Gs(x) = G(s,x). G is a PRF family if
∀ PPT distinguishers D,∃ a negligible function ν(.) such that:
|Pr[s←GenPRF(1λ) : DGs(.)(1λ) = 1]− Pr[Dg(.)(1λ) = 1]| ≤
ν(λ), where g(.) is a truly random function [13, 21].

Hash function. Members of a hash function family h : K×
M→ C are identified by a K ∈ K as h(k, .). A hash function
family is collision resistant if for all PPT adversaries A, there
exists a negligible function ν(.) such that: Pr[K←K; (x,x′)←
A(h,K) : (x′ 6= x)∧ (h(K,x) = h(K,x′))]≤ ν(λ).

2.2 Model

We employ a two-party model including a client (data owner)
and a server. The client generates an inverted index mapping
each keyword to the set of identifiers of files containing it, en-
crypts the index, and uploads it along with the encrypted files
to the server. The server stores the encrypted index and files,
and responds to the client’s queries. The server is relied on to

Efficient Dynamic Searchable Encryption with Forward Privacy 8

provide highly-available and reliable storage, but not with any
confidential client data. We assume a single-client model.

Since the index and files are encrypted, the server does
not learn the search keyword or the contents of files. However,
by running client’s queries and commands, some information
leaks to the server over the time. We define the precise leakage
of our scheme in Section 2.3.

Adversarial model. We assume an honest-but-curious server
and achieve forward privacy in an efficient and parallelizable
manner. In fact, since the client knows the response size, our
scheme could be adapted to malicious settings with minimal
overhead by adding message authentication codes to entries as
proposed by Kurosawa and Ohtaki [22]. For simplicity, we do
not consider those extensions here or in our security proofs.

Definition 2.1. A dynamic SSE scheme consists of the follow-
ing PPT protocols:
– (sk)()← Gen(1λ)(1λ): The client starts the protocol to

generate a secret key sk given the security parameter λ .
– (Ic)(Is,C)← Build(sk,F)(): The client starts this proto-

col to outsource a collection of files F given the secret key
sk. It generates the index Ic. Also, the server outputs the
index Is and the encrypted files C.

– (I′c)(I
′
s,C
′)← Add(sk, f ,Ic)(Is,C): The client starts this

protocol to outsource a new file f given the secret key sk,
and her current index Ic. It updates the index to I′c. Sim-
ilarly, the server takes his current index Is and the en-
crypted file collection C as input, and outputs the updated
index I′s and the updated file collection C′.

– (I′c,Fw,t)(I
′
s)← Search(sk,Ic,w)(Is,C): This is a proto-

col to find and return the encrypted files containing a key-
word w. The client takes as input the secret key sk, her in-
dex Ic, and the keyword w. It updates the local index to I′c
and outputs the existing files Fw,t containing w. The server
receives his index Is and the encrypted file collection C,
and updates his index to I′s.

The Build and Add protocols are non-interactive: The client
prepares the commands and sends them to the server for exe-
cution. But Search is an interactive protocol: The client and
server work interactively to perform the computation on the
encrypted indexes. Since we presented the scheme as a set of
interactive protocols, there is no visible use of tokens. How-
ever, the client prepares and sends tokens during the execution
of Add and Search protocols to the server.

2.3 Security Definitions

First, we define the leakage functions that are used inside the
definitions. An SSE scheme is secure if it reveals no informa-

tion, even when dynamic operations are executed. Naveed et
al. [24] observed that this level of security requires the whole
outsourced index and files be transferred on each operation.
Existing SSE schemes leak some information for efficiency.
Moreover, dynamic operations reveal extra information such
as the relation between the entries on the encrypted index be-
ing accessed and the file under operation. In the following
definitions, we assume the client has issued t search queries
Q = {q1,q2, ...,qt} up to time t.

Definition 2.2 (Search pattern). A search pattern is a vector,
SP, that shows which keyword each query q j corresponds to.
SP[j] = wi means that wi was queried at time j.

Even though we re-key after each search, the search pattern
still leaks since the server knows that the newly re-keyed items
correspond to the completed search. The re-keying is used for
forward privacy, not for hiding the search pattern. (The key-
words in queries in this definition are encrypted; i.e., the server
does not see the real keywords.)

Definition 2.3 (Temporal access pattern). The temporal ac-
cess pattern of a keyword w at time t is defined as the set of ex-
isting files at time t sharing w: Fw,t = {id(f) : w∈ f ∧ f ∈Ft}.

Definition 2.4 (Access pattern). The access pattern in an SSE
scheme is the union of all temporal access patterns of all key-
words searched for so far [12].

Observe that once a search is done for w, the server learns the
set of files in which w appears (the temporal access pattern).
Later on, even when one of these files is deleted, the server
knows that the file contains this keyword w (though not neces-
sarily knowing what w actually is), even in the presence of for-
ward and backward privacy. Once some information is leaked,
it cannot be undone.

Definition 2.5 (Forward privacy). An SSE scheme is forward-
private if the file insertion leakage is limited to LAdd(f) =
(id(f), | f |, |{w}w∈ f |) for all new files f being added at any
time after running Build.

This definition states that in a forward-private scheme, the
server cannot learn anything about a new file f , beyond its
identifier and size and the number of its keywords, after any
number of searches for the keywords in f before the insertion
of f [6]. In other words, the server cannot link a new file to an
old temporal access pattern if the scheme is forward-private.
In dynamic SSE schemes without forward privacy, the addi-
tion leakage would also include the set of keywords in the file
that was searched for in the past: Q∩{w}w∈ f .

Now, we define the information leakage of each protocol.

Efficient Dynamic Searchable Encryption with Forward Privacy 9

LBuild shows the information leaked during the build phase:

LBuild(F) = (N,n,(id(f), | f |) f∈F).

The total number of (keyword, file ID) mappings and the
number, identifiers and sizes of all files are leaked.

LAdd shows the leakage during adding a new file f :

LAdd(f) = (id(f), | f |, |{w}w∈ f |).

The file ID and size and the number of unique keywords in
the file leak. The is minimal as a result of forward privacy.

LSrch shows the leakage during search for a keyword w:

LSrch(w, t) = {Fw,t ,SP}.

The temporal access pattern and search pattern are leaked.

Note that in LSrch, Fw,t is required to answer the search query in
a communication-efficient way, and is true for all efficient SSE
schemes. The search pattern leaks since the tokens are deter-
ministic, similarly as in all SSE schemes. Moreover, by obtain-
ing the client’s files at the outset, the server learns the number,
identifiers and sizes of all outsourced files (unless the files are
stored in the ORAM). This is true for all schemes that inde-
pendently encrypt the files and outsource them to the server.
Independent encryption is useful for efficiently decrypting the
search results. In all SSE schemes employing this strategy, im-
plicitly all operations leak the related file identifiers as well.
Even schemes that do not explicitly show file identifier leak-
age indeed leak identifiers to be able to operate on the file ci-
phertexts. Thus, all our leakage is minimal across all known
efficient dynamic SSE schemes.

Now, we define the security of our DSSE scheme via
ideal-real simulation similar to [29].

Definition 2.6 (Security of SSE scheme). Let DSSE =

(Gen,Build,Add,Search) be an SSE scheme. The follow-
ing experiments are executed between a stateful adversary A

and a stateful simulator S using the leakage functions LBuild ,
LAdd , and LSrch:
– IdealF,S,Z(λ). An environment Z sends the client a setup

message together with the set of files to be outsourced and
the unencrypted index. The client forwards them to the
ideal functionality F. The simulator S is given LBuild .
Later, the environment Z asks the client to run an Add or
Search protocol by providing the required information. For
Add, it gives a new file f and the set of unique keywords in
the file. Search is accompanied with a keyword. The client
prepares and sends the respective command to the ideal
functionality F. F gives the corresponding leakages to S.
In return, S sends F either an abort or continue command.
F sends the client either ⊥ (abort) or ‘Done’ for Add, or

the set of matching file IDs for Search. Z observes the out-
put. Finally, Z outputs a bit b as the output of experiment.

– RealΠF ,A,Z(λ). An environment Z sends the client a setup
message together with the set of files to be outsourced and
the unencrypted index. The client runs Gen(1λ) to gen-
erate the key K and starts the Build protocol with the
real-world adversary A.
Later on, the environment Z provides the required in-
formation and asks the client to start an Add or Search
protocol. For Add, it gives a new file f and the set of
unique keywords in the file. Search is accompanied with
a keyword. The client runs the requested protocols with
the real-world adversary A. The client outputs either ⊥
(abort) or ‘Done’ for Add, or the set of matching file IDs
for Search. Z observes the client’s output. Finally, Z out-
puts a bit b as the output of experiment.

We say a DSSE scheme (ΠF) emulates the ideal functionality
F in the semi-honest model if for all PPT real world adversary
A, there exists a PPT simulator S such that for all polynomial-
time environments Z, there exists a negligible function ν(λ)

on the security parameter λ such that:
|Pr[RealΠF ,A,Z(λ)=1]−Pr[IdealF,S,Z(λ)=1]| ≤ ν(λ).

3 Construction
In our construction, as with other symmetric searchable en-
cryption schemes, the server stores an encrypted index that
relates each keyword to the set of identifiers of files sharing
the keyword and helps it perform operations requested by the
client. The client stores the number of files containing each
keyword and the number of searches per keyword (for forward
privacy). To execute a query, the client prepares and sends a to-
ken to help the server do the job.

3.1 Indexes

Our construction uses data structures, divided between the
client and server to maintain the encrypted index. This re-
quires the client and server indexes to be synchronized. While
this is not a big problem for our single-client model, it would
be problematic for multi-client settings. Outsourcing the client
index solves the problem. We first assume the client stores the
index, and show how to outsource it as well in Section 3.3.

Server storage consists of a dictionary DictW of size
O(N) = O(nm). DictW is “indexed” by keywords, and relates
each keyword to the set of identifiers of files in which the
keyword appears. If f is the ith file containing w, id(f) is en-

Efficient Dynamic Searchable Encryption with Forward Privacy 10

crypted using the Kw and i, and is stored in DictW at an address
depending again on Kw and i. (This is detailed in Section 3.2,
File addition.) Hence, given a key related to w and the number
of files containing w, the server finds and decrypts all intended
file IDs, and returns the corresponding encrypted files.

We require the DictW to store the entries sorted based on
their addresses. Since the addresses are random-looking values
generated by a hash function, this ensures that entries of each
keyword (and as a result, all entries) are stored in random loca-
tions in DictW. As we process the files sequentially to build the
DictW (and upload it when all files are processed), this ensures
there is no leakage about the entries of each file (or keyword).
Note that this only helps to conceal information about the files
outsourced at the beginning. Later files insertions reveal the
number of unique keywords in the files (discussed in Section
3.2, Leakage), and DictW does not help in this regard.

Client storage includes two dictionaries: FileCnt that
stores the number of files containing each keyword (as in
Cash et al. [8]), and SearchCnt that contains the number of
times a keyword has been searched for, and is used to gen-
erate fresh encryption keys upon search (for forward privacy).
Both FileCnt and SearchCnt are of size O(m) and are initialized
with zeros. Hence, it is reasonable to store them both locally,
compared to the O(nm) outsourced index.

3.2 Protocols

Our protocols for setting up the database, adding files, and do-
ing searches are given in Figures 3 and 4, and described next.

Setup. We generate two random keys: KG for a PRF G and
KSKE for a CPA-secure encryption scheme SKE (Gen protocol
in Figure 3). These two keys constitute the only cryptographic
information stored at the client.

File addition. To add a new file f , we extract the set of key-
words in f and insert a new entry into DictW for each keyword
wi ∈ f . First, FileCnt[wi] is incremented to show that a new file
containing wi is inserted (line 7 of protocol Add). This enables
the client to generate consistent tokens later. The new value of
FileCnt[wi] also shows the sequence number of f among the
files containing wi. This value is used as an input to the hash
functions to compute the address in DictW where id(f) will be
stored, and to mask its content (lines 8-10 of protocol Add).

The client then encrypts the file, and sends the encrypted
file along with the generated set of (key, value) pairs, WPairs,
to the server. The server adds the encrypted file into the collec-
tion C and inserts WPairs into DictW. Though this is an O(r)
operation (where r is the number of unique keywords in the
file), the server only copies the token data into its own index.

An important fact about file insertion is that the server
does not know any valid (in-use) keyword-related key when a
file in being inserted. Hence, it cannot check if this new file
contains any keywords from previous searches.

Building the database. To initialize the database, the client
processes each file, f j ∈ F = { f1, f2, ..., fn}, as described in
the Add protocol (but without sending anything to the server),
accumulates the results, and uploads the final results to the
server altogether. Hence, we present Build as a set of Add pro-
tocols, each processing a file f j ∈ F . This modularity is useful
for presentation, but it is important that the actual building is
not done in a way that allows the server to observe individ-
ual file additions; instead, all files are added to the index by
the client and uploaded as a batch. Moreover, the entries of
DictW are located according to order of their addresses. This
is important for security as otherwise, the server would learn
information about individual files/keywords.

For each file f j ∈ F , we add the encrypted file c j into
the collection C (line 3 of protocol Build), compute WPairs j

and accumulate them into WPairsAll (line 4 of protocol Build).
Finally, we send WPairsAll and C to the server that keeps the
collection of encrypted files C and stores WPairsAll in DictW.

Search. To search for a keyword w, the client generates the
respective key Kw = G(KG,w||SearchCnt[w]) and sends it to
the server along with the number of files containing w: nw =

FileCnt[w] (lines 1-2 of protocol Search), in a search token
(Kw,nw). The server computes the addresses of DictW entries
to be accessed as h(Kw, i||0) and the respective values for un-
masking the entries as h(Kw, i||1), for 1≤ i≤ nw. Once the file
identifiers are found, the server returns the respective files to
the client and deletes1 the referenced DictW entries (lines 3-6).

The client receives the files, increments the number of
times w is searched for as SearchCnt[w]++, generates a fresh
key K′w =G(KG,w,SearchCnt[w]) (lines 8-10), re-encrypts the
file identifiers with this new key, and sends them back to the
server (lines 12-18). These entries are stored at different loca-
tions in DictW than the previous ones because their addresses
depend on the new key K′w, which includes SearchCnt[w].

The server receives the entries encrypted under a different
key and learns that it is the same set of entries accessed re-
cently. Though we use different keys for a keyword w on sep-
arate searches, our construction does not eliminate search pat-
tern leakage. However, if a new file f containing w is added af-
ter even multiple searches for w, the server cannot realize that
f contains w; satisfying forward privacy. This is because the

1 The server does not need to actually delete the accessed entries, but they
have already been revealed and contain no new information. As a fresh key
is generated for each search, those entries will not be accessed again.

Efficient Dynamic Searchable Encryption with Forward Privacy 11

Let G:{0,1}λ×{0,1}∗→{0,1}∗ be a PRF, SKE=(Gen,Enc,Dec)
a CPA-secure private-key encryption scheme, and h : {0,1}∗→
{0,1}λ be hash functions modeled as random oracles, where λ

is the security parameter.

(sk)()← Gen(1λ)(1λ) :

1: KG← GenPRF(1λ) . For the PRF.
2: KSKE ← SKE.Gen(1λ)

3: return sk = (KG,KSKE)

(Ic)(Is,C)← Build(sk,F)() :

1: WPairsAll = {}
2: for all f j ∈ F do
3: Run Add to generate c j and WPairs j.

. Without uploading the results.
4: C =C∪ c j . Add encrypted files to the collection.
5: WPairsAll = WPairsAll ∪WPairs j

6: Send C and WPairsAll to the server.
7: The server keeps C and stores WPairsAll in DictW.
8: Ic = {SearchCnt,FileCnt} and IS = {DictW}

(I′c)(I
′
s,C
′)← Add(sk, f ,Ic)(Is,C) :

1: WPairs = {}
2: for all wi ∈ f do
3: if FileCnt[wi] is NULL then
4: FileCnt[wi] = 0

5: if SearchCnt[wi] is NULL then
6: SearchCnt[wi] = 0

7: FileCnt[wi]++ . One more file contains wi.
8: Kwi = G(KG,wi||SearchCnt[wi])

9: addrwi = h(Kwi ,FileCnt[wi]||0)
10: valwi = id(f)⊕h(Kwi ,FileCnt[wi]||1)
11: WPairs = WPairs ∪ {(addrwi , valwi)}

12: c← SKE.Enc(KSKE , f)
13: Send c and WPairs to the server.
14: The server adds c into C and WPairs into DictW.

Fig. 3. Protocols for Building and Updating the Database

addresses are pseudo-randomly generated, and without know-
ing the key, the server cannot infer anything from them.

Leakage. Searchable encryption schemes always face trade-
offs between performance and leakage, and our scheme does
reveal some information to the server to enable efficiency and
scalability. In Section 4, we provide a formal proof that the
proposed scheme satisfies the forward privacy requirements.
Here, we informally discuss the leakage of our construction.

During the Build protocol, all existing files are processed
and encrypted, and the client and server indexes are gener-
ated. By uploading the encrypted files, the server learns the
number and sizes of all outsourced files. In addition, the size
of DictW reveals the number of all keyword-file ID mappings.
Since the entries of DictW are ordered by the entries’ addresses

(I′c,Cwi)(I
′
s)← Search(sk,Ic,w)(Is,C) :

Client:

1: Kw = G(KG,w||SearchCnt[w])
2: Send the token (Kw,cnt = FileCnt[w]) to the server.

Server:
3: Fw = {}
4: for i = 1 to cnt do . No. of files w appears in.
5: id(fi) = DictW[h(Kw, i||0)]⊕ h(Kw, i||1)
6: Fw = Fw∪{id(fi)}
7: Delete DictW[h(Kw, i||0)] . Delete accessed entry.

8: Send all files corresponding to Fw to the client.
Client:

9: Decrypt and consume the received files.
10: SearchCnt[w]++ . Searched for w once more.
11: K′w = G(KG,w||SearchCnt[w]); . A fresh key for w.
12: WPairs = {}
13: for i = 1 to cnt do
14: addrWi = h(K′w, i||0);
15: valWi = h(K′w, i||1)⊕ id(fi)
16: WPairs = WPairs ∪ {(addrWi, valWi)}

17: Upload WPairs to the server.
18: The server adds WPairs into DictW.

Fig. 4. Protocol for Search

(which are outputs of a cryptographic hash function), DictW
does not leak anything that can be used to infer information
about individual keyword/file mappings. Thus, this leakage is
the minimum required for an efficient SSE scheme, satisfying
the requirements for LBuild in Definition 2.5.

Upon inserting a new file, the file is encrypted, the corre-
sponding set of encrypted DictW entries is generated and up-
loaded. In addition to the file size, the server learns the num-
ber of unique searchable keywords in the file. (The server also
learns the time of insertion of each new file, but we consider
this outside the scope of the searchable encryption protocol.)
In schemes without forward privacy [8, 19, 20, 26], the server
learns which previously-searched keywords appear in this new
file. Schemes that store the set of identifiers of files sharing
each keyword together [26] leak information about the com-
mon keywords in the files inserted even before any search
takes place. Other schemes supporting forward privacy (in-
cluding Sophos [6] and Stefanov et al.’s scheme [29]) leak
the same information as we do. Therefore, the leakage of our
scheme when a file is added is minimal among the known SSE
schemes, and is limited to LAdd .

A search operation reveals the list of files sharing the key-
word under query, which is required for correct responses in
SSE protocols. As the queries of different searches for the
same keyword vary, it seems that we prevent search pattern
leakage. However, the server can link two different queries for

Efficient Dynamic Searchable Encryption with Forward Privacy 12

the same keyword via the DictW entries that are re-encrypted.
Therefore, our search leakage includes the search pattern leak-
age and the list of intended files, and is limited to LSearch. This
is also minimal for efficient SSE schemes as pointed to by
Cash et al. [8].

3.3 Outsourcing the Local Index

In the scheme presented, the client stores two local dictionar-
ies that are used for token generation. They are both of size
O(m), while the server index is of size O(nm). As an example,
with 1M keywords, 4-byte integers, and assuming the average
size of the keywords is 10 bytes, the client index would require
1M× (10+4+10+4) ≈ 28MB storage. This is manageable
for reasonable clients, including any recent smartphone. How-
ever, maintaining the client state requires synchronization be-
tween the client and server indexes. This would prevent ex-
tensions to support multiple clients sharing the server. Hence,
we want to outsource this small index as well. Then, the client
stores only the keys (a small constant size) for generating the
keyword-related keys and encrypting/decrypting files, and no
synchronization is necessary at the client.

There are different ways to eliminate the client index, but
it should be done cautiously to avoid compromising forward
privacy. Note that applying the approaches from Kamara et
al. [20] and Naveed et al. [26] would not preserve forward
privacy. Since they store the list of file IDs of each keyword
in a separate list, they need to access the corresponding lists
on each file insertion to append or add the new file ID. The
server learns to which existing lists the new file ID is added,
something we need to conceal for forward privacy.

One way to do this would be to use an ORAM. Outsourc-
ing the client index through the ORAM, similar to Sanjam et
al. [14], is completely consistent with the ORAM definition as
it uses only one block per access. This is different from out-
sourcing the server index using an ORAM, where an operation
needs accessing multiple blocks in most cases, which leaks at
least the number of accessed blocks. Moreover, ORAM is too
expensive to store the whole index, but practical for storing
just the SearchCnt and FileCnt.

To search for a keyword w in this setting, the client first
reads SearchCnt[w] and FileCnt[w] to prepare and send the re-
spective token to the server. Then, it increments the search
counter and updates the ORAM accordingly. (With efficient
ORAM implementations, the read and update operations can
be combined into one ORAM access, as done by Zahur et al.
[31].) Finally, the search is done as already described in our
construction. For inserting a new file f , the client reads the
counters FileCnt[wi] of all keywords wi ∈ f through the ORAM
(needed for forward privacy), increments them, and prepares

and sends the insertion token to the server who updates its
index DictW, and the file collection, as described. Finally, it
stores the updated counters FileCnt[wi] inside the ORAM.

4 Security Analysis
Our goal is to prove that the proposed scheme provides for-
ward privacy, as defined in Section 2.3, using the leakage func-
tions also defined in that section. We give the proof for the
scheme presented in Section 3 assuming the client keeps the
local index for simplicity. It would be straightforward to ex-
tend it to cover outsourcing the client index as well, but not
included here.

Theorem 4.1. If SKE is a CPA-secure symmetric-key encryp-
tion scheme, G is a pseudorandom function, and h is a hash
function, our DSSE construction in Figures 3 and 4 is secure
based on Definition 2.6, in the random oracle model.

Proof. To show that the real game is indistinguishable from
the ideal game by any PPT distinguisher, we construct a PPT
simulator S who uses the information provided by leakage
functions to simulate the client behavior in a way that is in-
distinguishable form a real client. S builds simulated versions
of both the encrypted server index IS and the collection of en-
crypted files C. Since both IS and C are encrypted, even though
their actual contents are not known by the simulator, they can
be created as random values chosen from a uniform distribu-
tion over the range of the encryption scheme or the hash func-
tions used. S needs information about the number and sizes of
the outsourced files, the index size, and the effect of later op-
erations; all are provided by the respective leakage functions.

LBuild provides the information required for starting the
simulation: the index size N, and the number and sizes of
the outsourced files. The simulator creates and fills a dictio-
nary DictW with N randomly-generated values of proper sizes.
Since the original contents of DictW are outputs of the ran-
dom oracle, no PPT distinguisher can distinguish them from
the generated random values. All files in the collection C are
encrypted. Hence, S simulates them by encrypting an all-zero
strings of size | f j| for each file f j ∈ F . The CPA-security of
the encryption scheme guarantees that no PPT distinguisher
can distinguish this behavior.

Simulating the operation tokens (Add,Search) is more
complex. The problem is that these operations affect each
other, and S should keep track of these effects and dependen-
cies among the tokens to keep them consistent, based on infor-
mation revealed by their respective leakage functions. S keeps
a local copy of DictW, and updates it according to the infor-

Efficient Dynamic Searchable Encryption with Forward Privacy 13

mation provided by the leakage functions. This local copy is
utilized during token generation, and helps generate consis-
tent tokens. Let us illustrate how S adaptively simulates the
encrypted files, indexes, and tokens.

Initialization. The leakage function LBuild(F)=(N,n,(id(f j),
| f j|) f j∈F) reveals the number and sizes of the existing files and
the number of keyword to file ID mappings, N. The simulator
takes the following steps:

1: K← SKE.Gen(1λ)
2: Generate N pairs (ai,vi) randomly and store them in a dic-

tionary DictW. Both ai and vi are of length l.
3: Simulate encrypted files as {c j← SKE.Enc(K,0| f j |)} f j∈F .
4: Create a dictionary WKeys to store the last key assigned to

each keyword. It can be resized if needed.
5: Create another dictionary WOracle to answer the random or-

acle queries. WOracle can also be resized over the time.

Simulating the insertion token. The simulator uses the infor-
mation in leakage LAdd(f) = (id(f), | f |,n f = |{wi}wi∈ f |) to
update her local data structures. S does the followings:

1: for i = 1 to n f do
2: Generate random values ai and vi, each of length l. Add

a new pair (id(f)||ai,vi) into DictW.
3: c← SKE.Enc(K,0| f |)
4: Output the insertion token: (id(f),c,{(ai,vi)}

n f
i=1).

Note that due to the forward privacy, S does not know
which already searched keywords f contains. Therefore, we
do not assign any keyword to this file at this time. If it appears
in a later search result, the actual keyword will be specified by
the search leakage. At that point, we will assign the keyword(s)
and program WOracle. This is a local decision that does not
affect the server.

Simulating the search token. The leakage LSrch(w, t) =

{Fw,t ,SP} specifies the set of IDs of files containing the key-
word searched for, w. The simulator performs as in Figure 5.

Answering random oracle queries. When simulating the
operations, S always programs the random oracle matrix
WOracle in a consistent way. WOracle queries take three in-
puts: the last key Kw assigned to the keyword w, a zero or
one indicating the address or mask value, and the sequence
number of the file in Fw,t . WOracle[Kw][0][i] stores the ad-
dress of a DictW cell assigned to the ith file ID in Fw,t , and
WOracle[Kw][1][i] contains a values used to unmask the value
stored at DictW[WOracle[Kw][0][i]].

1: nw = |Fw,t | . The number of files returned.
2: if WKeys[w] is NULL then . First search for w.
3: WKeys[w]←{0,1}λ

4: Kw = WKeys[w]
5: for i = 1 to nw do
6: if WOracle[Kw][0][i] is NULL then
7: if fi is added after the build phase then

. I.e., there are pairs (id(fi)||ai,vi) in DictW.
8: Select an unused (id(fi)||ai,vi) pair.
9: else

10: Select randomly an unused (ai,vi) pair.

11: WOracle[Kw][0][i] = ai

12: WOracle[Kw][1][i] = vi⊕ id(fi)
13: else
14: ai = WOracle[Kw][0][i]
15: vi = WOracle[Kw][1][i]⊕ id(fi)

16: Remove the pair (ai,vi) or (id(fi)||ai,vi) from DictW.

. Generate the new pairs to be added into DictW.
17: NewPairs = {}
18: Knew

w ←{0,1}λ

19: WKeys[w] = Knew
w

20: for i = 1 to nw do
21: Add a new pair (ai,vi) into DictW, where ai and vi are

both random values of length l.
22: NewPairs = NewPairs∪{(ai,vi)}
23: WOracle[Knew

w][0][i] = ai

24: WOracle[Knew
w][1][i] = vi⊕ id(fi)

25: Output the token as (Kw,nw,NewPairs).

Fig. 5. Simulating the search token.

Thus, all operations performed by the simulator are
polynomial-time operations. Together with the fact that there
will be polynomially-many adversary queries at most, it makes
the total running time of our simulator polynomial. Besides,
the adversary cannot distinguish the outputs of our simulator
from those of a real client unless he breaks encryption or dis-
tinguishes the PRF output from random.

5 Experiments
This section reports on our results from experiments on
datasets up to the full Wikipedia archive. Our scheme out-
performs the best previous SSE scheme with forward privacy,
and has performance that is comparable with the best existing
schemes that do not provide forward privacy.

5.1 Experimental Design

The experiments are designed to evaluate the performance of
our scheme under load. We outsource data sets scaling up to

Efficient Dynamic Searchable Encryption with Forward Privacy 14

the full Wikipedia archive (nearly 4M pages), and perform dif-
ferent search and update operations.

Implementation. We implemented a prototype of our
scheme using C/C++ with the Crypto++ library for crypto-
graphic operations. Our protocols employ only cryptographic
hash functions2 that are instantiated with 20 byte outputs.

Our dictionaries are implemented as C++ maps, which are
represented internally as red-black trees. A C++ map stores
the pairs sorted, regardless of their initial order. This is very
important for our implementation of DictW, so that the initial
dictionary leaks no information through the tree structure. Fur-
ther, all information about the initial files are stored in DictW
and outsourced altogether. This means that the server cannot
realize how many keywords does each file contain, or how
many files does each keyword appear in; though it learns these
information gradually through the searches. However, as the
later files are added one-by-one, the server observes the set of
corresponding entries per file inserted into DictW.

Note that we do not need to store the whole address space
for the (keyword, file ID) mappings (e.g., in an array). We store
only the existing mappings. So, we can have a large address
space with a small dictionary. Therefore, collisions may oc-
cur, but the actual probabilities are negligible. Let N be up-
per bounded by 240, and we use a hash function with 160-
bit outputs. Thus, the address space is 2160 and we need to
store at most 240 entries. According to the birthday paradox,
the probability of a collision is N2

2∗|address space| =
280

2161 = 2−81.
This makes the collision probability vanishingly low, and no
collisions were encountered during our experiments.

Nevertheless, it is easy to handle collisions in our scheme.
If a collision occurs during the Build phase, we can simply in-
crement the SearchCnt value for a keyword that causes a col-
lision, and re-generate its corresponding entries in DictW be-
fore outsourcing. The client cannot detect collisions that occur
when adding a new file, however, so we would need to rely on
the server reporting such collisions to the client, would could
then increment the SearchCnt value.

Network configuration. Our prototype is a client/server im-
plementation and all client-server communications go over the
network, as they would in a real deployment. Our experiments
are done on Amazon EC2 using m4.4xlarge instances (64GB of
memory, 16 CPU cores) running Ubuntu 16.04 LTS for both

2 Our prototype implementation mistakenly used SHA1. Although the re-
cent collision attacks do not directly threaten our application, there are ev-
idences that SHA1 is not a good choice for a cryptographic hash function.
Using a stronger cryptographic hash function such as SHA-256 or SHA-
3 would be preferable, and would not noticably impact the performance
since hashing is not the main performance bottleneck for our protocols,
and all these hash functions are very efficient on modern processors [18].

Table 1. Statistical information about our experiments.

#Files #Words DictW entries
100,000 808,293 11,534,529
250,000 1,568,036 29,389,776
500,000 2,664,633 62,543,206
750,000 3,419,374 94,328,341
1,000,000 4,104,976 116,065,612
1,500,000 5,390,162 178,084,747
2,000,000 6,435,546 232,594,077
2,500,000 7,401,246 285,650,444
3,000,000 8,300,018 341,258,052
3,835,792 9,801,551 447,070,889

the server and client. To evaluate the costs of our scheme, we
perform search operations once on a single core and once on
five cores. The multi-core version is referred to as the paral-
lelized scheme, and the other as the single-threaded scheme.

Dataset. We use the Wikipedia archive (12/1/2016) with
3,835,792 files (each corresponding to a Wikipedia article) as
our test dataset. We repeat the experiments varying the num-
ber of files up to the full dataset, leading to different numbers
of keyword to file ID) mappings. Table 1 summarizes the ex-
periments, giving the number of files, the number of unique
keywords in all files, and the number of DictW entries.

We select all words with lengths between 4 and 10 from
all files. The keyword length has no effect on the search cost
since they are all processed similarly. We use the Porter stem-
ming algorithm [27] to reduce the keywords to a common
form. All keywords, even the mistyped and misspelled ones,
are preserved for searchability. The file sizes also do not affect
the search cost; they affect the insertion cost since the bigger
files are expected to have more keywords.

Comparisons. We focus our experimental comparisons on
Sophos [6], which is the most efficient previous dynamic SSE
scheme supporting forward privacy. The Sophos client and
server are run on the same two EC2 instances as our scheme,
and they communicate through grpc.

We do not include detailed performance comparisons with
Blind Storage [26] and Kamara et al.’s scheme [20], since nei-
ther of those schemes support forward privacy. We do include
rough comparisons based on reported performance numbers,
and our results appear to be competitive or even better than
these schemes (although without being able to test implemen-
tation on the same dataset and experimental setup, such com-
parisons should be interpreted cautiously). We do not have ac-
cess to an implementation of Stefanov et al.’s scheme [29],
another SSE scheme supporting forward privacy. This scheme
uses an ORAM-based structure with O(logN) levels to store
and access the keyword to file ID mappings. It performs and
update operations with O(d log3 N) and O(r log2 N) cost, re-

Efficient Dynamic Searchable Encryption with Forward Privacy 15

0 0.5 1 1.5 2 2.5 3 3.5 4

Number of files ×10
6

0

0.5

1

1.5

2

2.5

3

3.5

T
im

e
 (

s
)

×10
4 Pre-computation time

Our scheme

Sophos

Fig. 6. The client pre-computation (setup) time.

spectively, compared to our scheme’s costs of O(d/p) and
O(r/p). In both cases, we observe a polylogarithmic improve-
ment over this scheme. Moreover, Stefanov et al.’s scheme re-
quires a rebuild after N operations that retrieves the whole in-
dex (of size O(N)). Our scheme does not need rebuild opera-
tions and asymptotically outperforms Stefanov et al.’s scheme
substantially, so it was not necessary to conduct performance
experiments to compare them.

5.2 Pre-Computation

The client pre-computation time for both Sophos [6] and our
scheme is depicted in Figure 6. The numbers are averages from
3 runs. Except where noted, reported values in the rest of this
section are based on the experiment with the full Wikipedia
archive of 3.8M files and 447M (keyword, file ID) pairs.

There are three pre-computation steps: (1) generating the
dictionary and plain index, (2) encrypting the files, and (3)
building the encrypted index. The first step is orthogonal to
our work and the second step is done similarly by all schemes.
We do not consider those here, and focus on the cost of build-
ing the encrypted index which differs across SSE schemes.

Over the range of file sizes (Table 1), the average pre-
computation time per entry in our scheme is between 30 and
40µs. This is ∼60% of the cost for Sophos, whose values
were between 60 and 70µs in our experiments. This pre-
computation only needs to be done once, but has consider-
able cost. For the full 3.8M files experiment (with 3,835,792
files), it took 5h27m with our scheme compared to 8h48m for
Sophos. This is mostly due to the higher cost of the asymmet-
ric cryptography used for Sophos’ trapdoor, compared with the
inexpensive hash functions used by our scheme.

Our per entry pre-computation time is comparable to that
reported for Kamara et al.’s scheme [20]: 35µs per entry for
up to 1.5M total entries. Our per entry time is larger than that
for Blind Storage, which starts with 4.13µs for 5M total en-

0 1 2 3 4 5 6 7 8 9

Number of files in the result ×10
5

0

5

10

15

20

25

30

35

40

T
im

e
 (
µ

s
)

Per entry search time

Our non-parallelized scheme

Our parallelized scheme

Sophos

Fig. 7. The average per-entry search time.

tries and reaches 1.58µs for 20M total entries, since it stores
the set of identifiers of files containing a keyword sequentially
inside an index file and accesses them altogether. (This is why
they cannot have direct file insertion while supporting forward
privacy. If two or more files share a keyword, they all need to
update the same index file, and the server realizes this fact.)

5.3 Search

The client generates a search token that includes the keyword-
related key and the number of files in which the keyword ap-
pears, and sends it to the server. Token generation is a constant-
time operation that does not depend on the number of files or
keywords. It takes ∼10µs in our experiments.

Upon receipt of the token, the server finds and returns all
existing files matching the token. Figure 7 shows the search
times of queries with different result sizes, on the full 3.8M
file dataset. The average per entry search time is ∼10µs in
our single-threaded scheme. Hence, our scheme can perform a
search query matching 100,000 files in about one second.

Employing more cores reduces the search time. With five
cores running search in parallel, our per entry search time
drops to less than 3µs. As a specific example, using two and
three cores the per entry search time with 479,077 files in the
result reduces from 9.8µs to 6.6µs and 5.2µs. Figure 8 illus-
trates how the per entry search time is affected by the number
of utilized cores. This shows that our scheme has a very good
potential for parallelism (both theoretically and) in practice.

The per-entry search time in Sophos for the same data and
queries and in the same settings is∼15µs. Despite the fact that
Sophos utilizes full multi-threading to parallelize the compu-
tations and other optimizations, its per entry search time is
slower than our scheme running on a single core. Compared
to our parallelized scheme, Sophos’s per-entry search time is
roughly five times that of our scheme.

Efficient Dynamic Searchable Encryption with Forward Privacy 16

1 1.5 2 2.5 3 3.5 4 4.5 5

Number of cores

3

4

5

6

7

8

9

10

T
im

e
 (
µ

s
)

Per entry search time with different cores

Fig. 8. The per entry search time on different cores, with
n=3,835,792 total files and d=479,077 files in the result.

Our scheme is also competitive with the best known
schemes that do not provide forward privacy. The reported per-
entry search time in Kamara et al.’s scheme is 7.3µs. The main
source of difference in times is that our scheme needs two
hash function evaluations while theirs needs only one. How-
ever, their time is more than double the latency of our paral-
lelized scheme. Their scheme is linear in nature and processes
the search results one after another, so could not easily take
advantage of multiple cores. Blind Storage stores identifiers of
all files satisfying each keyword in an index file. Its per entry
search time is ∼5µs, which is half the time required by our
single-threaded scheme, but higher than is possible with our
scheme using multiple cores.

5.4 Insertion

To insert a file, the client extracts the keywords in the given
file, encrypts the file, prepares and encrypts the new set of
(keyword, file ID) pairs, and transfers the results to the server.
The server stores the encrypted file and only adds the pairs to
its indexes. This asymmetry in the client and server processing
times has already pointed to by Kamara et al. [20].

Our file insertion results are in line with what was reported
by Kamara et al. [20], but a direct comparison is not possible
as they use the file (collection) size, while we use the number
of unique keywords in the file.

As in the pre-computation phase, processing a (keyword,
file ID) pair takes ∼40µs for the client. Processing a new file
with 4133 unique keywords, for example, takes 157 ms for the
client and 12 ms for the server, in our experiments. Adding the
same file takes 302 ms for the client in Sophos.

Compared to Blind Storage, our scheme still appears to
provide better performance. Adding a new file with 2267
unique keywords takes 140 ms in Blind Storage, while a simi-

lar operation (adding a file with 2192 unique keywords) takes
81 ms in our experiments.

6 Supporting Deletion
Our scheme can be easily extended to support deletion. The
Delete protocol is defined formally as:
– (I′c)(I

′
s,C
′) ← Delete(sk, id(f),Ic)(Is,C): The client

uses this protocol to delete a file id(f), given the secret
key sk and her current index Ic. It updates the index to I′c.
Similarly, the server takes the index Is and file collection
C as input, and outputs their updated versions I′s and C′.

Since DictW is constructed around keywords, to delete a file f ,
the server should examine all DictW entries to find all occur-
rences of id(f). Hence, we use another dictionary DictF on the
server as in Kamara et al. [20] that is indexed by file IDs and
stores the addresses of DictW entries storing keywords of each
file. Now, the server can touch directly the related DictW en-
tries through DictF on each file deletion. This makes updating
the DictW on each deletion, efficient. Since DictW and DictF
store the same set of information (in different formats), both
have the same size N. Similarly, the client needs the number
of unique keywords per file to generate consistent deletion to-
kens. We use another dictionary named WordCnt for this.

One important thing is how to link together the corre-
sponding entries from DictW and DictF. Since a search oper-
ation removes some DictW entries, re-encrypts and re-inserts
their values into some different entries, the address of those
entries stored in the corresponding DictF entries should be up-
dated accordingly. As the contents of DictW entries are en-
crypted, updating them with the same encryption keys leads
to two-time-pad attacks. On the other hand, re-encrypting the
data with new encryption information requires storing client-
side information per file ID per keyword. To solve this prob-
lem, we store only the address part of DictW (and DictF) con-
tents in clear. This will reveal nothing more beyond the link
between the corresponding DictW and DictF entries. (One can
even think of a single table whose entries store contents of the
two linked entries together.) Moreover, this will not affect our
simulation during the proof.

To delete a file f , the server needs a key related to
f and the number of keywords it contains. The client pro-
vides them inside a deletion token (K f = G(KG, id(f)), n f =

WordCnt[id(f)]). The server computes h(K f , i) for 1≤ i≤ n f ,
to find the addresses of DictF entries related to f . Each entry
points to a DictW entry. The server locates and removes the
respective entries from both DictF and DictW, excluding them
from later search results. However, the “location” of the re-

Efficient Dynamic Searchable Encryption with Forward Privacy 17

(I′c)(I
′
s,C
′)← Delete(sk, id(f),Ic)(Is,C) :

Client:

1: K f = G(KG, id(f)) . The file-related key.
2: Send the server (id(f),K f ,cnt = WordCnt[id(f)]).

Server:
3: C =C \ c . Delete the file.
4: for i = 1 to cnt do . No. of keywords in the file.
5: addri = h(K f , i)

. Delete the DictW entry DictF[addri] points to.
6: Delete DictW[DictF[addri]]
7: Delete DictF[addFi] . Delete ith DictF entry.

Fig. 9. Protocol for Deletion

moved DictW entries still belong to the respective keywords.
A search operation following the deletion finds such an en-
try empty and learns that the respective file has already been
deleted. Since this search operation removes all DictW entries
belonging to the keyword under query, and re-inserts only the
valid ones, the subsequent search operations will not see the
deleted DictW entries, unless other deletion operations affect-
ing the result come in between. This is an important property
of our construction that frees unused memory and does not
require heavy rebuild operations, making it very efficient and
practical. The related WordCnt entry in the client local index
is also removed during deletion. Note that deletion does not
update FileCnt. It should be updated during subsequent search
operations. The deletion protocol is given in Figure 93.

Leakage. The server only learns id(f) and the number of
unique keywords in f . At this time, it cannot link the file to its
keywords. However, when a keyword containing the deleted
file is searched for (since the deleted DictW cells still belong
to the respective keywords), the server realizes that the deleted
file contains this keyword. More importantly, the server can
learn if some of the already deleted files share the keyword
under query, or if a number of deleted files share a keyword
searched for in the past; similar to existing works [8, 20, 26].
Backward privacy targets limiting these leakage; we leave
backward privacy as future work.

Performance. As in search, the client generates and sends
the server a deletion token that includes the file-related key
and the number of keywords it contains. Token generation is
a constant-time operation and does not depend on the number
of keywords in the file. The server removes all related pairs
matching the token from DictF and DictW, and the related file
itself. Figure 10 shows the server times for performing a dele-

3 Note that the Build, Add, and Search protocols should also be modified
to link DictW and DictF entires together.

4000 6000 8000 10000 12000 14000

Number of unique keywords in the file

0

5

10

15

20

25

30

T
im

e
 (
µ

s
)

File deletion time - Per keyword

Our non-parallelized scheme

Our parallelized scheme

Fig. 10. File deletion time by the server.

tion for both parallelized and non-parallelized schemes, as the
number of unique keywords in the file varies (as an indication
of the file size). The average per entry deletion time of our
non-parallelized scheme is ∼17µs in our experiments. This
falls down to ∼4µs in our parallelized scheme, and shows 4X
improvement. Deletion is a very fast operation for both the
client and server. As an example, deleting a file with 10,460
unique keywords takes 35ms in our parallelized scheme and
147ms in our non-parallelized scheme.

Sophos does not support deletion directly. Blind Storage
also does not provide direct deletion since they store only the
inverted index (i.e., all Fw,t sets). They use the lazy deletion
strategy, i.e., the file indexes will not be updated until the next
search operation, and do not report deletion times.

Our deletion performance is comparable to that of Kamara
et al.’s scheme. Though they measure the deletion time based
on file (collection) size, the main factor affecting the perfor-
mance is the number of unique keywords in the file. Deleting
a large file (e.g., with 10,000 unique keywords) takes ∼140ms
in our experiments, and Kamara et al. report deletion times up
to 130ms for similar scenarios.

Effect on asymptotics. Our scheme, Cash et al.’s
scheme [8], Blind Storage [26], and Sophos [6] are all asymp-
totically optimal up to deletions. In Cash et al.’s scheme [8]
and Sophos [6], the search cost is additionally affected by all
file deletions affecting the queried keyword since the begin-
ning (nad). In our scheme and Blind Storage [26], while dele-
tions on the searched keyword affect search performance as
well, this effect is neutralized after each search. Thus, our ad-
ditional cost is related only to the deletions on the searched
keyword since the last search on that keyword (nd). Obviously,
nad ≥ nd . Therefore, we achieve even better asymptotic per-
formance, with parallelism and forward privacy.

Efficient Dynamic Searchable Encryption with Forward Privacy 18

7 Discussion
In this section, we discuss other properties of our scheme.

Eliminating Random Oracle Assumption. Our construction
is ready to be deployed in the standard model with small modi-
fications: The hash function is replaced by a proper PRF. Then,
instead of sending the key and asking the server to compute all
respective hash values for search and deletion operations, the
client computes and sends all PRF outputs to the server, simi-
lar to file addition. The server, given the required PRF outputs,
decrypts the requested cells and acts according to the requested
operation. Our construction in the standard model inherits and
preserves all properties of the random oracle model counter-
part. To the best of our knowledge, this is the most efficient
SSE construction in the standard model with forward privacy.

Another important advantage of this construction is that
the server is not expected to even evaluate hash functions any-
more. It only XORs the received values with those in the spec-
ified cells to extract the identifiers of files that constitute the
answer. This means the server is no longer performing even
simple cryptographic operations, and renders our scheme to
be deployable in almost all existing cloud environments.

Regarding efficiency, the client’s computation and token
size for search is increased from O(1) to O(d). The server
computation is still O(d), without any hash function evalua-
tions. File insertion continues working in the same manner,
i.e., with O(r) client and server computation, and communi-
cation. If supported, deletion asymtotics will be increased to
O(r), similar to search.

Parallelism.. Our scheme is ready to benefit from parallelism.
It evaluates O(d) and O(r) hash functions for search and up-
date, respectively. Each hash function evaluation is indepen-
dent, and takes the respective key k and a sequence number s
as input: h(k,s). Therefore, hash function evaluations can all
be done in parallel. This allows the service provider to dis-
tribute the load on p available processors, achieving O(d/p)
and O(r/p) search and update costs, respectively. The most
efficient known schemes support search with O(d) [6, 20]
or O((d logn)/p) [19] cost and update with O(r) [6, 20] or
O((m logn)/p) [19] cost. Further replication, distribution, and
load balancing mechanisms can be employed to improve per-
formance and data availability [2, 28, 30].

Batch update.. Our scheme in its current state supports batch
update (i.e., file insertion). In contrast to the schemes that store
index data in a ‘sequential’ way [6, 20, 26, 29], our scheme
stores index data, even for the same file or keyword, in ran-
dom locations. Therefore, the client can send the updates cor-
responding to a number of files, without any order, and ask the
server to add them all into the index. This also helps to reduce

Fig. 11. The portal serves all clients.

the leakage of adding files one-by-one, since the server does
not learn how many keywords each file contains.

Organizational portal.. When the number of (keyword, file
ID) mappings increases, our scheme requires a larger storage
at the client side (if it is not outsourced). In an organization
outsourcing a huge number of files, it is not reasonable to repli-
cate the same set of local information over all the clients. Us-
ing a portal server solves the problem. It is a local (and hence
a trusted) entity that stores the same information as a regu-
lar client, and serves all clients of the organization. The portal
receives the clients’ requests, prepares them according to the
scheme in use, and sends the resultant command to the server.
On receipt the server’s answer, relays it to the respective client.
In addition, using the local buffer on the portal improve per-
formance of the whole scheme. This is shown in Figure 11.

8 Related Work
Several different schemes have been proposed with the general
goal of enabling data to be outsourced, while providing some
kind of search functionality to data clients. Here, we review
those most relevant to our work.

Oblivious RAM. Oblivious RAM (ORAM) [15] supports
access to an outsourced memory while hiding the access pat-
tern. Different variants of ORAM have been used to minimize
the SSE leakages [5, 14, 16, 29]. However, it does not prevent
the access pattern leakage [24] since the server needs to learn
the list of files to retrieve. To avoid search pattern leakage and
provide forward privacy, as in Stefanov et al.’s design [29], the
server cost scales sublinearly with the total number of (key-
word, file ID) mappings (N), not just size of the result (d).

Static schemes. When the outsourced data is intended
only for archiving, no update mechanisms are needed. The
constructions proposed by Chang and Mitzenmacher [10] sup-
port static outsourcing with O(n) search time. Curtmola et al.
[12] defined CKA2-security for SSE, and proposed adaptively
and non-adaptively secure schemes under this definition, with
optimal search time, linear in the size of the response. Chase
and Kamara [11] gave constructions operating on matrices, la-
beled data, and graphs. Cash et al. [9] support Boolean search.

Dynamic schemes. A dynamic SSE scheme provides op-
erations to update encrypted data. Update operations leak more

Efficient Dynamic Searchable Encryption with Forward Privacy 19

Table 2. A comparison of dynamic SSE schemes.

Scheme Client storage Server storage Search cost Update cost Parallelism Forward privacy
Kamara et al. [20] O(1) O(N) O(d) O(r) × ×
Parallel SSE [19] O(1) O(mn) O((d logn)/p) O((m logn)/p) X ×
Blind storage [26] O(1) O(N) O((d +nd)/p) O(r/p) X ×
Cash et al. [8] O(m) O(N) O((d +nad)/p) O(r/p) X ×
Practical SSE [29] O(

√
N) O(N) O(d log3 N) O(r log2 N) × X

Sophos [6] O(m) O(N) O(d +nad) O(r) × X
Ours O(m+n) O(N) O((d +nd)/p) O(r/p) X X

n and m denote the total number of files and keywords, respectively. d is the number of files containing a keyword, and r is the number of unique
keywords in a file. The number of processors and (keyword, file ID) mappings is p and N, respectively. nad and nd show the number of times a keyword
has been affected by file deletions since beginning and since the last search for the same keyword, respectively (nad ≥ nd).

information about the outsourced data. For instance, adding a
new file containing a keyword w after searching for w, reveals
to the server that this new file also contains w [10, 29]. Table
2 summarizes dynamic SSE schemes.

Kamara et al. [20] extended the construction of Curt-
mola et al. [12] to provide a dynamic SSE scheme. They
gave a security definition that is adaptively secure against
chosen-keyword attacks (CKA2), and presented the first dy-
namic CKA2-secure construction with optimal search time.

Kamara and Papamanthou [19] used a red-black tree over
a (static) dictionary for building a parallel and dynamic SSE
scheme. With p processors running in parallel, it achieves
O((d logn)/p) search and O((m logn)/p) update cost.

Naveed et al. [26] proposed a dynamic SSE scheme us-
ing Blind Storage. It encrypts and stores the set of file IDs
containing each keyword in a separate index file outsourced
through the Blind Storage. While they achieve asymptotic per-
formance and the scheme can be parallelized, they do not offer
forward privacy. Indeed, if two files having a common key-
word is added, this fact leaks to the server in their scheme.

Cash et al. [8] proposed interesting dynamic SSE schemes
with asymptotic optimal parallel cost (up to deletions). They
extended their static schemes to support file insertion and dele-
tion. After outsourcing the initial data in a static scheme, they
use a dynamic scheme (similar to ours) to support later file in-
sertions. The scheme does not support forward privacy. They
also store the relation between the deleted files and their cor-
responding keywords to filter out the deleted files from the
search results. This information increases over the time and
requires periodic rebuilds to cleanup the indexes.

Forward-private schemes The dynamic SSE scheme
given by Stefanov et al. [29] achieves forward privacy. But,
the ORAM-based structure requires the server to checks all
levels on each search, leading to the search cost O(d log3 N)

and update cost O(r log2 N).
Sophos [6] supports forward privacy using trapdoor per-

mutation chains. It puts the encrypted file IDs of each keyword

in a separate chain. The cost of search and file insertion is as
ours asymptotically, but the client and server are expected to
run asymmetric cryptography operations. Also, the chain re-
quires sequential scan that prohibits parallelism. To support
deletion, they employ another instance of their scheme to keep
the list of deleted files and require the sever to operate on both
list on each search to filter out the deleted files.

9 Conclusion
Ensuring forward privacy is an important step to mitigating
attacks on SSE. We propose a dynamic SSE scheme that pro-
vides forward privacy with better performance than any previ-
ous scheme and without needing any asymmetric operations.
Our scheme reduces the required server computation, and lim-
its the server role to mostly storage rather than computation.
Hence, our scheme can be employed by a broader range of ser-
vice providers. Moreover, our design can be converted into a
scheme in the standard model. Our scheme is also completely
parallelizable and achieves asymptotically optimal search and
update costs of O(d/p) and O(r/p), respectively, perform-
ing competitively with the most efficient known dynamic SSE
schemes that do not provide forward privacy. Although for-
ward privacy is an essential property, it is not sufficient for
thwarting all possible attacks on SSE schemes. In particular, it
does not address other forms of information leakage and our
design does not provide backward privacy. Further progress in
these areas is needed before SSE schemes can be used in sce-
narios where information leakage is unacceptable, but show-
ing that it is possible to achieve forward privacy with high ef-
ficiency is an encouraging step towards that goal.

Acknowledgments
This work was partially funded by National Science Founda-
tion awards 1111781, 1652259, 1526950 and 1514261 and

Efficient Dynamic Searchable Encryption with Forward Privacy 20

gifts from Amazon and Google as well as a NIST award.
We acknowledge the support of TÜBİTAK (the Scientific
and Technological Research Council of Turkey) under project
number 114E487, European Union COST Action IC1306, and
the Science Academy BAGEP Distinguished Young Scientist
Award. Part of this work was performed while the first author
was with Koç University and while the third author was visit-
ing Koç University.

References
[1] I. H. Akin and B. Sunar, “On the difficulty of securing web

applications using cryptdb,” in IEEE International Confer-
ence on Big Data and Cloud Computing Conference, 2014.

[2] R. Alonso-Calvo, J. Crespo, M. Garc’ia-Remesal, A. Anguita,
and V. Maojo, “On distributing load in cloud computing:
A real application for very-large image datasets,” Procedia
Computer Science, vol. 1, no. 1, 2010.

[3] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano,
“Public key encryption with keyword search,” in EURO-
CRYPT’04, 2004.

[4] D. Boneh and B. Waters, “Conjunctive, subset, and range
queries on encrypted data,” in Theory of Cryptography,
2007.

[5] C. Bösch, A. Peter, B. Leenders, H. W. Lim, Q. Tang,
H. Wang, P. Hartel, and W. Jonker, “Distributed search-
able symmetric encryption,” in IEEE Conference on Privacy,
Security and Trust (PST), 2014.

[6] R. Bost, “σoϕoς : Forward secure searchable encryption,” in
ACM Conference on Computer and Communications Secu-
rity (CCS), 2016.

[7] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-
abuse attacks against searchable encryption,” in ACM Con-
ference on Computer and Communications Security (CCS),
2015.

[8] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M.-C.
Rosu, and M. Steiner, “Dynamic searchable encryption in
very-large databases: Data structures and implementation,”
in Network and Distributed System Security (NDSS), 2014.

[9] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu,
and M. Steiner, “Highly-scalable searchable symmetric en-
cryption with support for boolean queries,” in CRYPTO’13,
2013.

[10] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving
keyword searches on remote encrypted data,” in Applied
Cryptography and Network Security (ACNS), 2005.

[11] M. Chase and S. Kamara, “Structured encryption and con-
trolled disclosure,” in ASIACRYPT’10, 2010.

[12] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky,
“Searchable symmetric encryption: Improved definitions and
efficient constructions,” in ACM Conference on Computer
and Communications Security (CCS), 2006.

[13] I. B. Damgård, “Collision free hash functions and public key
signature schemes,” in EUROCRYPT’87, 1988.

[14] S. Garg, P. Mohassel, and C. Papamanthou, “Tworam: ef-
ficient oblivious ram in two rounds with applications to

searchable encryption,” in Annual Cryptology Conference,
2016.

[15] O. Goldreich and R. Ostrovsky, “Software protection and
simulation on oblivious rams,” Journal of the ACM, vol. 43,
no. 3, 1996.

[16] M. T. Goodrich and M. Mitzenmacher, “Privacy-preserving
access of outsourced data via oblivious ram simulation,”
in International Colloquium on Automata, Languages and
Programming, 2011.

[17] M. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern
disclosure on searchable encryption: Ramification, attack
and mitigation,” in Network and Distributed System Security
(NDSS), 2012.

[18] Jeffrey Walton, “Crypto++ 5.6.5 Benchmarks,” https://
www.cryptopp.com/benchmarks.html, May 2017.

[19] S. Kamara and C. Papamanthou, “Parallel and dynamic
searchable symmetric encryption,” in Financial Cryptography
and Data Security (FC), 2013.

[20] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic
searchable symmetric encryption,” in ACM Conference on
Computer and Communications Security (CCS), 2012.

[21] J. Katz and Y. Lindell, Introduction to modern cryptogra-
phy. CRC Press, 2014.

[22] K. Kurosawa and Y. Ohtaki, “Uc-secure searchable symmet-
ric encryption,” in Financial Cryptography and Data Security
(FC), 2012.

[23] C. Liu, L. Zhu, M. Wang, and Y.-a. Tan, “Search pattern
leakage in searchable encryption: Attacks and new construc-
tion,” Information Sciences, vol. 265, 2014.

[24] M. Naveed, “The fallacy of composition of oblivious ram
and searchable encryption,” Cryptology ePrint Archive, Re-
port 2015/668, 2015.

[25] M. Naveed, S. Kamara, and C. V. Wright, “Inference at-
tacks on property-preserving encrypted databases,” in ACM
Conference on Computer and Communications Security
(CCS), 2015.

[26] M. Naveed, M. Prabhakaran, and C. A. Gunter, “Dynamic
searchable encryption via blind storage,” in IEEE Symposium
on Security and Privacy, 2014.

[27] M. Porter, “The English (Porter2) Stemming Algorithm,”
http://snowball.tartarus.org/algorithms/english/stemmer.
html, 2001.

[28] N. G. Shivaratri, P. Krueger, and M. Singhal, “Load dis-
tributing for locally distributed systems,” IEEE Computer,
vol. 25, no. 12, 1992.

[29] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dy-
namic searchable encryption with small leakage,” in Network
and Distributed System Security (NDSS), 2014.

[30] Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng,
“Cdrm: A cost-effective dynamic replication management
scheme for cloud storage cluster,” in IEEE International
Conference on Cluster Computing, 2010.

[31] S. Zahur, X. Wang, M. Raykova, A. Gascón, J. Doerner,
D. Evans, and J. Katz, “Revisiting Square-Root ORAM:
Efficient Random Access in Multi-Party Computation,” in
IEEE Symposium on Security and Privacy, 2016.

[32] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries
are belong to us: The power of file-injection attacks on
searchable encryption,” in USENIX Security Symposium,
2016.

https://www.cryptopp.com/benchmarks.html
https://www.cryptopp.com/benchmarks.html
http://snowball.tartarus.org/algorithms/english/stemmer.html
http://snowball.tartarus.org/algorithms/english/stemmer.html

	Efficient Dynamic Searchable Encryption with Forward Privacy
	1 Introduction
	2 Background
	2.1 Preliminaries
	2.2 Model
	2.3 Security Definitions

	3 Construction
	3.1 Indexes
	3.2 Protocols
	3.3 Outsourcing the Local Index

	4 Security Analysis
	5 Experiments
	5.1 Experimental Design
	5.2 Pre-Computation
	5.3 Search
	5.4 Insertion

	6 Supporting Deletion
	7 Discussion
	8 Related Work
	9 Conclusion

