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Abstract 

Biological systems exhibit remarkable adaptation and 
robustness in the face of widely changing environments.  By 
adopting properties of biological systems, we hope to design 
systems that operate adequately even in the presence of 
catastrophic failures and large scale attacks.  We describe a 
programming paradigm based on the actions of biological 
cells and demonstrate the ability of systems built using our 
model to survive massive failures.  Traditional methods of 
system design require explicit programming for fault 
tolerance, which adds substantial costs and complexity to the 
design, implementation and testing phases.  Our approach 
provides implicit fault tolerance by using simple programs 
constructed following guiding principles derived from 
observing nature.  We illustrate our model with experiments 
producing simple structures and apply it to design a 
distributed wireless file service for ad hoc wireless networks. 

1. Introduction 
Fault tolerant system design has traditionally explored explicit 
mechanisms for error checking, introducing redundancies to 
account for failure of components and designing signaling 
mechanisms to alert other systems or interfaces.  This 
involves analysis and formal verification of processes in the 
system and explicit programming of recovery mechanisms.  In 
this paper we consider an alternative to traditional fault-
tolerant systems design based on a style of programming 
based on local interactions and responsiveness to 
surroundings in which robustness is intrinsic to the 
programming process.  

The key contributions of this paper are the development of the 
cell-based programming paradigm we introduced in 
[George02], a description of how the paradigm can be used to 
construct structures that heal themselves, an analysis of the 
robustness properties and the capacity to withstand 
catastrophic failures of systems constructed using our cell-
based programming paradigm, and a framework and example 
for applying our approach to system design. 

2. Nature’s Programs 
Nature has evolved programs that exhibit remarkable 
robustness properties over billions of years through the 
untimely deaths of trillions of organisms.  Programs that 
don’t produce organisms reliably simply don’t survive to 
future generations.  Programs that produce organisms that 
cannot adapt to failures and changes in their environment are 
not transmitted to future generations.   

The hallmark of biological development is that a single cell 
undergoes successive (often asymmetrical) divisions and all 
the newly created cells regulate the development process to 
form a complete organism.  Biological programs are able to 
withstand a large number of individual cell failures 
(approximately 100 million of your cells died during the 
time you spent reading this parenthetical clause!) and adapt 
to many different environments; nevertheless they are 
remarkably expressive compared to human-engineered 
programs.  The human genome consists of approximately 
three billion base pairs (which could easily be encoded on a 
single CD-ROM); the difference between the genome of any 
two human beings fits on a fraction of a floppy disk. 

A cell is the basic unit of life and all living organisms are 
composed of one or more cells.  The capacity of organisms 
to adapt to changing and often hostile environments, tolerate 
limited failures and heal damaged organs is not because of 
the robustness of individual cells, but because of the 
interactions between large numbers of cells.  A cell is able to 
divide into two daughter cells, emit chemicals to the 
surrounding environment, and actively deform by applying 
physical forces across its walls.  Different chemicals within 
and around the cell control these actions.  A cell can sense 
chemicals on its walls, as well as in its environment.  The 
nucleus of the cell contains DNA, which encodes different 
genes that have been retained through evolution.  A gene is 
activated when a certain condition is true.  This condition 
could be a critical concentration level of a chemical or a set 
of chemicals that the cell possesses or that the cell has 
sensed.  When a gene is activated it may cause certain cell 
actions, which could result in the turning other genes on or 
off.   

Morphogenesis is the development of form in an organism 
and typical multi-cellular organisms develop from a single 
fertilized egg cell.  Morphogenesis is robust to many kinds 
of local failures and adapts to a wide range of environments.  
For example, during the development of a sea urchin even 
when one of two cells dies at the second stage of 
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development, the remaining cell develops into a complete 
(albeit smaller) organism ([Wolpert02], original experiments 
by Driesch, 1892).   This is in contrast to mosaic development 
(first proposed by Weismann in the 1880s) where cells are 
differentiated after the very first division.  If one of the cells 
in a frog embryo is destroyed after the first division, the other 
cell will not develop into a viable frog, but rather into 
something resembling half an embryo. 

Almost all complex organisms have some sort of mechanism 
for healing simple wounds.  In humans, when a minor injury 
happens, an inflammatory response occurs and the cells below 
the dermis (the deepest skin layer) begin to increase collagen 
(connective tissue) production.  Later, the epithelial tissue 
(the outer skin layer) is regenerated.  Apart from the fact that 
cells around the injury are able to adapt to a different function 
based on the new circumstances, it is their level of awareness 
that these cells possess that makes such healing possible 
[Mazzotta94].   

Many organisms can regenerate new heads, limbs, internal 
organs or other body parts if the originals are lost or damaged.  
Organisms take two approaches to replacing a lost body part.  
Some, such as flatworms and the polyp Hydra, retain 
populations of stem cells throughout their lives, which are 
mobilized when needed.  These stem cells retain the ability to 
re-grow many of the body’s tissues.  Other organisms, 
including newts, segmented worms and zebrafish, convert 
differentiated adult cells that have stopped dividing and form 
part of the skin, muscle or another tissue back into stem cells.  
When a newt’s leg, tail or eye is amputated or damaged, cells 
near the stump revert from specialized skin, muscle and nerve 
cells into blank progenitor cells.  These progenitors multiply 
quickly to about 80,000 cells and then grow into specialized 
cells to regenerate the missing part [Pearson01]. 

Nature also exhibits self-organization at the level of societies.  
Ant colonies are examples where self-organization achieves 
robustness to large-scale attacks (often by competing 
colonies).  A colony has many different types of ants – 
workers, warriors, drones and a queen.  If all the warrior ants 
die, then some of the worker ants transform into warrior ants 
so that activities such as nest patrolling continue.  Ants 
deposit chemicals into the atmosphere, which are then sensed 
by other ants and appropriately decoded.  In the case, where 
all warriors are killed, the concentration of chemicals 
deposited by warriors reduces dramatically and hence this 
absence of chemicals induces many more worker ants to 
convert into warrior ants [Bonabeau99].  Thus, the ant colony 
organizes itself automatically to tolerate failures. 

In summary, nearly all programs for multi-cellular organisms 
in nature exhibit several properties, which are essential to 
their ability to survive failures of large numbers of their cells 
and thrive in hostile conditions: 

• Environmental Awareness.  Cells behave in different 
ways depending upon properties (including chemical 
concentration) they sense about their surroundings.  
Cells communicate with nearby cells using a shared 
environment. 

• Localization.  Cells can communicate over short 
distances using chemical diffusion.  For most of the 
development process there is no global coordination 
and limited synchronization: an organism needs to 
know how to make a central nervous system before it 
has one. 

• Adaptation.  Cells are capable of performing different 
functions depending upon changes in the environment.  
All cells contain the same program and can hence 
respond to aberrant behavior from neighbors by 
adapting their own behavior.   

• Redundancy. Typical organisms have many cells 
devoted to the same function throughout development, 
so that failures of individual cells are usually 
inconsequential.  Biological systems also exhibit 
redundancy of function, where several distinct 
mechanisms evolve for the same purpose in a single 
organism so that failure of one mechanism will not 
cause system failure. 

Although it may be possible to achieve robustness without 
these properties, nearly all robust programs found in nature 
exhibit all of these properties.  Hence, studying 
programming models designed around these properties 
offers a promising approach to building robust systems. 

3. Cell-Based Programming Model  
Cellular automata have been studied extensively since von 
Neumann’s early work [vonNeu53] (the related work section 
summarizes more recent work).  Our model of cell-based 
programming adds to traditional cellular automata the notion 
of cell division and a rudimentary model of the physical 
forces involved.  In our model, cells live in an environment 
and can sense properties of that environment and take 
actions that effect that environment.  This enables inter-cell 
communication based on chemical diffusion through a 
shared environment. We describe a few key aspects of our 
model next. 

Cell Division.  A cell can divide into two daughter cells that 
may be dissimilar in orientation and chemical composition 
but have the same program.  A cell has an axis called the 
apical-basal axis.  Divisions can be either perpendicular to 
this cell axis or along the plane containing the axis.  In our 
model, cells can divide in any direction.  Cell divisions may 
be asymmetrical.  Differences in chemical composition as 
well as different chemicals on their cell walls cause the two 
daughter cells to behave differently.  Cell division is 
modeled by using a transition from one state to two states as 
shown in Figure 1.  Parameters to the division control the 
locations and orientations of the daughter cells.   

Gene Actions.  Genes can activate or deactivate depending 
on the presence or absence of a particular protein or a certain 
degree of chemical concentration.  Activation or deactivation 
of a gene results in cell actions like production of chemicals.  
The combination of active genes defines the state of the cell.   

Cell Actions.  Cells produce different proteins depending on 
what genes are active.  Chemicals produced this way diffuse 



  

into the environment.  They may affect nearby cells that can 
sense the concentration of particular chemicals.   

We abstract the complexities of communication in natural 
systems with two types of communication between cells: 
diffusion and emission.  Cells can communicate with 
neighboring cells by diffusing chemicals over a limited range 
as illustrated in Figure 2.  Diffusions are omnidirectional: 
they spread in all directions, and cells cannot determine from 
which direction they came.  The characteristics of the 
diffusion process are related to the properties of the 
environment such as viscosity of the medium and gravity.  
Emissions model communication directly through cell walls.  
They are directional: cells can emit chemicals in a particular 
direction, and sense from which direction emissions came. 

Cells can induce nearby cells into performing specific actions 
by using chemical emission or diffusion.  Similarly the death 
of a cell causes cessation of chemical diffusion and induces 
nearby cells into actions such are regenerating the dead cell.  
This awareness is essential for self-healing mechanisms. 

Simulating Cell Programs 

We built a simulator for cell programs to study their 
properties and conduct experiments involving simulated 
random and catastrophic failures.  Our simulator is freely 
available from http://swarm.cs.virginia.edu/cellsim. 
 
A cell program begins with cells in an initial configuration.  

The cells change state or divide based on sensed chemicals 
that can be either caused by the environment or by nearby 
cells.  The simulator computes the state of each cell and 
simulates cell division and cell death to determine the new 
set of cells for the next step.  It also simulates chemical 
diffusion that results when a cell diffuses chemicals so that 
neighboring cells can sense them.  State transition and cell 
division by a cell occur in response to the sensed chemicals.   
 
Our simulator supports several different models of cells and 
environments.  Environments control physical constraints on 
cell placement and how chemicals spread.  Environments 
allow us to experiment with different parameters that control 
the amount of random variance in the location of a new 
daughter cell, what happens when a cell divides into space 
that is already occupied by another cell, and how chemicals 
diffuse and evaporate, and how modeled forces in the 
environment affect the rate of diffusion in different 
directions.  For this paper, we use the simplest cell and 
environment model: cells have a single state and live in a 
discrete space; diffusions are linear, travel the same distance 
in all directions, and evaporate completely every time step.  
In addition, a simple cell model is used: cells divide only in 
orthogonal directions, and only have orthogonal neighbors.  
A forthcoming paper will consider how different cell and 
environment models affect the behavior and robustness of 
programs.  

4. Fault Tolerance and Healing 
We illustrate the fault-tolerance and healing properties of 
structures built using our programming model.  The physical 
environment for the system is based on coordinate geometry.  
Cells can divide along the three axes (x, y and z) in either 

direction (+ or −).  We use a simple diffusion model in 
which the chemical concentration decreases linearly with 
increasing distance (a more physically realistic exponential 
decay model is not necessary for these experiments).  Next, 
we demonstrate three examples of structures produced using 
our programming model. 

Sphere 

B

C

A

 

Figure 1.  Cell division.  The initial cell in state A 
divides into two daughter cells in states B and C. 

C

A

B
C

A’

B’

a b  

Figure 2.  Diffusion.  (a) Cell C diffuses chemical; nearby cells sense varying concentrations of the chemical based on their 
proximity and may change state in response. (b) Cell C dies and ceases diffusing the chemical; nearby cells sense the absence of 
the chemical and change state. 



  

The cell program shown in Figure 3 generates a sphere.  The 
radius of the sphere is determined by the amount of chemical 
radius that the center cell produces.   The initial configuration 
is a single cell in the center state.  That cell will emit one unit 
of the alive chemical in all directions.   In this program (and 
many others), we use the alive chemical as an indicator of the 
presence of a cell.  The center state also diffuses the radius 

chemical.  The diffusions amount indicates the maximum 
distance from this cell where the diffused chemical will reach 
in measurable concentrations.  Here, the diffusion amount 
controls the radius of the sphere. 

On each simulation step, all cells will evaluate their transition 
rule conditions in order and select the first rule for which the 
condition is true.  For state center, the first transition rule 
condition is:  

alive from dir < 1 

This will be true if there is any direction from which the 
concentration of alive is less than 1.  The direction variable 
dir will be bound to a direction which makes the condition 
true.  If more than one direction satisfies the condition, dir 
will be bound to one of the satisfying directions selected at 
random. 

The action part of the transition rule, 

   (center, body) in dir 

indicates what action to take when the condition is satisfied.  
Listing two states in an action indicates a division, so the 
effect of the transition is to divide into two daughter cells 
one in state center and the other in state body, in the 
direction dir bound as necessary to satisfy the condition.  
Following this transition rule, the center cell will keep 
producing body cells as long as there is some direction from 
which alive is not sensed.  If alive is sense in all directions, 
no transition condition is satisfied and the cell will remain in 
its current state.  Cells in the body state will keep dividing as 
long as there is some direction from which they do not sense 
alive and they sense at least one unit of the radius chemical.  
Hence, the body cells will fill in the sphere. 

When an initial configuration of one cell in state center is 
given as shown in Figure 4, the program develops a sphere 
of radius 10 units.  This program has simple fault tolerance 
capabilities.  The sphere will regenerate no matter how many 
of the body cells are killed as long as the center cell 
continues to function.  Notice that this program does not 
explicitly mention the actions to be taken when a failure 
occurs. Instead, recovery is intrinsic in the way the program 
is written in terms of local interactions through sensed 
chemicals.   

The performance of the development and regeneration of the 
sphere program is shown in Figure 5.  In this graph, the 

state center { emits (alive, 1)  

  diffuses (radius, 10) 

 transitions (alive from dir < 1) -> (center, body) in dir; } 

  

state body { emits (alive, 1) 

 transitions (alive from dir < 1) & (radius > 1) -> (body, body) in dir; } 

Figure 3. Sphere program. 

   

 
 Initial Configuration    Step 1 (2 cells)        Step 5 (32 cells) 

   

                   

                 Step 10 (353 cells)              Step 20 (3978 cells)            Step 30 (5257 cells) 

Figure 4.  Sphere Growth. 



  

sphere’s ability to withstand any degree of damage to its body 
and recover quite quickly from it is shown by plotting sphere 
quality against number of steps for different degrees of 
damage.  Sphere quality is measured as (n1 – 2n2)/N where  

  n1 = # of cells in formed sphere lying within ideal sphere   
  n2 = # of cells in formed sphere lying outside ideal sphere 

  N = # of cells in ideal sphere which is (4/3)πr3 

A sphere of radius 10 grows within 30 steps.  Regeneration of 
sphere after a damage of 66%-99% of the body cells takes 
between 9 and 15 steps. 

To produce a more robust sphere, we need a mechanism for 
regenerating the sphere even when the center cell is killed.  
One approach is to create a core of cells around the center 
which will regenerate a center cell if the radius chemical is 
not sensed.  The robust sphere program requires one extra 

state and three addition transition rules.  It will regenerate 
the sphere as long as the center cell and all core cells are not 
killed simultaneously. 

Cube 

Cubes do not appear often in nature, but can be constructed 
using our model.  It is not surprising, however, that the 
program to generate a robust cube is more complex than that 
required to produce a sphere. 

The program shown in Figure 6 uses four states and nine 
transition rules to generate a cube from the initial condition 
of one cell of state A located where the front bottom left 
corner of the cube will be.  The initial cell differentiates into 
B, C, and D cells which divide in the x, y, and z directions 
respectively.  The B cells traverse horizontally in a line, 
dividing into C and D cells which subsequently divide to fill 
the vertical and depth directions.  As in the sphere programs, 
the alive chemical is emitted so cells can sense the presence 
or absence of neighbors in each direction.  Chemical 
diffusion is used by the cube cell program as well to restrict 
the dimensions of the cube: chemicals X, Y, and Z for the 
respective directions.  The diffused chemicals also implicitly 
locate damaged areas of the cube and instruct the B, C, or D 
cells to grow in the appropriate direction that will heal it.  
With our current simulator, cells are oriented in absolute 
space; taking advantage of relative cellular orientations 
could reduce the number of states and transitions needed.  

The simple cube program is robust to failures of all cells 
except the initial A cell.  If that cell stops diffusing the X 
chemical, the B horizontal cells will fail to regrow.  To 
improve robustness, we introduce specialized self-healing 
cells to recover critical cells.  The robust cube program 
generates a cube in the same manner as above, but includes 

 

Figure 5.  Sphere recovery. 

state A { emits (alive, 1) 

 diffuses (X, 8), (Y, 8), (Z, 8) 

 transitions 

  (alive from X+ < 1) -> (A, B) in X+; 

  (alive from Y+ < 1) -> (A, C) in Y+; 

  (alive from Z+ < 1) -> (A, D) in Z+; } 

 

state B { emits (alive, 1) 

 diffuses (Y, 8), (Z, 8) 

 transitions 

  (alive from X+ < 1) & (X > 0) -> (B, B) in X+; 

  (alive from Y+ < 1) -> (B, C) in Y+; 

  (alive from Z+ < 1) -> (B, D) in Z+; } 

 

state C { emits (alive, 1) 

 diffuses (Z, 8) 

 transitions 

  (alive from Y+ < 1) & (Y > 0) -> (C, C) in Y+; 

  (alive from Z+ < 1) -> (C, D) in Z+; } 

 

state D { emits (alive, 1) 

 transitions 

  (alive from Z+ < 1) & (Z > 0) -> (D, D) in Z+; } 

 

Figure 6. Simple cube program. 

 

 



  

additional self-healing mechanisms to recover from failures of 
key cells.  Instead of relying on a single corner cell, each of 
the corners of the cube is differentiated into a set of similar 
states that diffuse regulator chemicals.  Regulation chemicals 
control division and specialization into the eight corner states 
as the cube develops.  They also mutually inhibit, such that 
one in the presence of any of the neighboring corner’s states 
has no effect.  Should any corner cell fail, its absence will be 
detected and the nearby cells will recreate the corner.  The 
regulation chemical secreted by adjacent corners controls the 
regrowth of corner cells.  Hence, the cube will recover from 
any failure that does not kill at least four corners 
simultaneously. 

Mesh 

Figure 7 shows a program for producing a three-dimensional 
regular mesh structure.  As long as a corner survives, the 
mesh will continue to heal and grow.   Because of the final 
segment transition that results in a die command, segment 
cells that are not connected to a corner will commit suicide.  
The mesh program could be used to construct an overlay 
network.  Hence, killing cells that are not able to 
communicate with a corner cell conserves resources. 

Summary 

These experiments show that many unreliable cells running a 
single program and having no global knowledge of position 
or identification and without using global communication can 
organize themselves and create desired structures using 
chemical diffusion and cell induction.  Although the 
structures we have built may not be intrinsically useful, 
building simple shapes provides a good experimental platform 
for exploring the expressiveness, scalability and robustness of 
our programming model. 

5. A Framework for Building Systems 
While it is interesting to observe properties of cell programs 
applied to structure growing tasks, our real interest is in 
building systems that perform useful functions in a robust 
and scalable way.  By applying this model to building 
systems, we endeavor to create distributed systems that 
achieve many of the desirable properties commonly found in 
biological systems such as reliability, scalability, self-healing 
and survivability.  Our programming paradigm requires 
programmers to design systems by engineering the local 
interactions that produce the desired global functionality.   

To implement real systems with current technology, we need 
ways of emulating cell actions (including division) and 
communication.  It is hard to produce physical divisions, but 
easy to create new processes.  We can model division by 
finding a suitable host and starting a new process on that 
host.  Communication by diffusion and emission 
corresponds well to networking.  In a wireless network, a 
single transmission diffuses over an area; to achieve longer 
diffusions, a transmission may be repeated over multiple 
hops. 

To create an application, a programmer must describe the 
desired behavior in terms of actions in response to current 
state and received messages.  If the programmer can provide 
a self-awareness and activation mechanism (in the form of 
status and control variables), define the local neighborhood 
within which each cell communicates and provide a 
mechanism for diffusing chemicals (i.e., delivering 
messages) to cells within that local neighborhood, then 
applying the cell based programming approach reduces to 
plugging a piece of software that follows the transitions of a 
cellular automaton and acts accordingly.   

5.1 Distributed Wireless File Service 
We illustrate our programming paradigm with DWFS, an 
application layer peer-to-peer file sharing service.  It is 
designed to run on wireless nodes that may be mobile.  All 
nodes are identical and have low power and low network 
transmission and reception capacity.  The radio transmission 
and reception associated with the wireless communication is 
expensive with respect to energy.  As with most applications, 

state corner { 

 emits (A, 6), (alive, 1) 

 transitions 

  (alive from dir < 1) -> (corner, segment) in dir; } 

 

state segment {  

emits (alive, 1)  

forwards (A, A - 1); 

 transitions 

  (A from dir > 1.5) & (alive from opposite(dir)) > 0  

       -> (segment); 

  (A from dir > 1.5)  

       -> (segment, segment) in opposite(dir); 

  (A > 0.1) -> (corner); 

  (A < 0.1) -> die; } 

Figure 7. Mesh program. 

 



  

the DWFS should balance the conflicting goals of reliable 
functionality and network longevity.  New nodes can be 
added and nodes can enter and leave the network at any time.  
The design should scale to very large networks.   

Our implementation is intended as a proof of concept to show 
that applications built using our programming model have 
useful robustness properties, rather than as a fully functional 
and useful file sharing service.  Hence, we limit our 
implementation to immutable files where once a file is 
published it cannot be modified.  The only two operations are 
read (file) and store (file).  Files are identified using a number 
(which could correspond to a URL).  A realistic file sharing 
service would need to also support other operations such as 
deleting and updating a file. 

5.2 Protocol 
The DWFS protocol provides mechanisms for requesting and 
publishing a file.   

File Request.  The file request protocol is shown in Figure 
8(a).  A client sends a file request in the form of a broadcast 
with the file identifier.  This is similar to the cell-
programming notion of diffusion.  All the servers within the 
one-hope transmission range receive this message.  The server 
on a node that contains the file responds to this request by 
transmitting the requested file.  Note that requests are not 
forwarded: a server node that receives a request for a file it 
does not have simply ignores the request.  Our publication 
protocol is designed to ensure that there is a high probability 
that at least one node within the transmission distance will be 
able to respond to a request for a published file. 

File Publication.  The file publication protocol is shown in 

Figure 8(b).  When a new file is published, the publishing 
server diffuses two chemicals: one represents the inhibit 
message and the other represents the replicate message.  The 
inhibit chemical is diffused over a smaller range than the 
replicate chemical.  Nodes that receive the replicate chemical 
but not the inhibit chemical will replicate the file.  Each 
node that replicates the file in turn diffuses both the 
chemicals as the original publisher did.  This distributes the 
file throughout the network and builds up the required 
redundancy necessary for fault-tolerance.  Given sufficient 
density of nodes, we have high confidence that there will be 
at least one copy of the file within the broadcast range of the 
inhibit message of any node.  File propagation occurs when 
nodes replicating the file in turn publish it to their neighbors. 

5.3 Handling Failures 
Failures include movement or death of a node, breaking of a 
network path (even when a file operation is in progress), 
failure of a significant percentage of the nodes, non-
simultaneous failure of all nodes caching a particular file.  
Failure handling in DWFS is inherent in the way the system 
is programmed.  Failures are sensed by the absence of 
chemicals and servers react accordingly.  Nodes periodically 
emit the inhibit and replicate chemicals for each file they 
store.  All nodes that receive a particular publication’s 
replicate chemical but do not receive the corresponding 
inhibit chemical will replicate the files that node holds.  If 
that node fails, it will stop transmitting both the inhibit and 
replicate chemicals.  The replicating nodes will continue to 
transmit those chemicals, and now a new node in the region 
previously covered by the failed nodes inhibit signal is likely 
to start replicating the file. 

 Node containing 
file (Server) 

Node 

Node requesting 
file (Client) 

Response(file) 

Request (file) 

 

Node 
publishing file 

(Server) 

Node replicating file  Replicate (file) 

Inhibit (file) 

Node inhibiting 
file  

 

(a)       (b) 

Figure 8.  DWFS Protocols.  (a) File request and response.  (b) File publication. 



  

The other type of failure to consider is an overload.  When a 
node receives more requests to store files and it is running out 
of storage space, it initiates an asymmetric cell division.  The 
subsequent publication requests now cause transfer of the file 
onto the new node.  A node may periodically rate files based 
on access frequency and transfer half of the frequently used 
files onto a different close-by server in order to reduce traffic 
on itself.   

5.4 Evaluation 
Our evaluation focuses the robustness of file availability 
provided by DWFS in the face of individual node failures.  
File availability is the ratio of the number of successful file 
requests to the total number of file requests.  In our 
experiments, every request is for a published file, so an ideal 
system would achieve 100% file availability. 

Figure 9 shows the degradation of file availability with 
increasing node speed with constant initial node energy of 
100.  If a node does not receive a file after a timeout, it 
retransmits the request.  In the simulation we varied both the 
timeout interval from 0.5s to 2.5s and the number of 
retransmissions from 0 to 3.  These graphs indicate that with a 
few retransmissions, we can achieve high file availability even 
for nodes that move rapidly relative to their broadcast range. 

Figure 10 shows the variation of file availability over time for 
different values of initial energy.  File availability degrades 
only gradually provided the nodes have sufficient energy.  For 
example, with initial energy = 50, even after 75% of nodes 
have expired the file availability exceeds 90%. 

Our results show that by appropriate choice of timeouts and 
retransmission attempts, we can achieve a high degree of file 
availability even with nodes that move at high speeds and fail 
due to loss of battery power.  As larger numbers of nodes fail, 
file availability degrades gradually.  Our design incorporates 
the biological metaphor of chemical diffusion and sensing 
chemicals (inhibit and replicate) to achieve a robust design 
with a simple and flexible program. 

For our experiments, sending or receiving a request or 
response uses 5 energy units, so with initial energy = 100, a 
node will expire after 10 messages.  At each time step, each 
node has a 1% probability of requesting a file. 

Experiments were also conducted to study the behavior of 
DWFS using networks of different densities. Nodes are 
randomly distributed within an area of size 2km by 2km and 
the node density was varied from 1 to 20 within each 
broadcast area. Figure 11 shows the variation of file 
availability over different values of network density. It was 
observed that after reaching a critical network density of 
about 6 nodes per broadcast area, the file availability 
improves sharply and becomes very close to the maximum at  
a density of 8. Shivendra et al. showed experimentally that in 
packet radio networks, the local neighborhood should at 
least be 5 to ensure connectedness [Philips98]. In this 
experiment DWFS is able to maintain high file availability at 
network densities close to this critical value. 

6. Related Work 
The very first engineers were inspired by biology, as have 
been thousands of mythical (e.g., Daedalus) and real (e.g., 
Leonardo DaVinci) engineers since.  John von Neumann 
studied cellular automaton [vonNeu53] and Alan Turing 
studied morphogenesis [Turing52], although he did not draw 
analogies between biological programs in genes and 
computer programs [Saunders93].  More recently, several 
active research areas in computer science have emerged 
inspired by biology including evolutionary computation and 
swarm intelligence.   

Evolutionary computation (also known in various forms as 
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genetic algorithms and genetic programming) attempts to 
apply principles of biological evolution to produce computer 
programs by devising a fitness function that evaluates how 
well a program satisfies a goal, breeding successive 
generations of programs using various combination and 
mutation strategies, and selecting survivors based on how 
well programs satisfy the fitness function.  Evolutionary 
computation has been demonstrated to produce solutions to 
complex problems that improve on the best human developed 
solutions [Koza99].  Our work differs from this in that we are 
not using evolutionary approaches to develop solutions, but 
rather developing solutions by observing the solutions nature 
has evolved.  The key advantage is that since the solutions we 
produce are designed by humans, we are likely to have 
designs that are easier to understand, modify and reason 
about. 

Embryonics [Mange96, Mange98] is an architecture for 
hardware inspired by biological development.  A system is 
implemented as a grid of artificial cells implemented by 
electronics.  Cells compute their location within two-
dimensional space and differentiate their behavior based on 
that position.  Embryonics assumes cells continuously 
conduct a self-checking test and issue a failure signal when 
the test fails.  Systems built using the embryonic architecture 
exhibit self-healing based on coordinates being automatically 
reassigned when faults are detected based on inter-cell 
communications [Stauffer01].  Ortega and Tyrrell analyzed 
the reliability of embryonic systems [Ortega99] and 
concluded that simple design combined with automatic 
reconfiguration provided advantages in enabling a high 
probability of reliable operation in the presence of failures. 

Swarm intelligence looks primarily to social insect behaviors 
for inspiration [Bonabeau99].  Biologically inspired 
algorithms have been developed for many problems including 
network routing [DiCaro98a, DiCaro98b, Scho96, White97], 
distributed intrusion detection and response [Fenet01], graph 
exploration [Yano01], terrain coverage [Koenig01] and peer-
to-peer applications [Mont01].  Fisher and Lipson proposed 
using techniques based on social insects to design survivable 
systems [Fisher98].  As with our work, all of these use 
independent agents interacting in a common environment to 
achieve global properties.  Our work differs in that by using 
cells as the inspiration for our computing units instead of 
complex organisms like insects, our designs assume more 
limited devices and place more emphasis on the local 
interactions instead of long distance and time interactions 
through an environment.  Second, instead of focusing on 
optimization problems, we are interested in controlling and 
reasoning about behavior produced through local interactions. 

A related approach is amorphous computing [Abel00], which 
considers approaches for programming a medium of randomly 
distributed computing particles.  The Growing Point 
Language (GPL) [Coore98], Origami Shape Language (OSL) 
[Nagpal01], and Paintable Programming [Butera02] are 
examples of programming mechanisms for producing global 
self-organization using simple local coordination.  As with 
our work, the challenge is to produce programs that generate 
predictable behavior with a locally unpredictable and non-
traditional programming model.  Because the underlying 

execution environment is inherently redundant and 
decentralized, robustness is practically inevitable if 
programs are constructed in the right way.   

Researchers have also studied more formal models of 
computation based on nature.  The chemical abstract 
machine [Berry90] is an abstract machine based on the 
chemical metaphor.  States of a machine are chemical 
solutions where floating molecules can interact according to 
reaction rules derived from lambda calculus.  Solutions can 
be stratified by encapsulating sub solutions within 
membranes that force reactions to occur locally.  We have 
not yet developed a formal semantics for our programming 
model.   

7. Conclusions 
Nature has evolved clever and robust solutions to 
challenging engineering problems.  By learning from those 
solutions, we can design distributed systems that have 
similar robustness properties.  In the future, systems with 
very large number of often-unreliable agents will be 
deployed.  These systems will need to operate robustly 
without manual intervention and be able to adapt to a wide 
variety of failures.  A biological approach to programming 
these applications offers the promise of achieving 
robustness, scalability and survivability from small and 
simple programs. 

Acknowledgements 
This work has been funded in part by the National Science 
Foundation through NSF CAREER (CCR-0092945) and 
NSF ITR (EIA-0205327) grants.  The authors thank Lance 
Davidson, Salvatore Guarnieri, Qi Wang, and Brad Zhang 
for their contributions to this work. 

References 
[Abel00] H. Abelson, D. Allen, D. Coore, C. Hanson, G. 

Homsy, T. Knight, R. Nagpal, E. Rauch, G. Sussman 
and R. Weiss, Amorphous Computing, 
Communications of the ACM, Volume 43, Number 5, 
p. 74-83. May 2000. 

[Berry90]  G. Berry and G. Boudol, The Chemical Abstract 

Machine. ACM Symposium on Principles of 
Programming Languages, January 1990. 

 [Bonabeau99] Eric Bonabeau, Marco Dorigo, Guy 
Theraulaz. Swarm Intelligence: from Natural to 

Artificial Systems, Santa Fe Institute, Oxford 
University Press, 1999. 

[Butera02] William Butera. Programming a Paintable 

Computer. MIT Media Lab, PhD Thesis 2002. 
[Coore98] Daniel Coore. Botanical Computing: A 

Developmental Approach to Generating Interconnect 

Topologies on an Amorphous Computer. MIT PhD 
Thesis. December 1998. 

 [DiCaro98a] Gianni Di Caro, AntNet: Distributed 

Stigmergic Control for Communications Networks, 
Journal of Artificial Intelligence Research 9 (1998): 
317-365. 



  

[DiCaro98b] Gianni Di Caro. Two Ant Colony Algorithms for 

Best-effort Routing in Datagram Networks. 10th 
IASTED International Conference on Parallel and 
Distributed Computing and Systems (PDCS’98). 
IASTED/ACTA Press, 1998. 

[Fenet01] Serge Fenet, Salima Hassas. A distributed Intrusion 

Detection and Response System Based on mobile 

autonomous agents using social insects communication 

paradigm. First International Workshop on Security of 
Mobile Multiagent Systems, 2001. 

[Fisher98] David A. Fisher and Howard F. Lipson. Emergent 

Algorithms - A New Method for Enhancing 

Survivability in Unbounded Systems. Proceedings of the 
Thirty-second Annual Hawaii International Conference 
on System Sciences. 1998. 

[George02] Selvin George, David Evans and Lance Davidson. 
A Biologically Inspired programming model for self 

healing systems. Workshop on Self-Healing Systems 
November, 2002. 

[Koenig01] Sven Koenig, B. Szymanski and Y. Liu. Efficient 

and Inefficient Ant Coverage Methods. Annals of 
Mathematics and Artificial Intelligence. Vol 31, Issue 
1/4. 2001.  

[Koza99] Koza, John R., Bennett III, Forrest H, Andre, 
David, and Keane, Martin A. 1999. Genetic 

Programming III: Darwinian Invention and Problem 

Solving. San Francisco, CA: Morgan Kaufmann 
Publishers. 

[Mange96] D. Mange, M. Goeke, D. Madon, A. Stauffer, G. 
Tempesti and S. Durand.  Embryonics: A New Family 

of Coarse-Grained Field-Programmable Gate Arrays 

with Self-Repair and Self-Reproducing Properties.  In 
Toward Evolvable Hardware, Springer Lecture Notes 
in Computer Science, Volume 1062, 1996. 

[Mange98] D. Mange, A. Stauffer, G. Tempesti.  Embryonics: 

A Macroscopic View of the Cellular Architecture.  In 
Evolvable Systems: From Biology to Hardware, M. 
Sipper, D. Mange, A. Pérez-Uribe, editors, Springer 
Lecture Notes in Computer Science Volume 1478, 
1998. 

[Mazzotta94] Mary Y. Mazzotta. Nutrition and wound 

healing. Journal of the American PodiatricMedical 
Association. Volume 84, Number 9, p. 456–62. 
September 1994. 

[Mont01] Alberto Montresor. Anthill: a Framework for the 

Design and Analysis of Peer-to-Peer Systems. 4th 
European Research Seminar on Advances in Distributed 
Systems. May 2001. 

[Nagpal01] Radhika Nagpal, Programmable Self-Assembly: 

Constructing Global Shape using Biologically-inspired 

Local Interactions and Origami Mathematics, PhD 
Thesis, MIT Department of Electrical Engineering and 
Computer Science, June 2001. 

[Ortega99] C. Ortega and A. Tyrrell.  Self-Repairing 

Multicellular Hardware: A Reliability Analysis.  
Proceedings of the 5th European Conference on 
Artificial Life.  September 1999. 

[Pearson01] Helen Pearson, The regeneration gap, Nature 
Science Update. 22 November 2001. 

[Philips98] Philips, Shivendra, Panwar and Tatami, 
Connectivity properties of a packet radio network 

model, IEEE Transactions on Information Theory, 
35(5), Sept 1998 

[Saunders93] P. T. Saunders. Alan Turing and Biology. 

IEEE Annals of the History of Computing, 15(3):33-
36, 1993. 

[Scho96] R.Schoonderwoerd, O.Holland, J.Bruten and 
L.Rothkrantz. Ant-based load balancing in 

telecommunications networks. Adapt. Behav. 5 
(1996): 169-207. 

[Sipper97] M. Sipper, E. Sanchez, D. Mange, M. Tomassini, 
A. Pérez-Uribe, A. Stauffer. A Phylogenetic, 

Ontogenetic, and Epigenetic View of Bio-Inspired 

Hardware Systems.  IEEE Transactions on 
Evolutionary Computation, Vol. 1, No 1, April 1997. 

[Stauffer01] A. Stauffer, D. Mange, G. Tempesti and C. 
Teuscher.  A Self-Repairing and Self-Healing 

Electronic Watch: The BioWatch.  Springer Lecture 
Notes in Computer Science Volume 2210, 2001. 

[Turing52] Alan Turing. The Chemical Basis of 

Morphogenesis, Philosophical Transactions of the 
Royal Society B (London). 1952.  

[vonNeu53] John von Neumann, Theory of Self-

Reproducing Automata. University of Illinois Press, 
1966 (Originally published in 1953). 

[White97] T. White. Routing with swarm intelligence. 
Technical Report SCE97-15, Systems and Computer 
Engineering Department, Carleton University, 
September, 1997. 

[Wolpert02] Lewis Wolpert, Rosa Beddington, Peter 
Lawrence, Thomas M. Jessell, Principles of 

Development, Oxford University Press. 2002. 
[Yano01] Vladimir Yanovski, Israel A. Wagner, Alfred M. 

Bruckstein. Computer  Vertex-Ant-Walk – A robust 

method for efficient exploration of faulty graph. 

Annals of Mathematics and Artificial Intelligence. 
Volume 31, Issue 1/4. 2001. 

 

 


