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Why is computer security so hard? Why do virus scanners not work?

The question of how to detect malicious programs seems like a practical one, but at its core depends
on the fundamental nature of general purpose computers and deep theoretical questions about what
computers can and cannot do. This essay starts by formalizing the question of what it means to
detect a virus. Then, we discuss theoretical results that show solving this (and most other important
computer security problems) is impossible for general purpose computers. But impossible doesn’t
mean hopeless — it just means we have to redefine our problems and approaches, and aim for
solutions that work well in practice, even if nothing can work in theory.

1 Virus Detection

Although there are many different kinds of malicious programs, we limit our focus to a narrow
and precise type of malware known as a virus. The notion of a virus, in computing, is inspired by
biological viruses that infiltrate cells of other organisms and hijack their machinery for duplicating
themselves. Similarly, a computer virus is a program that spreads itself by infecting other programs.
Computer viruses have been studied formally since Fred Cohen’s pioneering work in the 1980s [1, 2].

We use a limited, but precise, definition of a virus:

A virus is a computer program that when executed will copy its own code into
another program.

Many other definitions would be reasonable, but to talk precisely about virus detection we need a
somewhat formal definition of what a virus is. This definition simplifies a lot of the real issues in
malware detection, and does not capture many other malicious things a program could do. Actually
deciding what program behaviors are malicious is highly subjective. For example, a program that
replaces advertisements in web pages may be malware, may be an ad blocker behaving as the machine
owner desires, or may be a required trade-off the user knowingly accepts. For our purposes, though,
we don’t need to resolve the tricky issues that would come from defining malware as a program
that does something the user doesn’t want. As it turns out, we’ll see that the impossibility of virus
detection applies to other definitions as well.

The goal of a virus detector is to take as input a sample and produce as output a Boolean that indicates
if that sample is a virus. If a sample is a virus—that is, it exhibits the virus behavior of copying its
code into another program—the virus detector should output True; otherwise, the detector should
output False. To formalize this, we define the Virus Detection Problem:

Virus Detection Problem
Input: A description of a program.

Output: If the input program behaves like a virus (running it can infect other files)
output True. Otherwise, output False.

A perfect virus detector would produce the correct output for all input program descriptions, and
would always finish. Unfortunately, even with a simplified and precise definition of a virus, such a
virus detector is not just hard to build, it is theoretically impossible! To understand why, we need to
step back and understand more deeply what a computer is.
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2 Universal Machines

What is so special about computers?

Humans have been building machines for thousands of years. The earliest machines amplified the
physical abilities of humans and animals. Levers, pulleys, wheels and axles made it possible for us to
lift heavier objects and move them more efficiently. As humanity progressed, we learned to build
increasingly complex and adaptable machines, leveraging power from animals, wind, and water, and
developing ways to control the function of machines by adjusting levers and switches.

Although these machines were powerful and versatile, none of these machines were universal. A
universal machine is a machine that can simulate any other machine. If we are talking about machines
that transform physical objects, universal physical machines cannot be built. But in the abstract world
of information, universal machines are everywhere [4].

In a practical sense, computers differ in the ways they get input (e.g., from a touchscreen, keyboard,
buttons, network, or camera) and how they provide output (e.g., signals to a graphical display, network
messages, flashing lights). They also differ in how fast they can operate and how much memory
they have. Aside from these, though, all computers are deeply equivalent. The processor in your
microwave can simulate your smartphone or the world’s most powerful supercomputer, and vice
versa. The only difference is how long it takes and how large a problem they can solve before running
out of memory.

The reason all computers are so universally identical is because they run programs. A program is
just a list of instructions, and all programs can be expressed using a very limited and simple set of
instructions. This seems very surprising at first, especially because of all the effort that goes into
designing processors that can execute programs efficiently and all the bloviating about the advantages
and disadvantages of different programming languages. But, all we need to execute any program is
memory and control.

For memory, need a way to store a value — this could be any element from a finite set, like a letter
or digit. It would be enough to just be able to store one of two possible values. In computing, the
two distinguished values are denoted as the bits, 0 and 1. Then, we can put together bits from many
locations to represent larger numbers.

To keep things simple, though, let’s assume each location can store an arbitrarily large number
and is initialized to hold the value 0. Memory in practical computers is similar to this, except the
important difference is that in an idealized abstract model the number of locations is infinite, wheras
any computer that can actually be physically constructed has a limited number of memory locations.

The stored values are in locations that can be identified using a natural number. We’ll assume two
simple instructions for updating the values stores in memory: increment [location] and decrement
[location]. The increment instruction updates the value stored in the location parameter by one; the
decrement instruction decreases it by one. The [location] parameter is an indirection: the location
update is the location identified by the value in location. For example, if the initial value in all
locations is 0, the instruction increment [0], will increment the value stored in the location identified
by the value in location 0 (which is currently 0). Executing the same instruction again, would
increment the value stored in location 1. This ability to access memory indirectly is important—
without it, each instruction in a program could only access a fixed memory location; with it, a single
instruction can be used to access any location.

For control, we need a way to execute instructions and to decide which instruction to execute next
based on a value in memory. The program is just a list of instructions, so we can number them
1,2, . . . ,N. Normally, we just execute the next instruction, starting with instruction 1, then instruction
2, and so on. That’s not enough for interesting programs, though, we need a way to make decisions
and keep going.

Adding one simple control instruction is sufficient: ifzero [location] target . If the value stored in
location location is 0, it jumps to the target instruction as the next instruction to execute instead of
continuing normally; otherwise, the instruction does nothing and execution proceeds to the following
instruction. As with the store instruction, the location value is an indirect reference: the decision to
jump is based on the value in the location given by the location parameter.
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Importantly, the jump target can be before the current instruction. This means we can have backward
jumps, and execute the same instructions over and over again. This enables short programs to produce
infinitely long executions. For example, the program

1. ifzero [0] 1 LOOPFOREVER

runs forever, executing instruction 1 over and over again since the initial value in memory location 0
is 0.

Practical computers have much larger and more complex instruction sets than these three simple
instructions, including instructions for performing mathematical operations like floating point division
and for moving values around memory in various ways. But, all of these instructions could be
simulated with a sequence (possibly a very long one!) of instructions in our simple three-instruction
language.1

We won’t attempt to provide a full proof that our simple instructions are enough to simulate every
computer, but to build our intuition let’s consider how to simulate a general addition instruction with
our two instructions. Our goal is to simulate the instruction, add [location1] [location2], which stores
in location1 the sum of the values currently in location1 and location2.

Here’s a program that simulates an add instruction for locations 0 and 1 using only increment,
decrement, and ifzero:

1. increment [2] Make sure location 2 holds a non-zero value.
2. ifzero [1] 6 If the value in location 1 is zero, we’re done.
3. increment [0] Add one to the value in location 0.
4. decrement [1] Subtract one from the location in location 1.
5. ifzero [2] 2 Keep going - jump back to instruction 2.
6. ... Finished addition, continue

Once we have a way to simulate an add instruction, we can also simulate multiplication (just repeated
addition), and build up instructions for any operation.

We can also write a program that can interpret other programs. A universal machine is a machine
that can simulate any other machine. With the right sequence of instructions, a machine that can
execute our three simple instructions would be sufficient. The universal machine takes as input a
description of a machine and its input, and simulates what the described machine would do on the
given input. So, to define a universal machine we would need to design a way to represent programs
in our instruction language using number values that would be stored in memory. The universal
machine would need to interpret those stored instructions in its input, and use the rest of memory to
simulate the machine describe in the input.

A universal machine produces as output the same output that the simulated input machine would have
produced. With a universal machine, the program that provides the instructions for the machine to
execute is just another part of its input.

The notion of a universal machine goes back to Gottfried Wilhelm Leibniz in the 1600s [3], but was
formalized and clearly understood by Alan Turing in the 1930s [8]. Turing developed a formal model
of a computer and showed how to construct a universal machine using that very simple model. Turing
developed his model in the 1930s, before anything resembling modern computers was available, so
the computer he was modeling was a human doing computation with pencil and paper.

Instead of the infinite random access memory we assumed, Turing’s model used a simpler infinite
one-dimensional tape for working memory. On each step, the machine could read one square on the
tape, and make a decision about what to do next following simple rules based on the symbol that was
read from the tape and the current state of mind. The state of mind keeps track of what the machine is
doing, but is one of a finite set of possible states. It could be represented by a natural number, with
some maximum possible value.

Based on the state and symbol read from the tape, the rule determines what the machine does next:
it writes a symbol on the tape, moves one square left or right, and updates the state of mind. This
model has come to be known as a Turing Machine, and is still widely used today.

1We don’t actually even need three instruction types. Several single-instruction programming languages have
been proposed that are equally powerful [6].
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Turing showed that it was possible to design a machine that could take as input the description and
input for any machine, and simulate what the described machine would do on that input. This is a
universal machine — one machine that can simulate every machine! We could construct a Turing
Machine that simulates our three-instruction computer, or construct a three-instruction computer to
simulate a Turing Machine.

3 Undecidability of Virus Detection

What can computers do?

Computers seem so powerful they can do just about anything, and the notion of universal machines
means even a simple computer can simulate every other computer. There are some problems no
computer can solve, however. These problems are labeled undecidable.

The most famous undecidable problem is the Halting Problem, introduced by Turing, which asks if a
program will run forever:

Halting Problem

Input: A description of a program.
Output: If the input program halts, output True. Otherwise, output False.

Some programs (such as the one-instruction LOOPFOREVER program introduced earlier) clearly run
forever; others (such as any program without any backwards jump) always eventually finish. But, to
solve the Halting Problem, we need a machine that can determine for any input program if it will run
forever.

One way we might try to solve this is to simulate the input program, and just see if it ever terminates.
With a universal machine, we know we can simulate any input program, and if the simulated program
terminates output True. But, how long should we keep simulating the program to know that it will
never terminate? We could try running it for a million steps, but there is a program that terminates
after 1,000,001 steps. This is true for any number of simulated steps; however many steps the
simulator runs for, there is a program that terminates after one more step.

Another strategy might be to observe the state of the simulated machine. If it ever repeats a complete
configuration, we know the simulated machine will run forever. Repeating a complete configuration
means the entire state of the simulated machine is identical to a previous configuration. For the
three-instruction the configuration is the contents of every memory location and the current instruction
to execute. For the Turing machine, the configuration is the state-of-mind, location of the tape head,
and the complete contents of the tape.

Since our machine’s rules are deterministic, and depend only on the simulated machine configuration,
if the same configuration is reached it will do exactly what it did the previous time. This means
it will eventually return to the same configuration again, repeating forever. Thus, if we ever see a
configuration repeat in the simulated machine we know it will never terminate.

But, there are machines that run forever without ever repeating a configuration. A simple example is
a machine that keeps moving right (on the infinite tape):

(S,−)→ (S,write 0,move Right)

This is analogous to our Loop-Forever program for the three-instruction model computer. It describes
a Turing Machine that starts in state-of-mind S, and has one rule that says to write a 0 on the tape,
move right, and transition to stay in state S. So, on the simulated infinite tape it will run forever, but
never repeat the same configuration since it keeps writing more 0 symbols on the tape.

These examples do not prove that there is no program that solves the Halting Problem, just show that
two obvious strategies for doing so both fail. To prove there is no solution, we need to show that all
possible ideas for solving it fail. Proving impossibility seems impossible, since there are infinitely
many possible programs to consider. But, Turing proved that there is no program that can solve the
Halting Problem, because if such a program actually existed it would lead to a logical contradiction.

The key idea is to consider what happens when a program runs on a description that includes itself.
Since our machine is universal, we know that it can simulate any program description, including
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its own. Suppose there were some program, HALTS, that solves the Halting Program. That would
mean that for any input, P, that describes a program, the result of running HALTS on input P is
True if P terminates and False if P runs forever. Suppose we run HALTS on an input that is its own
self-description. The result of running HALTS on its own description should be True, since if HALTS
solves the Halting Problem, it terminates on every input. This is self-referential, but no contradiction
yet since outputting True on its own description is perfectly reasonable.

To get a contradiction, we need something a bit more complex, but building on the same idea. The
trick is to create a program whose self-described behavior is the opposite of what it should be:

CONTRADICTHALTS: if (running HALTS on description of CONTRADICTHALTS outputs True) then
LOOPFOREVER else Halt

If CONTRADICTHALTS terminates, running HALTS on an input that is the description of CONTRA-
DICTHALTS should output True. This means the then-branch should be taken, which loops forever.
So, CONTRADICTHALTS does not terminate, and running HALTS on an input that is a description of
CONTRADICTHALTS should have output False. But if running HALTS on input that is a description
of CONTRADICTHALTS outputs False, the else-branch should execute, which terminates. This means
CONTRADICTHALTS terminates, and HALTS should have output True.

Neither result makes sense! Encountering a logical paradox like this can only be resolved by
concluding that one of the steps to reach the paradox must not exist. The paradox results from the
assumption that HALTS exists, where HALTS is a program that solves the Halting Problem.

In a careful proof, such as the one in Turing’s paper [8], it would be necessary to show that everything
else is sensible and does exist to reach the conclusion that the one new thing we assumed to reach the
contradiction must not exist. With our informal argument, perhaps the thing that does not exist is a
logical if that branches on the output of HALTS. To produce a more formal argument we would need
to show how to construct CONTRADICTHALTS explicitly. We won’t go to that level of detail here,
but instead will be satisfied with the argument that everything else used in the argument seems likely
to exists, and the only uncertainty concerns the existence of HALTS.

Thus, we can conclude that no program that solves the Halting Problem exists. This means there is
no program HALTS that can correctly output True for every input that is a description of a program
that terminates, and False for every input that is a description of a program that runs forever. Any
candidate for HALTS must, for some input, either give the wrong output or fail to give any output.
Hence, the Halting Problem is undecidable.

The undecidability of the Halting Problem doesn’t just mean there is no program that can solve the
Halting Problem, it also means that is no program to solve almost any interesting question about a
program, including the Virus Detection problem we started with.

To see this, we use a technique, used frequently in computer science, known as a reduction proof. The
idea is to show that if we could construct a B, we could use B to construct an A, but since we already
know that A does not exist, so B cannot exist since it would allow us to build something impossible.
In this case, A is a program that solves the Halting Problem, HALTS. We know HALTS does not exist
because the Halting Problem is undecidable. With the reduction proof, we’ll show that if we have a
Virus Detection program, DETECTVIRUS, we could use it to construct HALTS, so DETECTVIRUS
must not exist either.

The main idea is to construct a machine that first executes any input program P, and then behaves
like a virus:

MAKEVIRUS(P) = P; INFECTFILE.

Here, INFECTFILE is a program that exhibits virus behavior. Then if there exists a program, DE-
TECTVIRUS, that solves the Virus Detection problem, we can use it to solve the Halting Problem:

HALTS(P) := not(DETECTVIRUS(MAKEVIRUS(P)))

That is, we could check if any program described by P halts but using DETECTVIRUS to check if the
program that simulates P followed by performing an infection is a virus. If P describes a program that
halts, then MAKEVIRUS(P) exhibits virus behavior since P eventually halts and then INFECTFILE
will execute. But, if P does not halt, INFECTFILE will never execute since P never finishes.
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There’s one wrinkle with this argument, which is that P may already include a virus, but also never
terminate. In that case, DETECTVIRUS(P; INFECTFILE) would output True since P behaves like a
virus, even though P never terminates, leading our definition of HALTS to produce the wrong result.
Without a fix for this, it could be the case that the virus detection program, DETECTVIRUS, actually
exists since we have not shown that it can be used to build a correct Halting Problem program.

The good news (at least for our proof, not for the desire to have virus detectors!), is that there is a
way to fix this — we just need to know there is a way to transform any program into one that has
the same halting behavior but does not behave like a virus. We can do this by transforming the input
program, P, into a program that is definitely not a virus by making all instructions that would write to
files instead redirect to a shadow file system, which is destroyed after P finishes.

This will ensure the transformed P will not infect any persistent file. Doing such a redirection is
straightforward. We just need to put a wrapper around system calls that would open a file to use a
shadow copy of the file instead of the real file. We’ll call the function that transforms all the file
operations in a program, SHADOWIZEFILES. Then, we can correctly define HALTS, a program that
solves the Halting Problem, using a program DETECTVIRUS that solves the Virus Detection problem:

HALTS(P) := not(DETECTVIRUS(MAKEVIRUS(SHADOWIZEFILES(P))))

This shows the Virus Detection problem is undecidable — there is no algorithm that can correctly
determine if an input program description is a virus. The specific argument we used applies for
our very simple definition of a virus, but similar arguments would apply to any interesting type of
malicious (or non-malicious) behavior done by a program.2

4 Impossibility is not Hopeless

When the problem we want to solve is undecidable, what should be do?

The theoretical result that the Virus Detection problem is undecidable doesn’t mean we should give
up entirely on protecting computing systems from viruses or other types of malware. But, we should
be careful not to overstate the significant of the theoretical result.

First, all of theoretical results are based on idealized abstract models of computing machines. The
Turing Machine model is remarkably robust, and captures well many different ways of modeling
computers and our intuition about what an unbounded computer is. But, it is still an abstract
model. In particular, it assumes infinite working memory (in the form of an infinite tape, in Turing’s
instantiation). Although modern computers have unfathomably large memories relative to human-
scale experience, their memories are not infinite. No physical machine can have infinite memory,
so there are Turing Machines that cannot be simulated by actual computers. Indeed, because of the
finiteness of all real computers, it is in theory always possible to solve the Halting Problem for real
computers by simulating the execution for the number of possible computer configurations number
of steps; if the simulated computer has not halted within that number of steps, it never will since
it must have repeated a configuration. This is an astronomically large number for even the tiniest
computer today. The simplest computers you can buy today have at least 16 kilobytes of memory,
so can be in 216∗8∗210

states. This is an 81-digit number, well exceeding the number of atoms in the
known universe. So, although in theory one could simulate a processor for that number of steps, in
practice it is totally infeasible.

Even if we accept that the abstract model of a computer is adequate, it is important to realize that
all the impossibility result proves is that it is impossible to find a virus detection program that gets
the right answer for every possible input. The Halting Problem proof depends on construction one
particular program for which no correct answer could be given. It does not mean that there do not
exist programs which give the correct answer nearly all of the time. It could run forever on some
inputs and give the correct answer on all other inputs. This would not be useful for a virus detection
since we need it to always finish in a reasonable time.

Instead, it could always finish but give the wrong output for some inputs. For a virus detector, we call
these wrong outputs a false positive when the detector outputs True for an input that is not a virus,

2The general theorem that any determining when a program exhibits any non-trivial program behavior is
undecidable is Rice’s Theorem [7].
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and false negatives when the detector outputs False for an input that is a virus. The impossibility
result means that any virus detector that always gives an output must be incorrect for some inputs.
We could build a virus detector that has no false positives (in the extreme, by outputting False for
all inputs), or one that has no false negatives (by always outputting True), but it is theoretically
impossible to build one that is correct for all inputs. In practice, vendors of virus detectors make
tradeoffs between having a false positive rate that is too high and annoying to customers, and missing
too many real viruses.

Finally, the impossibility result does not preclude strategies that modify suspicious programs. Indeed,
we already used the SHADOWIZEFILES transformation in our argument to transform a program that
might behave like a virus into one that we know does not. This simple transformation wouldn’t be a
useful anti-virus transformation since it prevents useful programs from doing useful normal behaviors
that make any persistent changes to files. But a more complex transformation could be designed that
would allow programs to make certain types of changes to files but not others, or to observe program
behaviors closely enough to recognize and disrupt known types of malicious behavior. Behavioral
malware detectors take this approach, and there is no theoretical reason they could not be perfect.
The challenge is defining malicious behavior precisely enough to prevent all malicious activities
programs might do, without also preventing useful behaviors from benign programs.
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