
Why Aren’t HTTP-only Cookies
More Widely Deployed?

Yuchen Zhou
University of Virginia
yz8ra@virginia.edu

David Evans
University of Virginia
evans@virginia.edu

Abstract—HTTP-only cookies were introduced eight years ago
as a simple way to prevent cookie-stealing through cross-site
scripting attacks. Adopting HTTP-only cookies seems to be an
easy task with no significant costs or drawbacks, but many
major websites still do not use HTTP-only cookies. This paper
reports on a survey of HTTP-only cookie use in popular websites,
and considers reasons why HTTP-only cookies are not yet more
widely deployed.

Index Terms—HTTP-only, cookies, web application security,
adoption of security technologies

I. INTRODUCTION

HTTP cookies are used as authentication tokens by nearly
all websites that require user credentials. Cookies provide a
way for websites to manage persistent state within the stateless
HTTP protocol since browsers send cookies back to the server
as part of the HTTP request header.

An attacker who acquires a copy of an authentication
cookie may be able to use it to impersonate the user and
conduct a session on their behalf. The most common way to
steal a cookie is through a cross-site scripting (XSS) attack.
Since the injected script runs in the security context of the
host site, it can access the cookie through the DOM (by
reading document.cookie) and can transmit its value to a server
controlled by the attacker (for example, by embedding the
cookie value in the URL of an image). XSS attacks remain
one of the largest security problems on the web [7] and major
sites continue to be vulnerable to them. A recent serious attack
against apache.org used a XSS attack to steal authentication
cookies [2]. XSS attacks also emerged at the iPhone version
of Facebook in January 2010 [12]).

The idea of HTTP-only cookies is to denote cookies that
are not visible through the DOM. HTTP-only cookies were
introduced by Microsoft in 2002 and first implemented in
Internet Explorer 6 [13]. To mark a cookie as HTTP-only,
the HTTP-only attribute [15] is added to the cookie field. A
browser that supports HTTP-only cookies sends the cookies
back in HTTP request headers, but will not permit a script
to access an HTTP-only cookie. However, as we discuss
in Section 3, HTTP-only cookies do not prevent all XSS
exploits and using them is not a substitute for eliminating
XSS vulnerabilities, but judicious use of HTTP-only cookies
does make certain exploits impossible.

Despite their apparent simplicity, HTTP-only cookies re-
quire both clients and sites to change like many proposed

web security enhancements. This makes adoption a difficult
challenge, and it has taken many years for HTTP-only to reach
critical mass. Some key events of the deployment of HTTP-
only are shown in Figure 1. It took more than five years for
Firefox to add HTTP-only support, and some popular web
frameworks still do not support it today (see Section III).

In this paper, we evaluate the effectiveness of HTTP-only
cookies (Section II) and report on a survey of the use of HTTP-
only cookies by popular sites and web application frameworks
(Section III). We discuss the possible reasons why HTTP-
cookies are still not universally adopted more than eight years
since they were introduced (Section IV). We are not able to
reach a definitive answer why HTTP-only cookies are not more
widely deployed, but we hope the experience with HTTP-only
cookies can provide insight into what make proposed security
technologies succeed or fail, and how to overcome some of
the hurdles to widespread adoption.

II. EFFECTIVENESS OF HTTP-ONLY COOKIES

HTTP-only cookies are a defense-in-depth strategy. They do
not eliminate XSS vulnerabilities, but make it more difficult to
exploit them by preventing cookie-stealing. Here, we consider
how valuable this mitigation is in practice, and how well the
HTTP-only defense satisfies its goals.

A. Other ways to exploit cross-site scripting

There are many ways to exploit cross-site scripting attacks
other than stealing cookies. An attacker may be able to inject
a script to capture and transmit the user’s keystrokes, or
use an injected script to issue requests directly using the
user’s credentials. These attacks do not necessarily need to
steal cookies, but instead just take advantage of the fact that
authenticated users have cookies stored in their browser that
are automatically appended to HTTP request headers. Nev-
ertheless, cookie stealing enables certain exploits that benefit
from persistent access to the user’s credentials. In addition,
cookies may contain private information that could not be
exposed otherwise. Various defenses such as tying cookies
to IP addresses, setting the expiration time for a cookie, and
encrypting private content in cookies may mitigate some of
these threats. However, studies indicate that as many as 3%
of users change their IP address during a session [8], which
makes IP address checking inappropriate.



Fig. 1. HTTP-Only Deployment Timeline

B. Other Ways to Steal Cookies

HTTP-only cookies only prevent cookies from being ac-
cessed through the DOM in scripting-related attacks, but
provide no defense against other ways of stealing cookies.
Another way to steal cookies is to eavesdrop on network
traffic. Eavesdropping is mitigated by cryptographic measures,
most notably TLS/SSL. Cookies that have a secure attribute
should only be sent over HTTPS [9]. This policy is enforced by
all current major browsers. An attacker who has more access
to a victim’s machine may also be able to steal cookies by
accessing local files. As long as the browser stores cookies in
a sensible way, however, an attacker who is able to do this
probably has enough access to the victim’s machine to also
install a keylogger and acquire the login credentials directly.

C. Vulnerabilities with HTTP-only Cookies

Even if HTTP-only cookies are used and an attacker needs
to use an injected script to exfiltrate the cookies, other tech-
niques such as cross-site tracing and using XMLHttpRequests
may enable an attacker to steal HTTP-only cookies.

Cross-site tracing. The HTTP TRACE request is a method
designed for debugging problems such as network connection
errors between servers. When a client sends a TRACE request
to a compliant server, the server responds by echoing back
the header sent by the client. An attacker can exploit this to
circumvent HTTP-only cookies by injecting code that sends an
asynchronous XMLHttpRequest with the TRACE method and
receiving the HTTP-only cookie in the message echoed-back
by the server [6]. This vulnerability was reported in a US-
CERT vulnerability note [11], recommending that web servers
reject TRACE requests. The latest version of Apache (Version
2.2) still enables the TRACE method by default. However,
recent browsers, including Firefox 3.6 and IE 8, no longer
allow XMLHttpRequests that use the TRACE method. Section
III reports results from our survey showing that many servers
still respond to TRACE requests.

XMLHttpRequest related attacks. Another way to cir-
cumvent HTTP-only restrictions is to exploit the fact that

HTTP-only cookies may still be included in responses to non-
TRACE XMLHttpRequests. Some web applications set an
authentication cookie on every response even if the previous
request already included a cookie. For such sites, simply
sending a XMLHttpRequest to the site and collecting the
response (which contains an authentication cookie) works just
as well as cross-site tracing attacks [19].

Browsers can thwart this attack by blocking set-cookie head-
ers in the responses. This could also be mitigated at the server
side by not resending authentication cookies to requests that
already include cookies. All major recent browsers (including
IE 81, Firefox 3.6, Opera 10.10, Google Chrome 4.1 and Safari
4.0.5) strip cookies from responses to XMLHttpRequests, so
are not vulnerable to this attack. Users with older browsers,
however, may still be vulnerable to these attacks if servers
return authentication cookies in response to incoming HTTP
requests that already contain authentication cookies.

III. SURVEY OF HTTP-ONLY COOKIE USE

We conducted a survey of popular web sites to determine
how widely HTTP-only cookies are deployed and whether or
not sites using HTTP-only cookies are vulnerable to the attacks
described in the previous section.

Sample. Our survey sample is based on the global top 100
sites according to Alexa.com [1]. We excluded 29 sites that do
not use authentication cookies (e.g., www.bbc.co.uk), 6 adult
sites, and 15 sites that substantially duplicate previous sites
(e.g., www.google.de was excluded in favor of www.google.
com). This left the set of 50 sites shown in Table I.

Methodology. To conduct the survey, we wrote a simple
Firefox extension that searches for the HTTP-only string in set-
cookie header fields. We used an automated script to load each
test URL and determine if the site issues HTTP-only cookies.
We wrote an extension instead of using network packet sniffer
such as Wireshark because many of the sites use SSL, which

1Unlike other browsers, IE 8 prevents accesses to HTTP-only cookies, but
not to non-HTTP-only cookies. Firefox and all other browsers prevent accesses
to all cookies, regardless of HTTP-only field.



would prevent us for observing the plaintext headers. By using
a Firefox extension, we can see the decrypted headers.

We could automate testing for HTTP-only cookies before
login, but to see if sites used HTTP-only for authentication
cookies we needed to perform sessions as authenticated users.
We did not find a satisfactory way to automate this, so we
manually registered for all sites, logged in, and tested if they
are using HTTP-only cookies.2

Results. The results of our survey are summarized in
Table I. Among the 50 major sites that we tested, 8 of them
use HTTP-only cookies before the user logs in, and 16 more
sites issue HTTP-only cookies after the user logs in. A slight
majority (26) of the sites do not use HTTP-only cookies at all.
This includes many very popular and commercial sites such
as amazon.com, twitter.com, and mail.yahoo.com. It is also
surprising that some sites (e.g., ebay.com, yahoo.com) do use
HTTP-only cookies, but not for authentication cookies.

Nearly eight years after its introduction, this simple security
option is still not deployed by the majority of websites. We
speculate on reasons for this in Section IV.

Vulnerabilities. As we discussed earlier, there are potential
vulnerabilities in HTTP-only cookies which we examine here.
As mentioned previously, both threats are mitigated by most
modern browsers but users using older browsers may still be
vulnerable.

First, we checked if these sites correctly reject TRACE
requests. Our expected return value should be 403 Forbidden
or 405 Method not Allowed. As we can see from Table I, 7 out
of the 50 sites respond with either 200 OK or 302 Found to
TRACE requests. These sites would be vulnerable to cross-site
tracing attacks for users whose browsers do not block these
requests.

We also checked all the sample sites to see if these sites
return a set-cookie header in the response to an XMLHttpRe-
quest, and what is the browser behavior to this. None of
the 24 sites that use HTTP-only authentication cookies re-
turned cookies in responses to requests that already contained
authentication cookies, so they were not vulnerable to this
problem. Of the other 26 sites, there are five sites that return
authentication tokens in response to these requests. Since these
sites are not currently using HTTP-only, they are already
vulnerable to cookie-stealing XSS attacks. However, even if
they mark their cookies at HTTP-only these sites would still
be vulnerable to the XMLHttpRequest attack.

Web Frameworks. Given the need to manually create and
account and login to a site to test if its authentication cookies
use HTTP-only, it was not feasible to perform a large scale
survey of less popular websites. Instead, we observe that many
websites today are built using web frameworks, and it is likely
that most sites built with frameworks will use their default
cookie and authentication options. The adoption path for web
frameworks also illustrates some of the challenges in getting
new security technologies widely adopted.

2We attempted to use bugmenot [5] to automate logins, but found that most
sites blocked accounts known to be from bugmenot.

On by Default vBulletin 4.0, 22 Feb 2010
Ruby on Rails 2.3.2 (Mar 2009)

Supported but off by default Symfony 1.4 (Feb 2010)
Ruby on Rails 2.2.2 (Nov 2008)

Not Supported

Django 1.1.1 (July 2009)
Spring Framework 3.0 (Feb 2010)

Pylons 0.9.7 (2008)
Ruby on Rails 2.1.2 (Oct 2008)

TABLE II
WEB FRAMEWORK HTTP-ONLY SUPPORT AND DEPLOYMENT

Table II summarizes support for HTTP-only cookies in
several popular web frameworks. The results are collected by
either using documentation or replies from the web frame-
work’s development team, or by directly examining the cookie
implementation source code in cases where a definitive answer
was not found. The latest version of Ruby on Rails is the
only open source framework we found that set HTTP-only
flag on by default. The previous version of Rails and the
current version of Symfony) both support HTTP-only but it
needs to be manually configured by users Another framework
that appears to set HTTP-only on by default is vBulletin, a
close-source commercial product that is used by many Internet
forums.3 The other frameworks we examined do not support
HTTP-only. Pylons does not provide support for authenticating
users but instead relies on third party authentication add-
ons like Authkit and Repoze.who (neither of which support
HTTP-only). Django includes support for authentication which
does not support HTTP-only, but there is an unofficial patch
available for it which we discuss further in Section IV.

IV. DISCUSSION

Despite their apparent security benefits, simplicity, and lack
of obvious drawbacks, our survey shows that HTTP-only
cookies are, after eight years, still only deployed on about
half of major websites and not used by default on most
web frameworks. We sent email requests to all the sites that
were not using HTTP-only cookies, but have not received
any illuminating replies. Here, we consider several possible
reasons why HTTP-only cookies may not be used.

Protection effectiveness. As discussed in Section II,
HTTP-only cookies are a defense-in-depth mechanism in-
tended to thwart a particular way of exploiting a XSS vul-
nerability. However, XSS attacks are not targeted merely for
cookie stealing. It is also possible that a site considers the
other ways of exploiting a XSS vulnerability to be just as
severe as the cookie-stealing prevented by HTTP-only cookies.
This scenario makes it plausible for developers to focus more
on XSS defenses than merely HTTP-only cookie mechanism
adoption.

In addition to this, sites may elect not to employ HTTP-
only cookies because they believe their site is not vulnerable
to XSS exploits. However, we find this reason hard to support

3Our results for vBulletin are based on testing a sample of websites built
using it. Sites built with vBulletin 4.0 consistently use HTTP-only cookies



Type No. Sites

No HTTP-Only Authentication Cookies 26

4shared.com1, adobe.com2a, amazon.com2, baidu.com, cnet.com2a, cnn.com2, craigslist.org, dailymotion.
com, digg.com2, ebay.com2, espn.go.com2, flickr.com2a, hotfile.com, imageshack.us2, imdb.com1,
kaixin001.com1a, linkedin.com2, livejournal.com, mail.yahoo.com, mail.qq.com, mediafire.com2,
megaupload.coma, megavideo.coma, msn.com2, nytimes.com1, orkut.com, renren.com2, soso.com,
thepriatebay.org2, tudou.com, twitter.com1, yahoo.com2, youku.com2

Use HTTP-only 24
aol.com2, blogger.com, conduit.com2, doubleclick.com, google.com, facebook.com, hi5.com2,
live.com, mail.163.com, mail.sina.com.cn, myspace.com2, photobucket.com2, sohu.com2, taobao.coma,
wikipedia.orga, wordpress.com2, youtube.com2,

TABLE I
SURVEY RESULTS

1 Sites that respond with authentication cookies to every HTTP request (potentially vulnerable to XMLHttpRequest attack).
2 Sites that respond with non-authentication cookies to every HTTP request.
a Sites that respond with 200/302 to HTTP TRACE requests.

as several of the sites in our survey that do not use HTTP-
only cookies have been vulnerable to XSS attacks (e.g., twitter.
com [18] and nytimes.com [14]).

Page functionality. Making cookies HTTP-only can dis-
rupt web page functionality by preventing scripts from reading
the value of cookies. There is little, if any, reason why a
well designed website would include scripts that access state
from authentication cookies directly, but it may be difficult to
remove all uses from legacy code.

We did a experiment to test whether making cookies HTTP-
only would break any of the survey sites. Since we are not
able to modify the servers, we developed a Firefox extension
to append the HTTP-only attribute at the client side.

Even though to do a complete dynamic test on any one
website is impossible, we distributed our extension to a
small group of users for experiments and no users reported
encountering any problems. We also explicitly tested the 26
sample sites that did not use HTTP-only. Only one site,
the Chinese social networking site renren.com, experienced
any problems. This site includes an online chatting system
that rejects all user logins when our extension is running
(other functions on the site continue to work normally).
We examined their script [17] and found that is does re-
trieve values from authentication cookies using code like
uin=this.getCookie("userid");.

Although our extension was written primarily to conduct
this experiment, the results indicate that it could be used to
provided added protection for clients who visit websites that
do not use HTTP-only cookies.

Software stack compatibility. As a result of our sur-
vey results, we asked the Django development team why
they had not added support for HTTP-only cookies. They
have pointed out a thread that offered some explanation [3].
Python version (2.5) does not support HTTP-only cookies,
although support was added to Python v2.6 (released October
2008). Since the Django framework is based on Python, it
uses Python web authentication module directly instead of
its own cookie handling mechanism. As Django does not
want to lose backward compatibility (servers running 2.5
or earlier version of Python would encounter error when
cookie.HTTP-only = true is called in the server side
script), they are unwilling to support HTTP-only.

Standards compliance. Another reason frameworks and
sites may not use HTTP-only cookies is HTTP-only is not
part of the cookie specification [9]. Using HTTP-only cookies
might break existing web clients or other web infrastructure.
This problem could have been avoided if instead of introducing
a new attribute, HTTP-only was implemented by just defining
a new property (e.g., HTTPonly = True;). This would be
consistent with the cookie specification. For browsers that
do not support HTTP-only this would not introduce errors,
but browsers that support this property could interpret the
HTTPonly property as the HTTP-only attribute is interpreted.
Django developers also explicitly pointed out that this is one
minor reason that they hesitated to implement HTTP-only, and
it may also explain why other frameworks do not turn it on
by default. As far as we know HTTP-only has finally made it
to the newest IETF cookie protocol draft [4] by Adam Barth
at Mar of 2010. By now we could only hope that this draft
get accepted at this moment, but still cannot be too optimistic
about the deployment of the protocol.

Difficulty to deploy client-server solutions. Finally, we
observe that the challenge of deploying any mechanism that
involves changes to both clients and servers is not unique to
HTTP-only, but a longstanding issue in network evolution.
Any mechanism that provides benefits only with both end-
points in a network adopt it faces major hurdles in deployment.
A similar (but even less successful) deployment experience
applies to the Set-Cookie2 header which first appeared in
RFC2965 [10]. It was introduced ten years ago with the goal
of adding more security features to the previous Set-Cookie
header (e.g., each cookie specifies a port and browsers should
return cookies only if they match the corresponding port).
Browsers are also required to include information on how the
cookie was set with the returned cookie. Unlike HTTP-only,
Set-Cookie2 has not been adopted by any major browsers, and
very few servers use it.

Many network protocols such as TLS involve a handshake
protocol where the endpoints negotiate the highest level proto-
col they have in common. This allows new versions to be de-
ployed while maintaining backwards compatibility, but reduces
the incentive for endpoints to update their implementations.
Various efforts have been made to try to support more dynamic
deployment of network protocols including STP [16]. This



requires mechanisms for running untrusted code on network
hosts to automatically implement a new protocol, so dynamic
protocol updating raises additional security concerns.

V. CONCLUSION

HTTP-only is a mechanism that was introduced eight years
ago and appears to be very simple to implement and deploy,
but has not yet been widely deployed. Some of this may
be due to questions about the real value of HTTP-only in
thwarting XSS exploits, but it is also clear that HTTP-only
does thwart some exploits and it has very little cost. This
example illustrates the difficulty in deploying even simple
security mechanisms that require cooperation between servers
and clients, as well as considering interactions with other web
functionalities (especially XMLHttpRequest). The value of the
mechanisms is only realized when both servers and clients
implement it correctly, so it takes a long time to achieve
enough critical mass to achieve widespread deployment.

ACKNOWLEDGEMENTS

We would like to thank anonymous reviewers for their
helpful comments. We thank Yan Huang for help developing
the Firefox extension. This work was funded in part by the
National Science Foundation (awards 0627527 and 0541123)
and AFOSR (MURI).

REFERENCES

[1] Alexa. Top Sites Provided by Alexa the Web Information Company.
http://www.alexa.com/.

[2] Apache Infrastructure Team. Cookie Stealing XSS Attacks on Apache
Server. https://blogs.apache.org/infra/entry/apache org 04 09 2010,
2010.

[3] Arvin. Discussion Thread of Django HTTP-only Support.
http://code.djangoproject.com/ticket/3304, 2007.

[4] Adam Barth. HTTP State Management Mechanism Draft.
http://tools.ietf.org/html/draft-ietf-httpstate-cookie-05, 2010.

[5] Bugmenot development team. An Automated Login Script to Bypass
Compulsory Registration. http://www.bugmenot.com/.

[6] Jeremiah Grossman. Cross-Site Tracing (XST): The New Techinques
and Emerging Threats to Bypass Current Web Security Measures using
TRACE and XSS. Technical report, WhiteHat Security, 2003.

[7] Jeremiah Grossman. Seventh Website Security Statistics Report.
Technical report, WhiteHat Security, 2009.

[8] Paul Johnston. Authentication and Session Management on Web.
Technical report, Westpoint White Papers, 2004.

[9] D. Kristol. Request For Comments 2109: HTTP State Management
Mechanism. http://www.ietf.org/rfc/rfc2109.txt, 1997.

[10] D. Kristol. Request For Comments 2965: HTTP State Management
Mechanism. http://www.ietf.org/rfc/rfc2965.txt, 2000.

[11] Art Manion. Vulnerability Note VU#867593: Web Servers Enable
HTTP TRACE Method by Default.
http://www.kb.cert.org/vuls/id/867593, 2003.

[12] Marco Jetson. An iphone XSS exploit.
http://www.exploit-db.com/exploits/10947, 2010.

[13] Microsoft Corporation. Mitigating Cross-Site Scripting with
HTTP-only Cookies.
http://msdn.microsoft.com/en-us/library/ms533046(VS.85).aspx, 2002.

[14] Mox. An Example of XSS Exploit in nytimes.com.
http://www.xssed.com/mirror/34125/, 2008.

[15] OWASP, Open Web Application Security Project. Introduction of
HTTP-only Cookies. http://www.owasp.org/index.php/HTTPOnly,
2010.

[16] Parveen Patel, Andrew Whitaker, David Wetherall, Jay Lepreau, and
Tim Stack. Upgrading Transport Protocols using Untrusted Mobile
Code. ACM SOSP, 2003.

[17] Qian Xiang Company. A Sample Script of using document.cookie at
Client-side Javascript. http://s.xnimg.cn/a7989/jspro/webpager.js, 2010.

[18] James Slater. Massive Twitter Cross-Site Scripting Vulnerability.
http://www.davidnaylor.co.uk/
massive-twitter-cross-site-scripting-vulnerability.html, 2009.

[19] Wladimir Palant. XMLHttpRequest Allows Reading HTTP-only
Cookies. https://bugzilla.mozilla.org/show bug.cgi?id=380418, 2007.


