
1

David Evans
evans@cs.virginia.edu
http://www.cs.virginia.edu/~evans

The Bugs and the Bees
Research in Programming
Languages and Security

University of Virginia
Department of Computer Science

17 Sept 2001 David Evans - CS696 2

What is
Computer Science?

17 Sept 2001 David Evans - CS696 3

Let AB and CD be the two given numbers not
relatively prime. It is required to find the greatest
common measure of AB and CD.

If now CD measures AB, since it also measures
itself, then CD is a common measure of CD and
AB. And it is manifest that it is also the greatest, for
no greater number than CD measures CD. But, if
CD does not measure AB, then, when the less of
the numbers AB and CD being continually
subtracted from the greater, some number is left
which measures the one before it.

17 Sept 2001 David Evans - CS696 4

For a unit is not left, otherwise AB and CD would be relatively prime, which is contrary to
the hypothesis. Therefore some number is left which measures the one before it. Now
let CD, measuring BE, leave EA less than itself, let EA, measuring DF, leave FC less
than itself, and let CF measure AE.

Since then, CF measures AE, and AE measures DF, therefore CF also measures DF.
But it measures itself, therefore it also measures the whole CD. But CD measures BE,
therefore CF also measures BE. And it also measures EA, therefore it measures the
whole BA. But it also measures CD, therefore CF measures AB and CD. Therefore CF
is a common measure of AB and CD.

I say next that it is also the greatest. If CF is not the greatest common measure of AB
and CD, then some number G, which is greater than CF, measures the numbers AB and
CD.

Now, since G measures CD, and CD measures BE, therefore G also measures BE. But
it also measures the whole BA, therefore it measures the remainder AE. But AE
measures DF, therefore G also measures DF. And it measures the whole DC, therefore
it also measures the remainder CF, that is, the greater measures the less, which is
impossible. Therefore no number which is greater than CF measures the numbers AB
and CD. Therefore CF is the greatest common measure of AB and CD.

Euclid’s Elements, Book VII, Proposition 2 (300BC)

17 Sept 2001 David Evans - CS696 5

By the word operation, we mean any process which
alters the mutual relation of two or more things, be this
relation of what kind it may. This is the most general
definition, and would include all subjects in the universe.
Again, it might act upon other things besides number,
were objects found whose mutual fundamental relations
could be expressed by those of the abstract science of
operations, and which should be also susceptible of
adaptations to the action of the operating notation and
mechanism of the engine... Supposing, for instance,
that the fundamental relations of pitched sounds in the
science of harmony and of musical composition were
susceptible of such expression and adaptations, the
engine might compose elaborate and scientific pieces of
music of any degree of complexity or extent.

Ada, Countess of Lovelace, around 1830
17 Sept 2001 David Evans - CS696 6

What is the difference
between Euclid and Ada?

“It depends on what your definition of ‘is’ is.”
Bill Gates
(speaking at Microsoft’s anti-trust trial)

2

17 Sept 2001 David Evans - CS696 7

Geometry vs. Computer Science

• Geometry (mathematics) is about
declarative knowledge: “what is”

If now CD measures AB, since it also measures itself,
then CD is a common measure of CD and AB

• Computer Science is about imperative
knowledge: “how to”
Computer Science has nothing to do
with beige (or translucent blue) boxes
called “computers” and is not a science.

17 Sept 2001 David Evans - CS696 8

Computer Science

• “How to” knowledge:
– Ways of describing imperative processes

(computations)
– Ways of reasoning about (predicting) what

imperative processes will do
• Most interesting CS problems concern:

– Better ways of describing computations
– Ways of reasoning about what they do

(and don’t do)

17 Sept 2001 David Evans - CS696 9

My Research Projects

• The Bugs

• The Bees - “Programming the
Swarm”

LCLint
How can we detect code that
describes unintended
computations?

How can we program large
collections of devices and reason
about their behavior?

17 Sept 2001 David Evans - CS696 10

A Gross Oversimplification

Effort RequiredLow Unfathomable

Formal Verifiers

B
ug

s
D

et
ec

te
d

none

all

Compilers

LCLint
LCLint

17 Sept 2001 David Evans - CS696 11

Everyone Likes Types

• Easy to Understand
• Easy to Use
• Quickly Detect Many Programming

Errors
• Useful Documentation
• …even though they are lots of work!

– 1/4 of text of typical C program is for types

17 Sept 2001 David Evans - CS696 12

Limitations of
Standard Types

One type per
reference

Language defines
checking rules

Type of reference
never changes

3

17 Sept 2001 David Evans - CS696 13

Many attributes per
reference

One type per
reference

System or
programmer defines
checking rules

Language defines
checking rules

State changes along
program paths

Type of reference
never changes

Attributes
Limitations of

Standard Types

17 Sept 2001 David Evans - CS696 14

Approach
• Programmers add annotations (formal

specifications)
– Simple and precise
– Describe programmers intent:

• Types, memory management, data hiding, aliasing,
modification, null-ity, buffer sizes, security, etc.

• LCLint detects inconsistencies between
annotations and code
– Simple (fast!) dataflow analyses

17 Sept 2001 David Evans - CS696 15

Example: Buffer Overflows
• [David Larochelle’s MCS]
• Most commonly exploited security

vulnerability
– 1988 Internet Worm
– Still the most common attack

• Code Red exploited buffer overflow in IIS
• >50% of CERT advisories, 23% of CVE entries in 2001

• Attributes describe sizes of allocated buffers

17 Sept 2001 David Evans - CS696 16

Buffer Overflow Example

void func(char *str) {
char buffer[256];
strncat(buffer, str, sizeof(buffer) - 1); }

char *strncat (char *s1, char *s2, size_t n)
/*@requires maxSet(s1) >=maxRead(s1) + n@*/

uninitialized array

Source: Secure Programming, SecurityFocus.com

strncat.c:4:21: Possible out-of -bounds store:
strncat(buffer, str, sizeof((buffer)) - 1);

Unable to resolve constraint:
requires maxRead (buffer @ strncat.c:4:29) <= 0

needed to satisfy precondition:
requires maxSet (buffer @ strncat.c:4:29)

>= maxRead (buffer @ strncat.c:4:29) + 255
…

17 Sept 2001 David Evans - CS696 17

Detecting Buffer Overflows
• Annotations express constraints on buffer

sizes
– e.g., maxSet is the highest index that can safely

be written to

• Checking uses axiomatic semantics with
simplification rules

• Heuristics for analyzing common loop idioms
• Detected known and unknown vulnerabilities

in w u-ftpd and BIND

17 Sept 2001 David Evans - CS696 18

LCLint Status
• Public distribution
• Effective checking >100K line programs

(checks about 1K lines per second)
– Detects lots of real bugs in real programs

(including itself, of course)
– Real users, C Unleashed, Linux Journal, etc.

• Checks include type abstractions,
modifications, globals, memory leaks,
dead storage, naming conventions,
undefined behavior, incomplete definition...

4

17 Sept 2001 David Evans - CS696 19

Some Open Issues

• Integrate run-time checking
– Combine static and run-time checking to enable

additional checking and completeness guarantees

• Generalize framework
– Support static checking for multiple source languages

in a principled way

• Design-level Properties
• Concurrent programs
• Make it easier to annotate legacy programs

17 Sept 2001 David Evans - CS696 20

LCLint
• More information: lclint.cs.virginia.edu

USENIX Security ’01, PATV ‘2000, PLDI ’96
• Public release – real users, mentioned in C FAQ,

C Unleashed, Linux Journal, etc.
• Students (includes other PL/SE/security related

projects):
– David Larochelle: buffer overflows, automatic

annotations
– Joel Winstead: parallel loop exception semantics
– Greg Yukl: serialization
– Undergraduates: David Friedman, Mike Lanouette, Lim

Lam, Tran Nguyen, Hien Phan, Adam Sowers

• Current Funding: NASA (joint with John Knight)

17 Sept 2001 David Evans - CS696 21

Programming the Swarm

17 Sept 2001 David Evans - CS696 22

1950s: Programming in the small...
Programmable computers
Learned the programming is hard
Birth of higher-order languages
Tools for reasoning about trivial programs

Really Brief History of
Computer Science

1970s: Programming in the large...
Abstraction, objects
Methodologies for development
Tools for reasoning about

component-based systems
2000s: Programming the Swarm!

17 Sept 2001 David Evans - CS696 23

What’s Changing
• Execution Platforms

– Not computers (98% of microprocessors sold this
year)

– Small and cheap

• Execution environment
– Interact with physical world

– Unpredictable, dynamic

• Programs
– Old style of programming won’t work

– Is there a new paradigm?
17 Sept 2001 David Evans - CS696 24

Programming the Swarm:
Long-Range Goal

Cement
10 GFlop

5

17 Sept 2001 David Evans - CS696 25

Why this Might be Possible?

• Biology Does It
– Ant routing

• Find best route to food source using
pheromone trails

– Bee house-hunting
• Reach consensus by dancing and split to new

hive

– Complex creatures self-organize from short
DNA program and dumb chemicals
• Genetic code for 2 humans differs in only 2M

base pairs (.5 MB < 1% of Win2000)

17 Sept 2001 David Evans - CS696 26

Swarm Programming Model

Swarm
Program

Generator

Environment
Model

Behavioral
Description

Device
Model

Primitives
Library

Device
Units

Programmed
Device
Units

Device
Programs

17 Sept 2001 David Evans - CS696 27

Swarm Programming
• Primitives describe group behaviors

– What are the primitives?
– How are they specified?

• Important to understand both functional (how the
state changes) and non-functional (power use,
robustness, efficiency, etc.) properties

• Construct complex behaviors by
composing primitives
– What are the right combination mechanisms?
– Pick the right combination of primitive

implementations based on description of
desired non-functional properties

17 Sept 2001 David Evans - CS696 28

Open Issues
• How can we predict the functional and non-

functional properties of combinations of
primitives?

• How can we synthesize efficient swarm
programs from a library of primitive
implementations?

• Security
– Can we use swarm programming to build systems

that are resilient to classes of attack?
– Can we produce swarm programs with known

behavioral constraints?

17 Sept 2001 David Evans - CS696 29

Programming the Swarm
swarm.cs.virginia.edu

• Students:
– Gilbert Backers: Adaptive Hierarchal

Communication

– Weilin Zhong: Security of Ant Routing
– Undergraduates: Keen Browne, Mike Cuvelier,

John Calandrino, Bill Oliver, Mike Hoyge, Jon
McCune, Errol McEachron

• Funding: NSF Career Award

17 Sept 2001 David Evans - CS696 30

Choosing an Advisor

• Most important decision you will
make in graduate school!

• Don’t rely on the matching process
– This is a LAST RESORT
– If you don’t know who your advisor is

before the matching process, something is
wrong

6

17 Sept 2001 David Evans - CS696 31

Things you should do:
• Talk to faculty – don’t wait until the

week before matching forms are due!
• Talk to students about their advisors
• Think of your own project ideas
• Prove your value as a student to a

potential advisor
• But also – expect potential advisor to

demonstrate their value as an advisor

17 Sept 2001 David Evans - CS696 32

Summary
• Computer Science is about “how to” knowledge
• Interesting problems:

– Describing and reasoning about behavior of large ad
hoc collections (Programming the Swarm)

– Detecting differences between what programs express
and what programmers intend (LCLint)

• Be proactive about finding an advisor
• [Swarm Demo]
• evans@cs.virginia.edu

