

Detecting "ILoveYou"

file.contains("@GRAMMERSoft Group")

- Signature Scanning
 - Database of strings that are found in known viruses
 - A/V scanner examines opened files (onaccess) or stored files (on-demand) for that string

www.cs.virginia.edu/malware

Disk-Level Virus Detection

Stereotypical Malwarist, 2007

www.cs.virginia.edu/malware

Disk-Level Virus Detection

The Organized Malware Industry

- Multi-million dollar industry
- Vulnerability black market
 - -Zero-day exploits sell for ~\$4000
- Virus "professionals"
 - Sell viruses, or use them to build botnets and rent spamming/phishing service
- See Peter Guttman's talk


Bad news for society, but great news for security researchers!

www.cs.virginia.edu/malware

Disk-Level Virus Detection

6

W32/Efish.A

- Multi-threaded, stealthy, parasitic
- Self-encrypted: each infection is encrypted with a new key
 - No static strings to match except decryption code
- Slow polymorphic: the decryption code is modified with each infection
 - Slow changes make it harder to develop and test signatures

www.cs.virginia.edu/malware

Disk-Level Virus Detection

De-Polymorphers

[Kaspersky's "Skeleton Detection"] [Christodorescu, Jha, + 2005, 2007]

- Reverse polymorphic transformations
- In theory, obfuscation is impossible (for some functions) [Barak+ 2001], so "con-fuscators" must be
- In practice:
 - Con-fuscation is much harder than obfuscation
 - Con-fuscators are too slow
 - Virus obfuscators don't need to be general or semantics-preserving

www.cs.virginia.edu/malware

Disk-Level Virus Detection

Emulators

- Emulate virus until it decrypts itself
- In theory, it should be possible to build a perfect emulator
- In practice, emulators are imperfect:
 - Programs can determine if they are running in an emulator
 - Several viruses exhibit anti-emulation techniques [Stepan06, Ciubotariu06]
 - Performance concerns mean emulator can only run for beginning of execution

www.cs.virginia.edu/malware

Disk-Level Virus Detection

Circumvention

- A/V software runs on the host OS
- Malware can get below host: avoid or tamper with detection
- SubVirt [Samuel King & Peter Chen, Oakland 2006]
- BluePill [Joanna Rutkowska, Black Hat 2006]

www.cs.virginia.edu/malware

Disk-Level Virus Detection

Summary: Traditional Detection is Doomed

Its not an arms race, it's a bludgeoning: current approach will always be playing catch-up in the arms race between virus authors and detectors

- Reactive: signatures only detect known viruses
- **Static:** code is easy to change and hard to analyze
- Circumventable: malware can get below the detector

www.cs.virginia.edu/malware

Disk-Level Virus Detection

11

Our Target: File-Infecting Viruses

- Spread by infecting executable files
- Includes complex, stealthy, polymorphic viruses
- Does not include all malware:
 - Memory-Resident (spread by infecting processes in memory)
 - Network Worms (spread without infecting executable files)
 - Rootkits, spyware, etc. (don't spread)

www.cs.virginia.edu/malware

Disk-Level Virus Detection

12

10

Ideal Solution

Today's Talk

• Detect viruses:

- At a level malware can't compromise
- Without disrupting non-malicious applications
- Without (overly) impacting performance
- Recognize the fundamental behavior of viruses, instead of relying on blacklists of known viruses
- · Recover from infections seamlessly

www.cs.virginia.edu/malware

Disk-Level Virus Detection

13

15

Semi-Obvious Riddle

What is:

- Available on almost every computer
- Able to see all disk activity
- And has processing power and memory comparable to ~2000 Apple II's?

The disk processor.

200MHz ARM Processor, 16-32MB Cache

www.cs.virginia.edu/malware

Disk-Level Virus Detection

Even More Obvious Riddle

What behavior do all file-infecting viruses have in common?

They infect files.

www.cs.virginia.edu/malware

Disk-Level Virus Detection

Executing Program Program makes file requests to OS Disk-Level Operating Behavioral System Detection OS issues Read/Write requests to disk Disk processor analyzes request stream for malicious behavior www.cs.virginia.edu/malware Disk-Level Virus Detection 16

Advantages of Disk-Level Behavioral Detection

- Difficult to Circumvent
 - Runs below host OS
- Difficult to Evade
 - Can't hide disk events from disk: complete mediation
 - Hard to change disk-level behavior
- Inexpensive
 - Current disks have a (mostly idle) general purpose processor
 - Typical seek request ~ 700,000 cycles

www.cs.virginia.edu/malware

Disk-Level Virus Detection

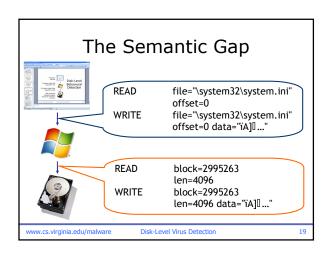
Three Major Challenges

 Semantic gap: need to interpret low-level read/write requests as file events

 Detectors: need to distinguish malicious disk traffic from nonmalicious traffic

 Deployment: need to convince disk drive makers to deploy

www.cs.virginia.edu/malware


Disk-Level Virus Detection

<u>Þ</u>

Next

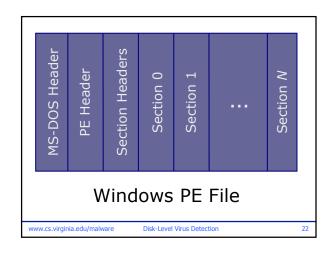
Most

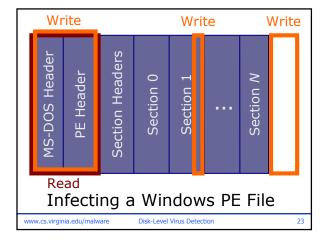
Hel

Bridging the Gap

- Object-based Storage (OSD)
- Semantic Disks [Sivathanu+ 2003, Arpaci-Dusseau+ 2006, Sivanthanu+ 2006]
- Our Solution (for now):
 - Prototype collects traces at OS level
 - Detector sees only what would be visible to a semantically-smart disk
 - In progress: implementing at lower level

www.cs.virginia.edu/malware


Disk-Level Virus Detection


Developing Detectors

Next: a generic file-infection detector

After: virus-specific signatures

www.cs.virginia.edu/malware Disk-Level Virus Detection 21

First Generic Infection Rule ,-separated events in read [name@offset:0, any order read [name@offset:*]+; ;-separated write [name@offset:0], groups are write [name@offset:*]+ ordered name is an executable Multi-Read/Write Rule file (starts with MZ or ZM) www.cs.virginia.edu/malware Disk-Level Virus Detection

Additional Infection Rules

Single-Read/Write Rule:

read [name@0]; write [name@0]

Reading and writing the file header.

Single-Write Rule:

create [name];
write [name@0]

Any write to an existing executable file.

www.cs.virginia.edu/malware

Disk-Level Virus Detection

Evaluation: Detection

- Five selected viruses
 - Detnat, Efish, Ganda, Simile, Tuareg
- Randomly selected 70 samples from http://www.offensivecomputing.net
 - Classified as "virus" by at least one A/V vendor
- Eliminated those that didn't run
 - Depended on Windows version, crashed, etc.
- 28 samples remained
- Executed viruses, collected disk traces, checked against rules

www.cs.virginia.edu/malware

Disk-Level Virus Detection

20

Virus	Multi R/W	Single R/W	Single Write	Virus	Multi R/W	Single R/W	Single Write
Alcaul.o	1	1	^	Magic.1590	1	1	1
Aliser.7825	•	·	V	Matrix.750	1	1	1
Aula.a	— Not a virus —		Maya.4108	1	1	· /	
Billrus.a	- 1	Vot a viru	us —	NWU	— Not a virus —		
Chiton.b	1	✓	✓	Oblion.a	- /	lot a viru	ıs —
Detnat	✓	·	V	Oroch.5420	1	1	V
Efish	•	•	•	Parite.b	•	•	•
Eletiamo	— Not a virus —		Resur.f	1	1	1	
Enerlam.b	1	✓	✓	Sality.l	•	•	•
Evyl	•	· /	V	Savior.1832	1	1	· /
Ganda	1	✓	V	Seppuku.2764	1	1	1
Harrier	1	1	1	Simile	1	1	1
Jetto	С	С	· /	Stupid.b	- /	lot a viru	ıs —
Kriz	-	Vot a viru	us —	Tuareg	1	1	1

- Matched all infections before any damage
 Matches most infections of virus
- Matches, but after malicious activity
 Not matched because of caching

www.cs.virginia.edu/malware

Disk-Level Virus Detection

Evaluation: Non-Disruption

- Disk tracer implemented as a mini-filter file system driver: collects a sample of disk traffic every 30 minutes
- Eight brave and noble volunteers: 6 geeky users, Nate's dad, Nate's fiancée*
- Running for up to 3 months
- Collected >200 Million total disk requests (only ~36 Million of them had enough information to test single-write rule)

*Despite crashing her machine and filling up her disk, they are still engaged.

www.cs.virginia.edu/malware

Disk-Level Virus Detection

28

False Positives

	Multi	Single	Single
	R/W	R/W	Write
Viruses detected out of 21 (previous table)	15; 3; 2	17; 3	18; 3
False positives (total in all traces)	5 in	28 in	19 in
	201 M	201 M	36.5 M
False positives per million events	0.025	0.139	0.520

Seems most promising J

www.cs.virginia.edu/malware

Disk-Level Virus Detection

"Virus-Like" Programs

- Program Updates
 - Signed updates using public key embedded in original executable
 - Legacy solution: "trusted" button
- System Restores
 - Restore from disk directly
- DRM Software, Virus Scanners
- Only to single-write rule: program installs, compilers

www.cs.virginia.edu/malware

Disk-Level Virus Detection

30

Virus Detection Results

- A simple, generic, behavioral, disklevel rule detects all file-infecting viruses in our sample
- A generic rule cannot detect malicious pre-infection behavior
- False positives seem solvable
 - Requires either some reengineering of systems or annoyance to user

w.cs.virginia.edu/malware

Disk-Level Virus Detection

Virus-Specific Signatures

- Examine collected traces of virus execution
 - Many generations, file infections
- Develop a disk-level signature that characterizes all executions
 - Precise enough to avoid false positives
- Requires mechanisms for updating signatures on disk

ww.cs.virginia.edu/malware

Disk-Level Virus Detection

W32/Parite

read [file.exe@0|data:"MZ" or "ZM"]; create [name.tmp]; write [name.tmp@0|data:"MZ"]; write*3 [name.tmp]; read*7 [name.tmp@336,274,2,66,130,194,258]; write [ntuser.dat.LOG|data:"PINF"]

Robust: detects 5 tested generations Very specific: no false positives (in all 201M events)

www.cs.virginia.edu/malware

Disk-Level Virus Detection

W32/Sality.L

read [orig.exe@0|data:"MZ" or "ZM"]; write [drop.dll@0|data:"MZ"]; read*4 [drop.dll]; read [\system32\system.ini@0];

write [\system32\system.ini@0|data:"TFTempCache"]

- Sample (from vx.netlux.org repository) infected with both Sality and Linkbot.M
- Signature developed for Sality.L also matched Sality.M, O, and Q (but not K or earlier)

www.cs.virginia.edu/malware

Disk-Level Virus Detection

Summary: Virus-Specific Signatures

- Developed signatures for Efish, Ganda, Parite, Sality.L
- Perfect detection results: no missed executions, no false positives
- Still blacklisting (but much better than static blacklisting)
- After experience, ~1 day/signature
- Working on automating signature generation

www.cs.virginia.edu/malware

Disk-Level Virus Detection

33

Recap

- Virus writing pays
- Traditional virus detection is doomed - Wrong level, too static, too reactive
- Disk processor can detect viruses: - Sees all requests, powerful processor
- Simple rule can detect all file-infecting viruses with few false positives
- Specific, precise rules can detect malicious behavior exactly

Disk-Level Virus Detection

Remaining Problems

- Bridging the semantic gap
 - Working on a disk-level implementation
- Security against determined attacker
 - Circumventing our rule is easy!
 - Behavioral-morphing viruses?
 - Resource exhaustion attacks
- Response and recovery
 - Need secure channel to user
- Deployment

www.cs.virginia.edu/malware

Disk-Level Virus Detection

37

Mixed-Metaphor Mantra

Traditional techniques will always be a step behind the malwarists.

Disk-level behavioral detection can give the "good" side a leg up in the virus detection arms race.

www.cs.virginia.edu/malware

Disk-Level Virus Detection

Students

Nate "Don't worry, I'm just going to install a harmless program on your PC" **Paul** (*N*-0.3th year PhD student)

Adrienne "Can I borrow your USB key to copy hundreds of viruses?" Felt (3rd year undergraduate)

www.cs.virginia.edu/malware

Disk-Level Virus Detection

For more information:

evans@cs.virginia.edu

http://www.cs.virginia.edu/malware Nathanael Paul, Adrienne Felt, Sudhanva Gurumurthi, David Evans. Disk-Level Behavioral Virus Detection. (In submission, request by email)

Thanks:

Funding: NSF Cyber Trust

Running the disk tracer: Jamie Burnham, Wei Le, Jie Li, Ronny Paul, Shahrukh Tarapore, Chris Taylor, Dan Williams

Ideas, insights, comments: Shaun Hutton, Yan Huang, Anh Nguyen-Tuong, Mark Reis, Erik Riedel, Peter Szor, Shahrukh Tarapore, Chris Taylor

www.cs.virginia.edu/malware

Disk-Level Virus Detection