
1

Where’s the
FEEB?
Effectiveness of
Instruction Set
Randomization

CERIAS Security Seminar
Purdue University
9 March 2005 David Evans

University of Virginia
work with Nora Sovarel, Nate Paul
and the UVa/CMU Genesis Project

2www.cs.virginia.edu/evans/purdue05

Security Through Diversity
• Today’s Computing Monoculture

– Exploit can compromise billions of machines
since they are all running the same software

• Biological Diversity

– All successful species use very expensive
mechanism (i.e., sex) to maintain diversity

• Computer security research: [Cohen 92],
[Forrest+ 97], [Cowan+ 2003], [Barrantes+

2003], [Kc+ 2003], [Bhatkar+2003], [Just+ 2004]

3www.cs.virginia.edu/evans/purdue05

Instruction Set Randomization
[Barrantes+, CCS 03] [Kc+, CCS 03]

• Code injection attacks depend on knowing
the victim machine’s instruction set

• Defuse them all by making instruction sets
different and secret

– Its expensive to design new ISAs and build
new microprocessors

4www.cs.virginia.edu/evans/purdue05

Derandomizer

Processor

Automating ISR

Randomizer

Secret Key

Original
Code

Original
Executable

Randomized
Executable

5www.cs.virginia.edu/evans/purdue05

Derandomizer

Processor

ISR Defuses Attacks

Randomizer

Secret Key

Original
Executable

Randomized
Executable

Malicious
Injected Code

Broken
Malicious Code

6www.cs.virginia.edu/evans/purdue05

ISR Designs

Software (Valgrind)HardwareDerandomization

Load TimeCompile Time
Transformation
Time

program length (each
location XORed with
different byte)

32 bits (same key
used for all
locations)

Key Size

XOR
XOR or

32-bit transposition

Randomization
Function

RISE [Barrantes 03]Columbia [Kc 03]

2

7www.cs.virginia.edu/evans/purdue05

How secure is ISR?

Slows down an attack about 6 minutes!

Under the right circumstances…

8www.cs.virginia.edu/evans/purdue05

Memory Randomization Attack

• Brute force attack on memory address
space randomization (Shacham et. al.
[CCS 2004]): 24-bit effective key space

• Can a similar attack work against ISR?

– Larger key space: must attack in fragments

– Need to tell if partial guess is correct

9www.cs.virginia.edu/evans/purdue05

ISR Attack

Attack Client

ISR-protected
Server

Incorrect Guess

Crash!

Attack Client Correct Guess ISR-protected
Server

Observable
 Behavior

10www.cs.virginia.edu/evans/purdue05

Server Requirements

• Vulnerable: buffer overflow is fine

• Able to make repeated guesses

– No rerandomization after crash

– Likely if server forks requests (Apache)

• Observable: notice server crashes

• Cryptanalyzable

– Learn key from one ciphertext-plaintext pair

– Easy with XOR

11www.cs.virginia.edu/evans/purdue05

Two Attack Ideas

• RET (0xC3): return from procedure

– 1-byte instruction: up to 256 guesses

– Returns, leaves stack inconsistent

• Only works if server does something observable
before crashing

• JMP -2 (0xEBFE): jump offset -2

– 2-byte instruction: up to 216 guesses

– Produces infinite loop

• Incorrect guess usually crashes server

12www.cs.virginia.edu/evans/purdue05

Jump Attack

V
u
ln
e
ra
b
le
 B
u
ff
e
r

Overwritten Return Address

0xEB (JMP)

0xFE (-2)

U
n
k
n
o
w
n
 M
a
sk
s

Correct guess
produces
infinite loop

216 possible
guesses for
2-byte
instruction

3

13www.cs.virginia.edu/evans/purdue05

Incremental Jump Attack

Guessing next byte: < 256 attempts

V
u
ln
e
ra
b
le
 B
u
ff
e
r

Overwritten Return Address

0xEB (JMP)

0xFE (-2)

U
n
k
n
o
w
n
 M
a
sk
s

Guessing first 2 byte masks

Overwritten Return Address

0xEB (JMP)
0xFE (-2)

U
n
k
n
o
w
n
 M
a
sk
s

0xCD (INT)

Guessed

Masks

14www.cs.virginia.edu/evans/purdue05

Guess Outcomes

ProgressFalse PositiveIncorrect Guess

False NegativeSuccessCorrect Guess

Observe
“Incorrect”
Behavior

Observe
“Correct”
Behavior

15www.cs.virginia.edu/evans/purdue05

False Positives

• Injected bytes produce an infinite loop:

– JMP -4

– JNZ -2

• Injected bytes are “harmless”, later
executed instruction causes infinite loop

• Injected guess causes crash, but timeout
expires before remote attacker observes

16www.cs.virginia.edu/evans/purdue05

False Positives – Good News
• Can distinguish correct
mask using other
instructions

• Try injecting a “harmless”
one-byte instruction

– Correct: get loop

– Incorrect: usually crashes

• Difficulty: dense opcodes

– No pair that differs in only
last bit are reliably different
in harmfullness

Overwritten Return Address

0x90 (NOOP)
0xEB (JMP)

U
n
k
n
o
w
n
 M
a
sk
s

0xFE (-2)

Guessed

Masks

17www.cs.virginia.edu/evans/purdue05

False Positives – Better News

• False positives are not random
–Conditional jump instructions

–Opcodes 01110000-0111111

• All are complementary pairs:

0111xyza not taken ⇔ 0111xyzā is!

• 32 guesses always find an infinite loop

• About 8 additional guesses to
determine correct mask

18www.cs.virginia.edu/evans/purdue05

Extended Attack

“C
ra
sh
 Z
o
n
e
”

Overwritten Return Address

0xCD (INT)
0xE9 (Near Jump)

3
2

-b
it

o
ff

s
e

t
(t

o
 j
u

m
p

to

o
ri
g

in
a

l

re
tu

rn
a

d
d

re
s
s
)

0xCD (INT)

0xCD (INT)
0xCD (INT)

0xCD (INT)
0xCD (INT)
0x06 (offset)
0xEB (JMP)

• Near jump to return
location

– Execution continues
normally

– No infinite loops

• 0xCD 0xCD is
interrupt instruction
guaranteed to crash

4

19www.cs.virginia.edu/evans/purdue05

Expected Attempts

~ 15½ to find first
jumping
instruction

+ ~ 8 to determine
correct mask

23½ expected
attempts
per byte

“C
ra
sh
 Z
o
n
e
”

Overwritten Return Address

0xCD (INT)
0xE9 (Near Jump)

3
2

-b
it

o
ff

s
e

t
(t

o
 j
u

m
p

to

o
ri
g

in
a

l

re
tu

rn
a

d
d

re
s
s
)

0xCD (INT)

0xCD (INT)
0xCD (INT)

0xCD (INT)
0xCD (INT)
0x06 (offset)
0xEB (JMP)

20www.cs.virginia.edu/evans/purdue05

Experiments

• Implemented attack against constructed
vulnerable server protected with RISE
[Barrantes et. al, 2003]
– Memory space randomization works!

• Turned of Fedora’s address space randomization

– Needed to modify RISE
• Ensure forked processes use same randomization key
(other proposed ISR implementations wouldn’t need
this)

• Obtain correct key over 95% of the time

21www.cs.virginia.edu/evans/purdue05

Attempts Required

4339

attempts
to get first

2 bytes

101,651
attempts

to get

4096
bytes

22www.cs.virginia.edu/evans/purdue05

Attempts per Byte

Drops to

below
24 average

attempts
per byte

~212 attempts

for first 2 bytes

23www.cs.virginia.edu/evans/purdue05

Total Time

4-byte key (Columbia

implementation) in < 3½
minutes

4096-byte key

in 48 minutes

Attacker: “Is this good enough?” Defender: “Is this bad enough?”

24www.cs.virginia.edu/evans/purdue05

How many key bytes needed?

• Inject malcode in one ISR-protected
host

–Sapphire worm = 376 bytes

• Create a worm that spreads on a
network of ISR-protected servers

–Space for FEEB attack code: 34,723 bytes

–Need to crash server ~800K times

5

25www.cs.virginia.edu/evans/purdue05

Maybe less…?

• VMWare: 3,530,821 bytes

• Java VM: 135,328 bytes

• Minsky’s UTM: 7 states, 4 colors

• MicroVM: 100 bytes

26www.cs.virginia.edu/evans/purdue05

E
n

ti
re

M
ic
ro
V
M
 C
o
d
e push dword ebp mov ebp, WORM_ADDRESS + WORM_REG_OFFSET

pop dword [ebp + WORM_DATA_OFFSET]

xor eax, eax ; WormIP = 0 (load from ebp + eax)
read_more_worm: ; read NUM_BYTES at a time until worm is done

cld xor ecx, ecx mov byte cl, NUM_BYTES

mov dword esi, WORM_ADDRESS ; get saved WormIP
add dword esi, eax mov edi, begin_worm_exec

rep movsb ; copies next Worm block into execution buffer
add eax, NUM_BYTES ; change WormIP

pushad ; save register vals
mov edi, dword [ebp] ; restore worm registers
mov esi, dword [ebp + ESI_OFFSET] mov ebx, dword [ebp + EBX_OFFSET]

mov edx, dword [ebp + EDX_OFFSET] mov ecx, dword [ebp + ECX_OFFSET]
mov eax, dword [ebp + EAX_OFFSET]

begin_worm_exec: ; this is the worm execution buffer
nop nop nop nop nop nop nop nop nop nop nop nop

nop nop nop nop nop nop nop nop nop nop nop nop

mov [ebp], edi ; save worm registers
mov [ebp + ESI_OFFSET], esi mov [ebp + EBX_OFFSET], ebx

mov [ebp + EDX_OFFSET], edx mov [ebp + ECX_OFFSET], ecx
mov [ebp + EAX_OFFSET], eax

popad ; restore microVM register vals
jmp read_more_worm

27www.cs.virginia.edu/evans/purdue05

other worm data

guessed (target) masks

host key masks

worm code

saved registers

jmp to read next block

load MicroVM registers

save worm registers

22-byte worm

execution buffer

load worm registers

save MicroVM registers

update WormIP

copy worm code into buffer

WormIP ← 0

move stack frame pointer

save worm address in ebp

Learned
Key Bytes

76 bytes of code
+ 22 bytes for execution
+ 2 bytes to avoid NULL
= 100 bytes is enough

> 99% of the time

MicroVM

Worm code must be coded
in blocks that fit into

execution buffer (pad with
noops so instructions do not

cross block boundaries)

28www.cs.virginia.edu/evans/purdue05

Making Jumps

• Within a block - short relative jump is fine

• Between worm blocks

– From end of block, to beginning of block

– Update the WormIP stored on the stack

– Code conditional jump, JZ target in worm as:

JNZ +5 ; if opposite condition, skip
MOV [ebp + WORMIP_OFFSET] target

29www.cs.virginia.edu/evans/purdue05

Deploying a Worm

• Learn 100 key bytes to inject MicroVM

– Median time: 311 seconds, 8422 attempts

– Fast enough for a worm to spread effectively

• Inject pre-encrypted worm code

– XORed with the known key at location

– Insert NOOPs when necessary to avoid NULLs

• Inject key bytes

– Needed to propagate worm

30www.cs.virginia.edu/evans/purdue05

Preventing Attack: Break Requirement

• Vulnerable: eliminate vulnerabilities

– Rewrite all your code in a type safe language

• Able to make repeated guesses

– Rerandomize after crash

• Observable: notice server crashes

– Maintain client socket after crash?

• Cryptanalyzable

– Use a strong cipher like AES instead of XOR

6

31www.cs.virginia.edu/evans/purdue05

Better Solution

• Avoid secrets!

–Keeping them is hard

–They can be broken or stolen

• Prove security properties without
relying on assumptions about secrets
or probabilistic arguments

32www.cs.virginia.edu/evans/purdue05

Secretless Security Structure
work with Jack Davidson, Jonathan Hill, John Knight & Anh Nguyen-Tuong

Input
(Possibly
Malicious)

Server
Variant

A

Server
Variant

B

Monitor
Output

Input
Replicator

33www.cs.virginia.edu/evans/purdue05

Disjoint Variants

• Any attack that succeeds against Variant A
must cause Variant B to crash

• Monitor observes crash and recovers

Input

Server
Variant

A

Server
Variant

B

Monitor
Output

Input
Replicator

Examples:
Instruction Sets
Memory Addresses
Schedule Interleaving

34www.cs.virginia.edu/evans/purdue05

JO

JNO

JB

JNB

JZ

JNZ

JMP

CALL

…
Variant A Variant B

JNO

JNB

JNZ

CALL

JO

JB

JZ

JMP

Making Disjoint Variants

35www.cs.virginia.edu/evans/purdue05

Challenges

• Engineering

– Input replicator and monitor

– Shared state (databases, files)

– Nondeterminism (session state)

• Security

– Proving variants are disjoint

– Multi-stage attacks

– Achieving high-level disjoint properties

36www.cs.virginia.edu/evans/purdue05

Jaws

Diversity

depends on
your

perspective
Slide from my USENIX Security 2004 Talk, What
Biology Can (and Can’t) Teach us about Security

7

37www.cs.virginia.edu/evans/purdue05

Summary

• Diversity defenses defeat undetermined
adversaries

• Determined adversaries may be able to
determine secrets
– Break ISR-protected server in < 6 minutes

• Secretless diversity designs promise
provable security against classes of
attack

38www.cs.virginia.edu/evans/purdue05

Credits

Nora “NORAndomizer” Sovarel Nate “Byte Annihilator” Paul

Genesis Project: Jack Davidson, Adrian Filipi, Jonathan Hill, John Knight,

Anh Nguyen-Tuong, Chenxi Wang (CMU)
Thanks: Gabriela Barrantes (RISE code), Stephanie Forrest, Fred Schneider

Sponsor: DARPA SRS (Lee Badger), NSF CAREER/ITR

39www.cs.virginia.edu/evans/purdue05

Questions?

