
5/22/2009

1

Jeff Shirley and David Evans

University of Virginia

Department of Computer Science
2

A computer is secure if

you can depend on it

and its software to

behave as you expect.

(Garfinkel, Spafford &

Schwartz)

3
Images: HowStuffWorks.com; DevCentral.com; www.virtualblight.com

Malware Phishing CAPTCHAs

Next: Clickjacking

4

http://www.cs.virginia.edu/evans/clickjack/demo.html

5

<iframe id="victim“

src="http://www.amazon.com/Hacking-Dummies-..."

style="opacity:0.4;...">

</iframe>

6

function onclick_event_handler(e) {

var c = get_position(e); // returns position of mouse click

document.getElementById('victim').setAttribute('style',

'position:absolute;'

+ 'top:' + (c.y - 240) + ';'

+ 'left:' + (c.x - 840) + ';'); // move to button location

}

5/22/2009

2

� No good server-side defense

� Server sees two perfectly normal requests

� Client-side defenses

� Change browser to prevent attack page

▪ e.g., no transparent frames, better display-
sharing policy

▪ Need to break backwards compatibility

� NoScript’s approach: warn when clicks
reach hidden elements

� General defense: only allow actions that
are consistent with user intentions

7 8

“BINDER exploits a unique characteristic

of personal computers, that most

network activities are directly or

indirectly triggered by user input.”

BINDER
[Cui, Katz & Tan, USENIX Tech 2005]

Polaris

[Stiegler, Karp, Yee, Close &

Miller, CACM 2006]

CapDesk [HP; Google]

[Chou, Ledesma, Teraguchi,

Boneh, Mitchell, NDSS 2004]

Not-a-Bot
[Gummadi, Balakrishnan, Maniatis, Ratnasamy,

NSDI 2009]

� Systematically incorporate user intentions in

security policies

� Outline:

� Securely capture user actions

� Robustly infer user intentions from those actions

� Express and enforce policies that incorporate user

intentions

9 10

How can we securely capture

user intentions?

11 12

User-Intent Based Access Control

VM Captures

User Actions

before they

reach Guest OS

S
y

ste
m

 C
a

lls

VM Captures

Display after it

leaves Guest OS

5/22/2009

3

� Inferring User Intent: depends on what user

does and sees

� Designing UIBAC Policies: grant permissions

based on the history of user intentions and

program actions

� Intercepting actions, enforcing policies

13

Galen Hunt and Doug

Brubacher. Detours:

Binary Interception of

Win32 Functions. 1999.

Intent of user action depends on apparent

UI element user is interacting with

14

vs.

15

Prototype compares visual output from a virtual machine to

“visual templates” that specify look of user interface elements

� Templates consist of a bitmap image plus a

set of regions that are ignored during

comparison

� Compare screenshot with image template

� Use precomputed SHA-1 hash for speed

� Ignored regions generalize visual templates

� Tradeoff between generality and exactness of UI

matching

16

17 18

Collect screenshots of related dialogs by running trusted applications

99.75% of pixels identical

5/22/2009

4

19

Generalize by clustering mismatched pixels, find minimal

bounding boxes of varying regions, exclude from template

� Many ways to express same intention

� Mouse click sequences, keyboard shortcuts, etc.

� Sets of rules of inferring particular abstract

intentions

� e.g., intent to open file f

20

21

User-Intent

Based

Policies

� Universal Policies

� Anti-Malware: apply to all processes

▪ access files selected by user (e.g., File open/save dialog)

▪ access files and directories installed with application

▪ access files created by application

� Take advantage of user intentions to enable default

strict policy that is relaxed based on user actions

� Application-Specific Policies

� Resource: amazon.com/add-to-cart

� Granted by: user click on template

22

Mandatory Access Control

� Default deny

� Permissions granted

based on history of all

user interactions

23

file_save(Filename f, Process p)

grants (Process p) Write (Filename f)

file_save(Filename f, Process p)

grants (Process p) Create (Filename f)

file_open(Filename f, Process p)

grants (Process p) Write (Filename f)

program_creates_file(Filename f, Executable e)

grants (Executable e) Write (Filename f)

program_installer(Process p)

grants (Process p) Create (Filename f)

program_installer_creates(Process p, Executable e, Directory d)

grants (Executable e) Create (Directory d)

program_installer_creates(Process p, Executable e, Filename f)

grants (Executable e) Write (Filename f)

Program Actions Policy Violations Dialogs Validated

Firefox 3.0.5 4739 2 �

iTunes 8.0 13382 0 �

Windows Media Player 11.0 8217 8 �

Wordpad 5.1 2897 0 �

Word 2007 6303 5 No

24

Uses IE as embedded

component, accesses

history and cookies

Flash component files Uses non-standard

UI elements

Prevention: 30 effective malware samples: all malicious

behaviors prevented (except for limits in intercepting actions)

False Positives

5/22/2009

5

25

So, what about

those CAPTCHAs?

26

S
y

ste
m

 C
a

lls

� Network messages include TPM-signed tokens

� Option 1: attest to filter that collects and signs
screenshots and inputs

� Option 2: attest to analyzer that signs verified
events

� Sample Applications:

� No more CAPTCHAs!

� Eliminate click fraud (only pay for signed clicks?)

� Prevent worm propagation

� Non-repudiatable transactions

27

� Security is all about user intentions

� Expressed through normal interactions, not security dialogs

� Understanding them is hard: interpreting intentions
depends on understanding what users do and see

� Lots of opportunities to use collected user intentions

� Desktop User-Intent Based Access Control

▪ Universal policies to thwart malware

▪ Application-specific policies

� Externally-verifiable user actions

▪ Verifiable, non-repudiatable user transactions

28

29

http://www.computingbook.org/
1. Defining Procedures

2. Analyzing Procedures

3. Improving Expressiveness

4. Limits of Computing

5. Programming the Web

Main underlying themes:

- Recursive definitions

- Abstraction

- Universality (Programs/Data)
30

Jeff Shirley and David EvansJeff Shirley and David Evans

University of Virginia University of Virginia

evans@cs.virginia.eduevans@cs.virginia.edu

http://www.cs.virginia.edu/evanshttp://www.cs.virginia.edu/evans

