
Generation of Pseudorandom Numbers From
Microphone Input in Computing Devices

A Thesis
In TCC 402

Presented to

The Faculty of the
School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science in Computer Science

By

Giles Cotter

3/26/02

On my honor as a University student, on this assignment I have neither given nor
received unauthorized aid as defined by the Honor Guidelines for Papers in TCC

Courses.

Approved___(Technical Advisor)
 Professor David Evans

Approved___(TCC Advisor)
 Professor I.H. Townsend

 i

Preface

I would like to give my thanks to my two Thesis advisors. Without their advice and

assistance this project would most likely have never been completed. My technical

advisor, Professor David Evans, provided the technical know-how that stimulated me in

the development of my topic, and in its fruition. His advice pointed me in the right

direction on many occasions, and redirected me when I went astray. I would like to thank

him very much for his advice and support.

Even with a sound topic, I would have been stuck if I could not have successfully

communicated my work on paper. For invaluable assistance in the actual writing of the

thesis I have to give my thanks to Professor Ingrid Townsend. Her teaching and

prompting throughout the TCC 401 and 402 series greatly increased my ability to sit

down and write this thesis. I have no doubt that the TCC series will prove a valuable

asset throughout my post-UVA career.

 ii

Table of Contents

Preface...i
Table of Contents.. ii
Glossary of Terms and Acronyms ... iii
Abstract ...iv
Chapter 1: Introduction... 1

1.1 Rationale ... 2
1.1.1 Why is this a relevant topic?... 2
1.1.2 What did this research require?... 3

1.2 Impact Statement ... 3
1.2.1 Areas of Impact... 4
1.2.2 Overall Impact Assessment.. 7

1.3 Report Structure .. 8
Chapter 2: Background ... 9

2.1 Background Information... 9
2.1.1 Random Numbers.. 9
2.1.2 Key Based Encryption ... 10
2.1.3 WAV File Format ... 11

2.2 State of the Art .. 11
2.2.1 Yarrow-160 and Tiny .. 11
2.2.2 Random.org .. 12
2.2.3 Biometrics - Key Frequency and Voice Based Key Generation............................... 13

Chapter 3: Algorithmic Design and Description .. 15
3.1 Program Input ... 15
3.2 Program Functionality .. 16

3.2.1 Program Breakdown.. 17
3.3 Program Output... 18

3.3.1 Sample Program Execution .. 19
Chapter 4: Data and Test Suite Description.. 20

4.1 Data Collection ... 20
4.1.1 Table of Data Collected... 21

4.2 ENT: A Pseudorandom Number Sequence Test Program..................................... 22
4.2.1 A Step-by-Step ENT Example .. 22

Chapter 5: Analysis of Results.. 26
5.1 Unprocessed Results ... 26
5.2 Processed Results .. 27
5.3 Analysis of Results ... 29

Chapter 6: Conclusion... 31
Bibliography.. 33
Appendix A: Listing of Program Code .. 35
Appendix B: Full Listing of Results .. 38
Appendix C: WAV File Format... 46

 iii

Glossary of Terms and Acronyms

C++ – High level programming language
COE – Common Operating Environment
CS – Computer Science
EE – Electrical Engineering
Entropy – a general term for randomness
GCCS – Global Command and Control System
IT – Information Technology
MB – Mega-Byte – A unit of storage size in computers. 1MB = 220 x 8 bits
PC – Personal Computer
PDA – Personal Digital Assistant
WAV – Waveform Audio File Format

 iv

Abstract

Randomness is at the core of the encryption that keeps data secure in the world today.

Unfortunately, it is very hard to find good sources of randomness. The aim of this project

was to determine if that the computer microphone could be used as a valid source of

randomness for use in various applications. The greatest challenge with developing

methods of random number generation is ensuring that they are not breakable by

someone with perseverance and technological know how. Therefore, the primary goal of

this project was to develop a method of random number generation that is very hard, if

not impossible, to predict. Second, computing devices are becoming much smaller, and

are losing many of the traditional sources of randomness, such as the keyboard.

Therefore, the second goal of this project was to develop a random number generation

process that can be used on a wide range of computing devices.

To solve these problems, I chose to use the microphone, a feature that is now standard

in almost all new PCs and many PDAs. Since each microphone will record sound

slightly differently owing to mechanical differences, my hypothesis was that a

microphone is a good device from which to gather randomness. The main objective of

this project was to develop a method that uses the random sound input to a microphone in

the production of random numbers.

Through testing, I have determined that a microphone based random number

generator is feasible and that ambient sound is not suitable for the majority of entropy

work. Radio static, however, produced very good entropy. Therefore, with a carefully

chosen sound source, a microphone can indeed act as a very effective source of

randomness.

 1

Chapter 1: Introduction

Encryption has become a necessary precaution when transmitting data from one

location to another. However, encryption algorithms are almost always based on a

pseudo-random number generator, which is used to start the algorithm. If a person can

determine the random number that was used as the “seed” or starting point of the

encryption, then that person can easily decrypt the data. Therefore, it is necessary to have

forms of random number generation that are not easy to replicate. The aim of this project

was to demonstrate that a microphone could act as an effective source of randomness.

The problem that I dealt with for this project was twofold. First, the greatest

challenge when developing methods of random number generation is ensuring that they

are not breakable by someone with perseverance and technological know how.

Therefore, the primary goal of this project was to develop a method of random number

generation that is very hard, if not impossible, to predict. Second, computing devices are

becoming much smaller, and are losing many of the traditional sources of randomness,

such as the keyboard. Therefore, the second goal of my project was to develop a random

number generation process that can be used on a wide range of computing devices.

To solve these problems, I have used the microphone, a device that is now standard in

almost all new PCs and PDAs. Since each microphone records sound slightly differently

owing to mechanical differences, I hypothesized that a microphone may be a perfect

device from which to gather randomness. My goal in this project was to develop a

method that uses the random sound input to a microphone in the production of random

numbers. Through testing, I have determined whether a microphone based random

number generator is feasible, secure and useful. As will be discussed in more detail later,

 2

my experimentation led me to the conclusion that a microphone based random number

generator is indeed feasible. However, there are several restrictions that must be in place

in order for this to be true. Ambient noise did not work well at all, whereas radio static

was very effective.

1.1 Rationale

This thesis project attempts to show that microphone input could be a valid and

successful means of producing random numbers for encryption. My main goal

throughout the project was to develop an effective algorithm that produces random

numbers from the input to a computer microphone. In order to show that the algorithm I

developed is secure, I conducted thorough tests that conclusively determined whether or

not the random numbers produced by the algorithm could be easily predicted.

1.1.1 Why is this a relevant topic?

The production of random numbers is key to the successful encryption of data on

computer systems. Therefore, easy and secure ways of producing randomness are very

useful. Microphones are now standard equipment (or will be in the very near future) on

virtually all computers and PDAs. An algorithm that utilizes this resource to produce

effective randomness would have great value on a very wide range of computers and

computerized devices. Therefore, the main benefit of such an algorithm is its usefulness

on an amazing assortment of machines, including those that are lacking in proper security

at this moment.

This lack of security is an especially pressing problem on PDAs and other wireless

devices. These machines are becoming almost ubiquitous in the business world. Since

 3

they are being used more and more for sensitive business transactions, it is essential that

effective security measures be implemented. A microphone based random number

generator would not be hard to implement on PDAs, since most have the required

hardware built in, and the software requirements would be minimal. This type of

algorithm would therefore be attractive to PDA software and hardware designers, as it

would not require extensive modifications to the existing hardware.

1.1.2 What did this research require?

I first researched the main topics in this area to find out the state-of-the-art. Next, I

created an algorithm that takes the sound input from a microphone and transforms it into

random numbers. Finally, through experimentation and testing, I proved the viability of

the algorithm. The usefulness of the algorithm depended on its ability to produce

cryptographically sound random numbers. Now that the project is complete, I have

determined the feasibility of a microphone based random number generator.

1.2 Impact Statement

As with any project, it is important to consider the possible impacts and repercussions

of the technology that I have implemented. After analyzing the subject matter of my

project, and the technical area in which it resides, I have determined that there are two

general areas of possible impact: Enhanced computing security and expanded security

support. Aside from these major concerns, there are also smaller, more focused areas of

impact. These include E-commerce applications, military applications, and social

impacts. The following sections detail the possible positive and negative impacts in each

of these areas.

 4

1.2.1 Areas of Impact

Enhanced Computing Security

Depending on the algorithm used, encryption algorithms that use the random numbers

created by a successful microphone generator could be very secure. This is because the

microphone will produce randomness that is very hard, if not virtually impossible, to

reproduce. This will be a positive impact in that it will increase the safety and

effectiveness of computer security as a whole, by offering a new alternative to the current

methods of random number generation. Many methods used presently have proved to be

easy to defeat or replicate.

There could be negative impacts to computer security, however. If microphone based

encryption was adopted, there is the possibility that in the future a new technological

advancement would make it possible to successfully duplicate the randomness produced

by the algorithm. This would cause a huge problem, especially if the method was in wide

usage. Since the microphone is such a commonplace integrated device, there is a strong

possibility that a vast number of devices could be using such random number generation,

and thus would be vulnerable should such a flaw be found.

Expanded Security Support

The introduction of an effective microphone based generator would enable the easy

production of random numbers on a huge variety of computing devices. This would

basically include any device with an integrated microphone and sound processing

technology built in. Because of the wide availability of microphones in new computing

devices, it will be possible to make secure transactions from devices that previously were

 5

unavailable, or unsafe to use. This is obviously a very positive impact, as a high level of

security would become available to a hugely expanded array of computing devices.

E-Commerce Applications

E-commerce from wireless PDAs would be facilitated by the introduction of a

microphone based random number generator. Current PDAs, while having quite

advanced wireless communications, are thoroughly lacking in security. This is one factor

that makes online purchasing a risky undertaking with the current level of technology.

However, increasingly PDAs are being equipped with integrated microphones and basic

sound processing hardware and software. This is all that would be needed to implement a

microphone based random number generator to be used for encryption. Successful

random number generation would therefore enable a surge in E-commerce, since PDAs

are almost ubiquitous items these days. This gives online retailers the opportunity to

obtain customers even when the customers are not in their office or at their home PCs.

With the success of microphone-based encryption, the time frame in which people could

make online purchases would be expanded greatly. This is a positive impact not only for

the retailers themselves, but the economy as a whole.

Military Applications

The military is currently using a Global Command and Control System (GCCS) that

allows the dynamic tracking of military units all over the globe. During my internship at

the Science Applications International Corporation, I was exposed to an extension of this

system. This extension would allow units all over the globe to view positioning

information in real time on small wireless computing devices, such as pen tablet

computers. One of the main problems with the development of this system is the security

 6

of the transmissions, since the data to be transmitted is very sensitive. As these are small

devices, not many traditional methods of random number generation will be available.

However, microphones are becoming standard equipment in the vast majority of

computing devices, even those smaller than the ones that would be used in this case.

Therefore, a microphone based random number generator could be a very useful and

secure method of generating keys for the encrypting of this tactical data before it is

wirelessly transmitted.

There are, however, two possible long-term negative impacts. First, should the

encryption method come to be used by the military, and then a flaw be found, national

security could be at risk, since anyone possessing the means to replicate the random

numbers would be able to crack the encryption used by the military devices. This could

have terrible consequences, especially if the devices are sending classified or battlefield

tactical data. Fortunately, this scenario is not very likely since the military is constantly

upgrading its technology, and would most likely discover any flaws in the algorithm

before would-be troublemakers. Second, military enemies could possibly adopt this

method to obtain higher level of encryption security. This would add to their strength

and effectiveness. This is unfortunately a reality in the world today. However,

microphone-based encryption would not necessarily increase the strength of the

encryption, but rather provide a simple source for key generation. Since the United

States recently lifted the export restriction on powerful 128-bit encryption, I do not

believe that the availability of a microphone based random number generator would

compromise the security of the United States military, as powerful cryptographic

algorithms are already widely available.

 7

Social Impact

On a psychological note, the ability for people to make easy and secure

transmissions from wireless PDAs anywhere in the world would mean that the wired

world is encroaching even more on every aspect of life. While traveling, a person used to

be isolated from the hustle and bustle of the business world. However, with effective

encryption methods for even such small devices, a person would no longer be able to get

away from work or the tech world in general. This may cause a rise in stress, and other

psychological problems caused by lack of rest or working too hard. For instance, even

when a businessperson is on vacation in this day and age, he or she is rarely without a

cell phone, pager, or computer. Therefore, the relaxation of the vacation time is lost,

since the office is able to interrupt at any moment. Stress levels will obviously rise as a

result. This can be seen as an unfortunate, but inevitable, impact of the rapid

advancement of technology as a whole.

1.2.2 Overall Impact Assessment

After carefully weighing the potential positive and negative impacts of this

project, I have come to the conclusion that the possible gains are worth the risks

involved. The advancement in personal, business, and military technology far outstrips

any of the losses that may occur in the long-term. An increase in overall computing

security, as well as a hugely expanded variety of secure devices would, in turn, bring

great benefits to the personal, business and military worlds. Therefore, based on this

analysis, I believe that a microphone based random number generator was a worthwhile

and socially responsible project to pursue.

 8

1.3 Report Structure

 Chapter 2 presents background information that is necessary for a full

understanding of the subject matter being dealt with in the project. This chapter also

discusses the state-of-the-art in the area of random number generation and encryption.

Chapter 3 discusses the process that went into the creation of the algorithm used in the

production of the data for this project. The actual listing of the algorithm code used can

be found in the appendices at the end of this report. Chapter 4 discusses the test suite that

was used to evaluate the data collected, and the actual sound samples that were obtained.

Chapter 5 describes the results that were collected and gives an analysis of the

implications of this data. As the full data set is very long and unreadable, only simple

descriptions of each file are included in the appendices to this report. Finally, Chapter 6

concludes the report with a summary of results, and a general statement as to the success

or failure of the project.

 9

Chapter 2: Background

This Chapter gives the reader the relevant background information that is needed to
have a better understanding of the subject matter covered in this report. It also discusses
the state of the art in the area of random-number generation and encryption.

This section of the thesis report gives background information and a brief overview of

important aspects of random numbers and their uses in the modern world. This will give

the reader a clearer picture of the true worth of the project. Since the rest of the project

report deals only with the production of random numbers and not their possible

applications, this chapter also provides a broader view of the uses of randomness in

technology today.

2.1 Background Information

2.1.1 Random Numbers

What is commonly referred to as a “random number” in the computer science world

is actually not truly random. Due to the non-random nature inherent in computers, it is

virtually impossible to generate real randomness, and so, the numbers that are produced

by computer generators are actually “pseudorandom” numbers. Pseudorandom numbers

are “numbers that are generated from some (hopefully random) internal values, and that

are very hard for an observer to distinguish from random numbers”[8:1]. Pseudorandom

numbers are of great importance in cryptography, as they are used to generate keys for

encryption algorithms, and nonces for authentication protocols. Unfortunately, many of

the internal values available in computers are in no way random enough. The system

clock, which is often only accurate to milliseconds, is the classic example of a bad source

of randomness. Surprisingly, the system clock is actually used in many programs. These

 10

programs are not secure, as the system clock is very predictable, and it is not hard for an

attacker to ascertain the pattern being used. This reveals the main weakness of

pseudorandom numbers. If the sources of entropy, or randomness, are not random

enough, then systems using these pseudorandom numbers for encryption will be very

vulnerable.

2.1.2 Key Based Encryption

The main use of random numbers in the tech world today is in encryption algorithms.

Encryption is the process by which data is protected by being transformed into

‘ciphertext’ that can only be understood by an authorized person [1]. Manual encryption

has been used ever since the time of the Romans, but it is now most commonly used on

computer systems to send data securely. A widely used form of encryption is symmetric

key based encryption. In the most basic form of key based encryption, the sender

encrypts the data using the encryption algorithm with a special “key” number plugged

into it. On the receiving end, the same key must be used in order to decrypt the data [1].

A variation, known as public-key encryption, uses two keys. In this case, one public key

is used to encrypt data, and another private key is used to decrypt it on the other side [2].

These algorithms use random numbers to produce keys. In order to maintain secure

encryption, it must be very hard, if not impossible for an unauthorized user to guess the

correct key values. Therefore, the numbers used as keys must be as close to truly random

as possible. This emphasizes how important it is that the microphone based random

number generator produce numbers that are virtually impossible to replicate.

 11

2.1.3 WAV File Format

In order to create randomness from sound, one must store the data in a format that is

easily modifiable and accessible. One of the simplest forms of sound file is the WAV

file, or Waveform Audio File Format [7]. This file format was developed by Microsoft,

and has been supported by Windows for many years. The main advantage of the WAV

format, with respect to this project, is that the sound data is stored in a completely raw

format. In other words, no compression or manipulation is performed on the sound data

as it is recorded. This is obviously not ideal when disk space is a concern. A three to

four minute WAV file can take up to 50MB of space, whereas other formats that use

compression take only about 3MB for the exact same data.

In this project, however, this raw data storage is ideal, as it means the data stored is

pure and unmodified. This allows for the direct and easy manipulation and analysis of

the sound data. The data itself is stored in a series of chunks called bytes. Each byte

consists of 8 binary bits. Each of these bits can be either 0 or 1, meaning there are 256

possible permutations in each byte. The information about the file, including the

sampling size, length, and number of channels, is stored in a header at the beginning of

the file. The data simply follows the header as a sequence of bytes. A detailed

breakdown of the header and data of the WAV file format can be found in Appendix C.

2.2 State of the Art

2.2.1 Yarrow-160 and Tiny

One of the best examples of a current random number generator is the Yarrow

Cryptographic Pseudorandom Number Generator [8]. Designed by Counterpane

Systems, this pseudorandom number generator is very effective at producing

 12

pseudorandom numbers that are as close to being truly random as possible. To

accomplish this, Yarrow was designed from the ground up to compensate for the flaws in

earlier generators, and to compensate for the types of possible attacks that a malicious

user might launch against the system [8]. Yarrow can collect entropy from a variety

sources in the host system, and is very effective at making the most of this randomness.

One of the most successful implementations of the Yarrow standard is the Tiny

Pseudorandom Number Generator, and the related Tiny Encryption Algorithm [6]. Tiny

has empirical test data that supports the claim that the Yarrow specification is capable of

very good random number generation. However, once again, the true effectiveness of the

system is determined by the randomness of the sources provided to it. As is stated in the

Yarrow documentation, “implementors should be very careful in determining their

sources. The sources should not be closely linked or exhibit any significant

correlations”[8:7]. In other words, even the very effective Tiny generator can be

vulnerable if the inputs to the generator are not random enough. This, once again,

highlights the importance of the randomness of the sources of entropy in random number

generators. Even the most advanced and sophisticated generator can theoretically be

cracked if it has bad sources of randomness. This project will aim to prove that

microphone input is a very good source of randomness for use in such generators.

2.2.2 Random.org

Random.org is a web site that has been very successful at using sound to produce

randomness [4]. The creator of the web site, Mads Haahr, has created a random number

generator that uses a microphone and processing software to produce very good

pseudorandom numbers. The basic approach that Haahr used was to feed environmental

 13

static into a Sun computer through a microphone. This recorded data was then fed

through manipulation software, which transformed the sound data into usable random

data. The randomness produced by the Random.org generator is streamed continuously,

and can be linked to directly from other web pages. In this way, other web page

administrators who require random numbers can simply draw from the Random.org

stream. Overall, it is a very well organized operation, and adds a lot of credibility to the

hypotheses of this project. Random.org was an invaluable aid in the design and testing of

my processing algorithm and data. In fact, I first discovered the randomness test suite I

used to test my data, ENT [5], on Random.org. This is the test suite that Random.org

uses to evaluate the value of all the numbers it produces. The effective evaluation of

entropy, and the actual workings of the ENT test suite are discussed in detail in Chapter

4.

2.2.3 Biometrics - Key Frequency and Voice Based Key Generation

Aside from the obvious application in encryption, there are many other uses of

randomness being researched today. The ultimate goal of these research projects is to

find a source of randomness that is completely impossible to predict or duplicate. The

sources that are currently being examined range from pen input into PDAs to fingerprints

and retina scans. The basic premise behind all of these new approaches is to use the

natural randomness that is inherent in the person using the system. The use of these

inherent human qualities in computer security is known as biometrics. Two promising

biometric sources of randomness are keystroke frequency [10] and the human voice [9].

Keystroke frequency techniques base their randomness on the rhythm with which a

user types. As Fabian Monrose states, when a person types it is possible to track the

 14

exact latencies associated with that person’s typing style. Through this analysis, it is

possible to construct a unique “signature” of sorts that can be used to positively identify

the individual typing [9]. Therefore, if the rhythm with which one types is unique, it

makes sense that this uniqueness could be used as the key to an authentication program.

This is closely related to key based encryption programs which also use keys as a form of

authentication.

The second, and more recent, research deals with the human voice. In this case

researchers are attempting to use a spoken password, rather than keyboard measurements,

to authenticate a user. This is an even more promising source, as a voice can have more

inflections and variances than even keyboard rhythm [9]. It is easy to see that my project

is related to this research, as microphone generated keys are involved. However, rather

than using a specific voice to match a password, I will be using a microphone to gather

random noise, and will then translate that into pseudorandom numbers.

The research into biometrics can be seen as the opposite end of the spectrum of

randomness experimentation, with respect to this project, as it deals more with repeatable

randomness inherent in a human being. This randomness should not be able to be

reproduced by anyone other than the human that produced it in the first place. However,

the main point is that it is repeatable. This project is aimed at producing randomness,

with a microphone, which cannot be repeated ever.

 15

Chapter 3: Algorithmic Design and Description

This Chapter discusses the process that went into the creation of the algorithm used
to transform sound data into pseudo-random numbers. It also presents a step-through of
the main functionality of the code.

The main standard that I set forth when designing the processing code for this project

was that I should aim to modify the data as little as possible. I wanted to see how much

modification was necessary to achieve good randomness. A description of exactly how I

judged which randomness was good can be found in Chapter 4; this is where the data and

test suite are detailed in full. As it turns out, the modifications that were necessary to

achieve acceptable levels of entropy were minimal, but the coding was far from simple.

The alterations necessary for this project required direct access to the individual bits of

the data. In my experience, C++ is not designed to deal with data at the bit level

effectively. This proved to be the most challenging aspect of the coding for the project.

The following sections describe the processing program at a high level. In depth coding

minutiae are not necessary to understand what the program does, and are therefore not

detailed. A full listing of the code can be found at the end of the report, in Appendix A.

3.1 Program Input

The data for this project was composed of a series of WAV files recorded with a

computer microphone under various conditions. As described in Chapter 2, a WAV file

consists of a descriptive header followed by a stream of sound sample bytes. The header

file is very structured, and therefore would detract from any randomness in the file. So,

instead of simply feeding a WAV file directly into my processing software, I first

manually strip the header off the file. This is as simple as opening the file in a text editor

 16

and deleting the header bytes as described in the WAV specification (Appendix C).

Originally, I had planned to build this header removal into the processing software.

However, I discovered that the length of the WAV header actua lly varies slightly from

file to file. Therefore, I could not generalize the removal into a section of code, and had

to resort to manual deletion. Once the header is truncated, the remaining file consists of a

stream of raw sound data, and is ready to be plugged into the processing software. This

raw data file, therefore, is the required input for the processing software.

3.2 Program Functionality

After preparing the input data file, as described above, the processing software can be

run on it. What follows is a simple breakdown of the main functionality of the

processing code. It will become obvious that the actual modifications performed by the

code are not extensive. This is in keeping with my philosophy of making minimal

changes to achieve acceptable levels of entropy. Furthermore, as discussed earlier, the

main challenge in writing this code was not the modifications themselves, but rather

dealing with the data at the bit level using a high level programming language.

The core action of the program is the removal of the high seven bits of every data

byte. Recall that each byte consists of eight bits. Basically, every data byte is read in one

by one, the first seven bits encountered are removed, and the remaining eighth bit is

written to the output file. When the processing is complete, therefore, the output file

consists of the concatenation of the eighth bits of every byte in the original input data file.

The reasoning behind this is simple. The high seven bits of every byte will quite often be

identical. Leaving these duplicate bits in will severely lower the entropy present in the

output file. As well as being suggested by my technical advisor, this truncation of bits is

 17

one of the first actions taken by the software behind the very successful Random.org

generator (see Section 2.2.2). The validity of this approach can clearly be seen in the

results of this project, as will be described in Chapter 5.

When I was first wrote the code for the processing software I also had a routine that

removed “silence” characters from the data before processing it. A silence character is a

sequence of bits inserted by the recording program when the microphone is not picking

up any sound at all. Through experimentation, I found that the silence character

consisted of the eight bit sequence “10000000.” Therefore, my initial code made a pass

through the data and removed all bytes containing this sequence. However, when I

eventually reached the testing phase, I soon found that I could not achieve good entropy

with the silence characters removed. After taking out the removal code, the entropy

increased dramatically. Therefore, the final version of the code, as listed in Appendix A,

does not remove silence characters.

3.2.1 Program Breakdown

Setup Phase:

• Prompt the user to enter the input filename of the raw data file to be processed.
This is stored so that the software knows where to look when it is fetching the
input data.

• Prompt the user to enter the filename of the output file to create. This filename is

stored and used later when output is being written.

• Open the raw data file, using the input filename provided by the user, and copy

the sound data into a buffer where it will be easily accessible during the remainder
of the program.

• Report the total number of bytes collected to the user.

 18

Processing Phase:

• Remove the high 7 bits of every byte. To do this loop through each individual
byte, access the binary data, and only store the 8th bit. The other 7 bits are simply
discarded.

• Save the 8th bits of every byte, ready to be written to the output file.

Output Phase:

• Concatenate the collected 8th bits together into the final output form.

• Write the output data to a filename and location as given by the user in the setup
stage. This file will then be accessible to the user for testing.

• Inform the user that processing is complete.

• Perform final clean up, and exit.

3.3 Program Output

What follows is a sample run-through of the program to illustrate the user prompts,

and the activities required of the user. As I had to run this processing script for every

WAV file I recorded, I endeavored to make it as simple and fast as possible. Therefore,

the program requires a minimal amount of typing and interaction, while still offering

flexibility. It should be noted that the program pauses on several occasions to allow the

user to enter information, or to give the user time to read the information presented on the

screen.

The final output of the processing program is a data file containing a modified stream

of bytes of information. This file is saved in the location specified by the user during

program execution. This file is completely ready to be examined by the testing suite, and

no further modification is required. The actual testing procedures are discussed in

Chapters 4 and 5.

 19

3.3.1 Sample Program Execution

|~~~~~~~~~~~~~~~~~~~~~~~|
WAV Processing Script
Author: Giles Cotter
 ~~~~~~~~~~~~~~~~~~~~~~~ 
 
 
Please enter the WAV data file to process: ./data/base/base.bin 
 
             The input file to be used is './data/base/base.bin'. 
 
 
Please enter the output data file to save to: ./output/test.out 
 
             The output file to be used is './output/test.out'. 
 
 
Press any key to begin processing... 
 
 
The complete file is in a buffer. 
Number of characters collected = 1323000. 
Therefore, this file consists of 10584000 bits. 
 
Press any key to continue... 
 
 
# of data bytes available: 1323000 
# of bytes used for lowest order bit: 1323000 (divisible by 8) 
Therefore, there will be 165375 bytes after processing. 
 
Press any key to continue... 
 
 
Processing complete.



 20 
 
 

Chapter 4: Data and Test Suite Description 
 

This Chapter discusses the testing procedure used in obtaining the data collected 
during the course of this project. It also explains the test suite that was used to evaluate 
the level of randomness present in this data. 
 

4.1 Data Collection 
 

Once I had completed the processing software, I was ready to obtain the data needed 

to prove the feasibility of a microphone-based system, and proceeded to record every 

sound file with the standard Windows Sound Recorder 32, in WAV file format.  Sound 

Recorder has a maximum recording length of one minute, and so each data file was 

allowed to record for the maximum one minute.  I recorded in 8-bit mono sound at a 

sampling rate of 22.05kHz.  To give myself a control case I recorded one WAV file with 

the microphone disconnected.  This is the equivalent of recording in a completely silent  

room.  For the remaining data, I decided to attack the problem in two different ways.  The 

first set of recordings I made consisted of ambient room noise, with the microphone in 

varying positions in the room.  This was to establish whether a standard computer 

microphone could actually draw enough sound from a room with only small sounds such 

as typing or low talking occurring.  The second set of recordings were of various radio 

frequencies with nothing but static on them.  This was more in following with the 

example of Random.org, and was meant as an alternate method in case ambient sound 

failed to produce the required levels of entropy.  As will be discussed in Chapter 5, the 

standard computer microphone turned out to be very insensitive, and thus severely 

limited the usefulness of ambient noise, but performed much better on a direct feed of 

static from a radio.  The following table gives a summary of the data samples collected.   



 21 
 
 

4.1.1 Table of Data Collected   

 
Note: files are listed after header has been removed, and are therefore listed as .bin rather 
than .wav files. 

 
Data File Name Location Recorded/FM Station used 

 
Base.bin Recorded with microphone unplugged (control) 

Ambient1.bin Recorded directly in front of computer 

Ambient2.bin Recorded with microphone on sitting computer case 

Ambient3.bin Recorded with microphone up on desk 

Ambient4.bin Recorded with microphone sitting in the middle of the room 

Ambient5.bin Recorded with microphone in door to adjoining room 

Radio1.bin Recorded with radio set to 87.5 FM  

Radio2.bin Recorded with radio set to 89.0 FM 

Radio3.bin Recorded with radio set to 98.4 FM 

Radio4.bin Recorded with radio set to 99.6 FM 

Radio5.bin Recorded with radio set to 102.8 FM  

Table 1:  A Listing of Data Files 



 22 
 
 

4.2 ENT:  A Pseudorandom Number Sequence Test Program 
 

To be able to judge whether or not the data I collected had a high level of entropy, I 

needed an easy to use set of tests that would give me clear results.  After some research I 

discovered that there are several tests used to determine the entropy content of a data 

sample.  Five of the most widely used tests are the information density test, the Chi-

square test, the Arithmetic mean test, the Monte Carlo value for Pi, and the Serial 

Correlation Coefficient.  The calculation in some of these tests can become very 

complicated.  Luckily, a freeware program entitled ENT [5] performs these five tests on a 

data file, and prints out easy to understand results.  This is the test suite tool that 

Random.org uses to evaluate all of the random numbers that they produce.  The following 

section presents an example output from the ENT program, and explains each of the tests 

in detail. 

4.2.1 A Step-by-Step ENT Example 
 

Here is a sample of the output that the ENT program returns for a data file.  This is 

the example given on the ENT documentation web site [5]. 

 
Entropy = 7.980627 bits per character. 
 
Optimum compression would reduce the size 
of this 51768 character file by 0 percent. 
  
Chi square distribution for 51768 samples is 1542.26, and randomly 
would exceed this value 0.01 percent of the times. 
   
Arithmetic mean value of data bytes is 125.93 (127.5 = random). 
Monte Carlo value for Pi is 3.169834647 (error 0.90 percent). 
Serial correlation coefficient is 0.004249 (totally uncorrelated = 0.0). 
 
 
• Data Density:  The first two results from the ENT printout discuss the data density of 

the data file.  The Entropy of the file is listed as bits per character figure ranging from 



 23 
 
 

zero to eight.  Since there are eight bits in one character, or byte, the maximum 

number of bits of entropy one can hope for is eight.  Obviously, the higher the 

number of bits of entropy per byte of data, the more random the file should be.  Data 

becomes “denser” with higher entropy per byte.  The second line discusses the 

optimal compression of the data.  A file that is very dense, and therefore has high 

entropy per byte, cannot be compressed into a smaller size.  Therefore, the lower the 

figure given for optimal compression, the denser the data is, and the more likely it is 

that it is close to being random.  In the example, the Entropy is listed as a high 7.98 

bits per byte, and optimal compression would reduce it by 0%.  Therefore, the data 

density tests would seem to indicate that this is a sample with high randomness. 

However, this is not enough to conclusively say that the data is unpredictable. 

• Chi-square test:  This is one of the most widely used tests for randomness, and is 

extremely sensitive.  The inner calculations of the test are complex, and therefore not 

listed here.  For the purposes of this project it is sufficient to understand the general 

workings of the function.  In basic terms, the Chi-squared distribution is calculated 

for the data stream, and from this is derived a percentage that indicates how often a 

truly random sequence would exceed this value.  As can be seen in the example 

above, both the Chi-square distribution and related percentage are listed.  In order to 

judge the randomness of a data file, one simply has to know how to interpret the 

resultant percentage.  According to the ENT documentation, any file that results in a 

percentage less than 1% or greater than 99% is almost certainly not random.  

Percentages between 99%-90% and 1%-10% are considered suspect, and are most 

likely not random.  The general rule is that a file has good levels of entropy if its Chi-



 24 
 
 

square percentage ranges from 10% to 90%.  Note that while the example had very 

dense information, it had very poor Chi-square percentage of 0.01%.  This indicates 

that the file is most likely not random. 

• Arithmetic Mean:  This is one of the simplest tests.  The arithmetic mean is calculated 

by dividing the sum of the bytes in the data file by the length of the data file.  A file 

that is close to being truly random has an arithmetic mean that is very close to 127.5.  

In the example, the data file has an arithmetic mean of 125.93.  This value is quite far 

from 127.5, and so this file is probably not random. 

• Monte Carlo Value for Pi:  In this test, each sequence of six bytes in the data file is 

considered to be 24-bit X and Y-coordinates in a square.  If the distance of this 

coordinate is less than the radius of a circle inscribed in the square, then the six-byte 

sequence is considered a “hit.”  The percentage of hits for the file is calculated, and 

from this a value for Pi is derived.  The closer a file is to being truly random, the 

closer this derived value will be to the real value of Pi.  In the example, the derived 

value is off by almost 1%, which is not considered to be very random.  

• Serial Correlation Coefficient:  Finally, the serial correlation tells how closely related 

one byte is to the preceding byte.  A non-random file will have a high correlation 

between each byte.  Therefore, in order to be close to truly random, the coefficient 

should be as close to zero as possible.  According to the ENT documentation, a 

completely non-random C++ file would have a value approaching 0.5.  The low value 

of the serial correlation coefficient in the example would seem to indicate good 

randomness.  However, previous tests have shown this not to be true. 

 



 25 
 
 

Overall, therefore, none of the individual tests in the ENT suite can conclusively 

prove that a file is random.  However, the combination of all of them can give a very 

good indication in one direction or the other.  Through my background research I found 

that the hardest question to answer when considering entropy is its quality. The ENT test 

suite is certainly not the be all and end all of entropy tests.  However, I have confidence 

in saying that it was a very good test suite to use in the testing of my data.  It provided an 

acceptable level of rigor for the scope of this project.  The tests that I actually performed 

and the results are described in detail in Chapter 5.   

 

 



 26 
 
 

Chapter 5: Analysis of Results 
 

This Chapter discusses the actual results of the project.  It presents an analysis of the 
data, as well as the output of the test suite.  It draws conclusions about these results and 
makes concrete statements about the implications of these outcomes. 
 

In order to see what the minimal level of modification is to draw sufficiently random 

numbers from the microphone data I gathered, I ran the data through the ENT test suite 

both before and after running it through my processing script.  In this way, I could 

observe whether the data coming directly from the microphone was random, or whether it 

required processing.  Therefore, for every data file I have the output of the ENT program 

in both unprocessed and processed form.  Since these results take up quite a lot of space, 

they can be found in Appendix B.  The following sections summarize the ENT results for 

Unprocessed and Processed data.  These are followed by an analysis of what exactly 

these results mean in the context of the goals of this project. 

5.1 Unprocessed Results 
 
Base Case: 
 

The results obtained for the base case in unprocessed form were unsurprising.  This 

file consists of nothing but silence, and is therefore a single “silence character” 

(10000000) repeated over and over again.  Therefore, it is obviously completely non-

random.  The ENT tests prove this to be correct.  All five of the tests gave abysmally bad 

results.  This is a good basis for comparison, though, as it is the exact opposite of the 

results that I should aim to receive on the real data samples.    

 
 
 
 



 27 
 
 

Ambient Sound: 
 

The ENT results for all of the unprocessed ambient sound data files were only slightly 

better than the completely non-random base case.  On the most important test, the Chi-

square test, they all ended up with a very non-random 0.01%.  Also, the bits of entropy 

per byte never exceeded two bits per byte.  It was obvious from these test results that 

without processing the ambient sounds that a standard computer microphone can record 

are simply not random in the least.  At this point in the testing, however, I was still 

optimistic that after processing the entropy would increase dramatically. 

 
Radio Static: 
 

The unprocessed radio static data files produced much better results from the ENT 

test suite.  All of the files exceeded four bits entropy per byte, and some even approached 

six.  The arithmetic mean and the serial correlation coefficient were definitely heading in 

the right direction even if they were not quite random yet.  Only the most sensitive test, 

the Chi-square test once again produced very low scores.  However, I was nonetheless 

pleased with the test results for the unprocessed data set.  While the data was obviously 

not random enough yet, it was definitely close.  I was almost certain that after processing 

I would see very good randomness emerging. 

5.2 Processed Results 
 
Base Case: 
 

The results for the processed base case were just as unsurprising.  The processing 

script simply turned the file into a stream of all zeros.  This does not even have the 

benefit of the repeated ones in the original file.  Needless to say, the ENT test suite 



 28 
 
 

conclusively reported that there was no randomness at all present in this file.  Once again, 

however, this was that aim of this file, being a control. It again provided the situation I 

wished to avoid in all the other data files. 

 
Ambient Sound: 
 

The ENT tests for the processed sound test were frankly rather disappointing.  While 

the entropy bits per byte did increase slightly, the values were still nowhere near 

acceptable levels.  The Chi-square test remained steadfastly at 0.01% for all of the 

samples.  All of the other tests simply added weight to the conclusion that the ambient 

sounds recorded simply did not have enough entropy in them.  Therefore, I had to 

conclude that either ambient sound does not contain enough noise to be valid, or my 

recording process was flawed somehow.  More about this can be found in the following 

analysis section.   

 
Radio Static: 
 

The ENT test suite results for the processed radio data were extremely good.  Every 

single one of the data file produced test results indicative of very good randomness; every 

file had 7.998 or more bits of randomness per byte, which is extremely dense.  As a 

result, optimal compression could not reduce any of them at all.  The arithmetic mean 

was very good for all of the files, and was almost exactly at 127.5 for three of them.  The 

Monte Carlo Value for Pi was very close to the actual value of Pi in all of the files, even 

achieving 0.04% error in one of the files.  The serial correlation coefficient was 

extremely close to zero in all cases.  Finally, and most importantly, the Chi-square test 

produced percentages in the acceptable area for all of the files.  In fact, three of the files 



 29 
 
 

produced a percentage of 50%, which is extremely good for the Chi-square test.  

Therefore, the ENT test suite showed conclusively that the processed radio data files did 

contain very high levels of entropy. 

5.3 Analysis of Results 
 

With the data fully collected and tested by the ENT test suite, I can now move on and 

analyze the implications of these results.  First I will explain the unsuccessful half of the 

data set.  The ambient noise data files turned out to contain very little entropy even after 

running through my processing script.  I believe there are several possible causes for this.  

It is probable that the level of ambient noise that was present in the test locations simply 

was not loud enough to provide sufficient randomness to the microphone.  This brings to 

light the main problem with using ambient noise for randomness:  The amazing variance.  

The ambient noise in my room is vastly different from the ambient noise in a train 

station, for instance.  Therefore, the actual randomness that one could achieve from 

ambient noise would definitely depend on the current location.  This is quite a 

disadvantage, as most locations do not provide loud ambient noise.  I also believe that the 

standard (and cheap) computer microphone being used was simply not sensitive enough 

to pick up the quiet ambient noises in the room.  Therefore, with an expensive and very 

sensitive microphone, I have no doubt that sufficient randomness could be drawn from 

even the quietest of rooms.  However, the microphones available in the vast majority of 

computing devices will be of the same, or even lesser, sensitivity as the microphone I 

used for my experiments.  Therefore, I have come to the conclusion that ambient noise 

will not be a very good source of entropy in the majority of situations. 



 30 
 
 

While I was obviously disappointed with the results of the ambient noise tests, all was 

not in vain.  The processed radio static tests produced very satisfactory levels of 

randomness.  I believe that the main advantage that these files had over the ambient 

sound files was that the microphone was fed a constant stream of sound at a level that 

was easily within the sensitivity bounds of the rather insensitive microphone.  Also, there 

are millions of electromagnetic signals causing the static.  It is almost inconceivable that 

the composition of all of these signals would not be highly random.  Therefore, I believe 

that this half of the data set validates the goals and hypotheses that I set out at the 

beginning of this project.  My goal in this project was to show that successful randomness 

could be produced using a standard computer microphone with a minimal amount of 

modification to the sound data.  As I received very good entropy from the radio static, 

and only had to remove the high seven bits of each byte to achieve it, I have no qualms in 

saying that I have succeeded in my goals.   The microphone is definitely a feasible source 

of randomness.  The only caveat is that one has to be careful about the sound source that 

one uses.  Also, radios are not standard equipment in most computers and PDAs at 

present.  This would limit the usefulness of microphone-based encryption.  However, 

radios are cheap, and static can be obtained anywhere in the world.  Overall therefore, 

with careful selection of source, even a cheap computer microphone can produce very 

good random numbers. 

 



 31 
 
 

Chapter 6: Conclusion 
 

This Chapter sums up the entire project, giving a brief summary of the material 
covered in the previous chapters.  It then draws final conclusions about the success of the 
project as a whole. 

 
The goal of this project was to determine if a computer microphone could be used as 

a very effective source of entropy.  The collection and usage of randomness is an 

essential part of a wide range of computing activities, not least of which is data 

encryption.  There are many successful random number generators in use already, but 

every one of them depends on a good source of entropy.  Therefore, any new successful 

source of entropy is valuable.  A successful microphone based encryption algorithm 

would also be valuable since the microphone is becoming an almost ubiquitous accessory 

in the multitude of computing devices available today.  It would provide an easy source 

of entropy to these devices without hardware modifications. 

With this goal in mind, I set about designing an algorithm that would make minimal 

changes to sound data files and yet yield output with very good entropy.  I then recorded 

both ambient noise and radio static to compare the entropy levels occurring in each.  

Using a test suite of five of the most common tests of entropy, I evaluated the entropy of 

all of these data files.  When the testing was complete, the results were mixed. 

Ambient sound turned out to be a less than ideal source of entropy.  All of the data 

files produced results that indicated low levels of usable entropy.  I have attributed this to 

a combination of poor microphone sensitivity and low sound levels in the testing area.  

With a more sensitive microphone or a louder testing area, I believe good randomness 

could be achieved.  However, this data set revealed that a system based on ambient noise 

would be very dependent on the recording location and the quality of the microphone.  



 32 
 
 

Since most areas would not be loud and most microphones would not be of high 

sensitivity, I have to conclude that ambient noise would generally not be a good source of 

randomness.   

Radio static proved to be a much better source of entropy.  This data set produced 

consistently excellent levels of entropy.  This is because the sound being fed into the 

microphone was of a constant volume level and could be carefully controlled.  Obviously 

this is a much better way to obtain randomness through a microphone.  While the initial 

ambient sound experiments were unsuccessful, the radio static data files proved that the 

microphone is indeed a feasible source of random numbers.  

Overall, I believe that this project has been a success.  While not all of my data files 

achieved the levels of entropy that I wished, it did clarify the situation for me.  The fact 

that the radio data files did produce good randomness validated my initial assumption 

that the microphone can be used to gather entropy.  Therefore I did succeed in proving 

the hypothesis of this project.  Looking back over the course of the project I can draw 

several general conclusions.  First, a microphone can be used to gather entropy very 

effectively.  However, in order to gather this entropy one must be very careful about the 

sound input fed to the microphone.  Unless a sufficient volume and consistency is 

present, a standard microphone will not be able to distinguish enough usable entropy 

from the silence.  So, this project was a success in that it proved the feasibility of a 

microphone based random number generator, and it provided valuable lessons that can be 

applied to any future work I may perform in this area of continuing research. 



 33 
 
 

Bibliography 
 
Web Based Resources: 

1.  "data encryption" Encyclopedia Britannica Online.  
<http://search.eb.com/bol/topic?eu=2226&sctn=1>  
[Accessed October 2001].  

2.  "cryptology" Encyclopedia Britannica Online.  
<http://search.eb.com/bol/topic?eu=28529&sctn=1>  
[Accessed October 2001].  

3.  Litterio F.,  The Mathematical Guts of RSA Encryption. 
<http://world.std.com/~franl/crypto/rsa-guts.html>                                                 
[Accessed October 2001]. 

4.  Random.org – True Random Number Service.  
<http://www.random.org>  
[Accessed December 2001]. 

5.  ENT – A Pseudorandom Number Sequence Test Program.  
<http://www.fourmilab.ch/random/>  
[Accessed December 2001]. 

6.  The Tiny Encryption Algorithm (TEA).  
<http://vader.brad.ac.uk/tea/tea.shtml>  
[Accessed December 2001]. 

7.  WAV File Format Description.  
<http://www.technology.niagarac.on.ca/courses/comp630/WavFileFormat.html>  
[Accessed December 2001]. 

Papers and Reports: 
 
8.  Kelsey J., Schneier B., Ferguson N. Yarrow-160:  Notes on the Design and 

Analysis of the Yarrow Cryptographic Pseudorandom Number Generator.  
Sixth Annual Workshop on Selected Areas in Cryptography, Springer Verlag, August 
1999. 
 

9.  Monrose F.,  Reiter M., Li Q., Wetzel S., Cryptographic Key Generation from Voice.  
In Proceedings of the 2001 IEEE Symposium on Security and Privacy, Lucent 
Technologies, New Jersey, May 2001.  
 

10.  Monrose F. and Rubin A. Authentication via keystroke dynamics. In 4th ACM 
Conference on Computer and Communications Security, April 1997. 



 34 
 
 

 
11.  Jermyn I., Mayer A., Monrose F., Reiter M., and Rubin A. The design and analysis 

of graphical passwords. In Proceedings of the 8th USENIX Security Symposium, 
August 1999. 

 
12.  L'Ecuyer P., Uniform Random Number Generation, Annals of Operations Research 

53 (1994), 77-120. 
 
13.  Entacher K., A collection of selected pseudorandom number generators with linear 

structures. Technical Report 97-1, ACPC - Austrian Center for Parallel Computation, 
University of Vienna, Austria, 1997. 

 
14.  Kelsey J., Schneier  B., Wagner D., and Hall C., Cryptanalytic attacks on 

pseudorandom number generators, Fast Software Encryption, Fifth International 
Proceedings, pp. 168-188, Springer-Verlag, 1988. 

 
15.  Hoover D. and Kausik B., Software Smart Cards via Cryptographic Camouflage,  

{IEEE} Symposium on Security and Privacy, pp. 208-215,  1999.   
 
16.  Schneier B., Kelsey J., Whiting D., Wagner D., Hall C., and Ferguson N. Twofish: A 

128-Bit Block Cipher. In Selected Areas in Cryptography '98, June 1998. Lecture 
Notes in Computer Science (these proceedings). 

 
17.  Rogaway P. and Coppersmith D., A Software-Optimized Encryption Algorithm, Fast 

Software Encryption, Cambridge Security Workshop Proceedings, Springer-Verlag, 
1994, pp. 56-63. 

 
18.  Gilboa N., Two Party RSA Key Generation, Proceedings of Crypto '99, Lecture 

Notes in Computer Science, Vol. 1666, Springer-Verlag, pp. 116--129, 1999. 
 
19.  Wagner D., Schneier B., Kelsey J., Cryptanalysis of ORYX, unpublished manuscript, 
       4 May 1997. 
 
 



 35 
 
 

Appendix A:  Listing of Program Code 
 
Note:  Microsoft Word is not the ideal format for displaying C++ code, and so some 
reformatting has had to be done to make the code as readable as possible. Therefore, this 
code may contain errors and bad formatting if it is simply pasted into a C++ compiler.  
The original working  .cpp file is available at request. 
 
#include <fstream.h> 
#include <iostream.h> 
#include <bitset> 
#include <string.h> 
 
using std::bitset; 
using std::string; 
 
//convert_2_10: 
//takes a string containing an 8-bit binary number 
//and returns the integer decimal equivalent. 
//string[0] = high bit, string[7] = low bit 
int convert_2_10 (const string bits) 
{ 
 int decimal = 0; 
 
 if(bits[0] == '1') 
 { 
  decimal = decimal + 128; 
 } 
 if(bits[1] == '1') 
 { 
  decimal = decimal + 64; 
 } 
 if(bits[2] == '1') 
 { 
  decimal = decimal + 32; 
 } 
 if(bits[3] == '1') 
 { 
  decimal = decimal + 16; 
 } 
 if(bits[4] == '1') 
 { 
  decimal = decimal + 8; 
 } 
 if(bits[5] == '1') 
 { 
  decimal = decimal + 4; 
 } 
 if(bits[6] == '1') 
 { 
  decimal = decimal + 2; 
 } 
 if(bits[7] == '1') 
 { 
  decimal = decimal + 1; 
 } 
 
 return decimal;  
} 
 
 
 
int main ()  
{ 
   
  //variables to be used in the processing 
  char input_filename[100]; 
  char output_filename[100]; 
  char * buffer; 
  long size; 
 
   
 
 



 36 
 
 

  cout << "|~~~~~~~~~~~~~~~~~~~~~~~|" << endl 
       << "| WAV Processing Script |" << endl 
       << "|-----------------------|" << endl 
       << "|                       |" << endl 
       << "| Author:  Giles Cotter |" << endl 
       << "|                       |" << endl 
       << " ~~~~~~~~~~~~~~~~~~~~~~~ " << endl; 
   
  //prompt and get data file name from user 
  cout << "Please enter the WAV data file to process: "; 
  cin >> input_filename; 
  cout << endl << "The input file to be used is '" << input_filename << "'." << endl  
       << endl; 
 
  //prompt and get desired output filename from user 
  cout << "Please enter the output data file to save to: "; 
  cin >> output_filename; 
  cout << endl << "The output file to be used is '" << output_filename << "'." << endl  
       << endl; 
  cout << "Press any key to begin processing..." << endl; 
  getchar(); 
   
  //setup input filestream, and read in file into storage buffer 
  ifstream input(input_filename, ios::in|ios::binary|ios::ate); 
  size = input.tellg(); 
  input.seekg(0, ios::beg); 
  buffer = new char [size]; 
  input.read (buffer, size); 
  input.close(); 
 
  //report initial data to user 
  cout << "The complete file is in a buffer." << endl; 
  cout << "Number of characters collected = " << size << "." << endl; 
  cout << "Therefore, this file consists of " 
       << (size*8) << " bits." << endl << endl 
       << "Press any key to continue..." << endl; 
  getchar(); 
 
  //*********** 
  //MAIN TASK:  Remove the first 7 bits of every byte of the data, 
  //             and store the new stream into a new data file. 
   
  //One byte in the new file will consist of the lowest order bit of 8 bytes in the 
  //current data. Therefore, if the current number of bytes is not divisible by 8, you 
  //will end up with a byte group on the end with 1-7 bits in it.  This cannot be 
  //outputted correctly.  Therefore, the first thing to be done is discard the end most 
  //bytes so that the number of bytes is divisible by 8. 
 
  //create a int indicating the number of bytes to actually take the lowest order bit 
  //from. 
  int low_size = size - size%8; 
 
  //report information about the initial and final files to the user 
  cout << "# of data bytes available: " << size << endl; 
  cout << "# of bytes used for lowest order bit: " << low_size << " (divisible by 8)" 
       << endl; 
  cout << "Therefore, there will be " << low_size/8 << " bytes after processing." << endl 
       << endl; 
  cout << "Press any key to continue..." << endl; 
  getchar(); 
     
  //open up the output stream to output the final bytes 
  ofstream output(output_filename, ios::out|ios::binary); 
   
  //create a variable to track location through buffer 
  int buf_location = 0; 
   
  //loop once for each new byte to be written 
  for(int i=0; i<(low_size/8); i++) 
  { 
   //create a bitset to hold the new byte 
   bitset<8> current; 
 
   //create a variable to track location in the new bitset 
   int bit_location = 7; 
 
   //inner loop to put the low bit of each source byte in the new bitset 
   for(int curr = buf_location; curr < buf_location+8; curr++) 
   { 
    //put current source byte into a temp bitset 
    bitset<8> temp(buffer[curr]); 



 37 
 
 

 
    current[bit_location] = temp[0]; 
 
    bit_location--; 
   } 
    
   buf_location = buf_location+8; 
 
         //Now we want to output the newly created byte to output file. 
         //First, convert the current bitset to a char* 
         string binary; 
    
   binary = current.to_string(); 
 
   //variable to hold integer decimal representation of the digits 
   int decimal = convert_2_10(binary); 
 
   //output the value to file 
   output << (char)decimal; 
  } 
   
  //close up the output stream 
  output.close(); 
 
  //*********** 
 
  cout << "Processing complete." << endl << endl; 
 
  //Clean up 
  delete[] buffer; 
  return 0; 
}



 38 
 
 

Appendix B:  Full Listing of Results 
 

Listed here are the results of the data analysis.  Each data file was run through the 
ENT test suite both before and after processing.  Therefore, each listing below contains 
the results for both unprocessed and processed test runs.  

 
Summary of Test Locations: 

  
Test Case Location Recorded/FM Station used 

 
Base Recorded with microphone unplugged (control) 

Ambient1 Recorded directly in front of computer 

Ambient2 Recorded with microphone on sitting computer case 

Ambient3 Recorded with microphone up on desk 

Ambient4 Recorded with microphone sitting in the middle of the room 

Ambient5 Recorded with microphone in door to adjoining room 

Radio1 Recorded with radio set to 87.5 FM  

Radio2 Recorded with radio set to 89.0 FM 

Radio3 Recorded with radio set to 98.4 FM 

Radio4 Recorded with radio set to 99.6 FM 

Radio5 Recorded with radio set to 102.8 FM  

 
 

 
 
 



 39 
 
 

 
Table of Processed Data Gathered From ENT: 

 
 

Test Case Entropy 
(bits/byte) 

Optimal 
Compression 

Reduction 

Chi Square 
Distribution 

% 

Arithmetic 
Mean 

Monte 
Carlo Value 

for Pi 

Serial 
Correlation 
Coefficient 

BASE 0.0000 100 0.01 0.00 4.000 undefined 

AMBIENT 
1 

0.7976 90 0.01 5.1512 3.997 0.0456 

AMBIENT 
2 

3.1892 60 0.01 171.9962 1.3771 0.4253 

AMBIENT 
3 

0.2005 97 0.01 1.4532 3.9903 0.5797 

AMBIENT 
4 

0.1689 97 0.01 1.1070 3.9945 0.4518 

AMBIENT 
5 

0.3453 95 0.01 3.5291 3.9679 0.6228 

RADIO 
1 

7.9987 0 10.00 127.1946 3.1419 -0.0003 

RADIO 
2 

7.9990 0 90.00 127.4666 3.1385 0.0008 

RADIO 
3 

7.9988 0 50.00 127.8766 3.1298 0.0031 

RADIO 
4 

7.9989 0 50.00 127.5411 3.1301 -0.0003 

RADIO 
5 

7.9989 0 50.00 127.5422 3.1300 -0.0014 

 
 



 40 
 
 

Actual Data Collected From ENT: 

 
============================================ 
BASE - recorded with microphone disconnected 
============================================ 
 
------------ 
Unprocessed: 
------------ 
D:\Thesis>ent base.bin 
 
Entropy = 0.000000 bits per byte. 
 
Optimum compression would reduce the size 
of this 1323000 byte file by 100 percent. 
 
Chi square distribution for 1323000 samples is 337365000.00, and 
would exceed this value 0.01 percent of the times. 
 
Arithmetic mean value of data bytes is 128.0000 (127.5 = random) 
Monte Carlo value for Pi is 4.000000000 (error 27.32 percent). 
Serial correlation coefficient is undefined (all values equal!). 
 
---------- 
Processed: 
---------- 
D:\Thesis>ent base.out 
 
Entropy = 0.000000 bits per byte. 
 
Optimum compression would reduce the size 
of this 165375 byte file by 100 percent. 
 
Chi square distribution for 165375 samples is 42170625.00, and randomly 
would exceed this value 0.01 percent of the times. 
 
Arithmetic mean value of data bytes is 0.0000 (127.5 = random). 
Monte Carlo value for Pi is 4.000000000 (error 27.32 percent). 
Serial correlation coefficient is undefined (all values equal!). 
 

 
======================================== 
AMBIENT1 - recorded in front of computer 
======================================== 
 
------------ 
Unprocessed: 
------------ 
D:\Thesis>ent ambient1.bin 
 
Entropy = 0.163669 bits per byte. 
 
Optimum compression would reduce the size 
of this 1323000 byte file by 97 percent. 
 
Chi square distribution for 1323000 samples is 323782224.00, and randomly 
would exceed this value 0.01 percent of the times. 
 
Arithmetic mean value of data bytes is 127.9978 (127.5 = random). 
Monte Carlo value for Pi is 4.000000000 (error 27.32 percent). 
Serial correlation coefficient is 0.551557 (totally uncorrelated = 0.0). 
 
 
 
 
---------- 
Processed: 
---------- 
D:\Thesis>ent ambient1.out 
 
Entropy = 0.797604 bits per byte. 
 



 41 
 
 

Optimum compression would reduce the size 
of this 165375 byte file by 90 percent. 
 
Chi square distribution for 165375 samples is 35486283.88, and randomly 
would exceed this value 0.01 percent of the times. 
 
Arithmetic mean value of data bytes is 5.1512 (127.5 = random). 
Monte Carlo value for Pi is 3.997387708 (error 27.24 percent). 
Serial correlation coefficient is 0.045589 (totally uncorrelated = 0.0). 
 

 
==================================================== 
AMBIENT2 - recorded with microphone on computer case 
==================================================== 
 
------------ 
Unprocessed: 
------------ 
D:\Thesis>ent ambient2.bin 
 
Entropy = 1.702285 bits per byte. 
 
Optimum compression would reduce the size 
of this 1323000 byte file by 78 percent. 
 
Chi square distribution for 1323000 samples is 107936314.98, and randomly 
would exceed this value 0.01 percent of the times. 
 
Arithmetic mean value of data bytes is 127.9871 (127.5 = random). 
Monte Carlo value for Pi is 4.000000000 (error 27.32 percent). 
Serial correlation coefficient is 0.958804 (totally uncorrelated = 0.0). 
 
---------- 
Processed: 
---------- 
D:\Thesis>ent ambient2.out 
 
Entropy = 3.189242 bits per byte. 
 
Optimum compression would reduce the size 
of this 165375 byte file by 60 percent. 
 
Chi square distribution for 165375 samples is 11516424.07, and randomly 
would exceed this value 0.01 percent of the times. 
 
Arithmetic mean value of data bytes is 171.9962 (127.5 = random). 
Monte Carlo value for Pi is 1.377113417 (error 56.17 percent). 
Serial correlation coefficient is 0.425320 (totally uncorrelated = 0.0). 
 

 
=========================================== 
AMBIENT3 - recorded with microphone on desk 
=========================================== 
 
------------ 
Unprocessed: 
------------ 
D:\Thesis>ent ambient3.bin 
 
Entropy = 0.066425 bits per byte. 
 
Optimum compression would reduce the size 
of this 1323000 byte file by 99 percent. 
 
Chi square distribution for 1323000 samples is 333098359.87, and randomly 
would exceed this value 0.01 percent of the times. 
 
Arithmetic mean value of data bytes is 127.9995 (127.5 = random). 
Monte Carlo value for Pi is 4.000000000 (error 27.32 percent). 
Serial correlation coefficient is 0.765854 (totally uncorrelated = 0.0). 
 
 
 
 
 



 42 
 
 

---------- 
Processed: 
---------- 
D:\Thesis>ent ambient3.out 
 
Entropy = 0.200500 bits per byte. 
 
Optimum compression would reduce the size 
of this 165375 byte file by 97 percent. 
 
Chi square distribution for 165375 samples is 40955993.91, and randomly 
would exceed this value 0.01 percent of the times. 
 
Arithmetic mean value of data bytes is 1.4532 (127.5 = random). 
Monte Carlo value for Pi is 3.990276468 (error 27.01 percent). 
Serial correlation coefficient is 0.579729 (totally uncorrelated = 0.0). 
 
 
===================================================== 
AMBIENT4 - recorded with microphone in middle of room 
===================================================== 
 
------------ 
Unprocessed: 
------------ 
D:\Thesis>ent ambient4.bin 
 
Entropy = 0.052910 bits per byte. 
 
Optimum compression would reduce the size 
of this 1323000 byte file by 99 percent. 
 
Chi square distribution for 1323000 samples is 334054960.48, and randomly 
would exceed this value 0.01 percent of the times. 
 
Arithmetic mean value of data bytes is 127.9997 (127.5 = random). 
Monte Carlo value for Pi is 4.000000000 (error 27.32 percent). 
Serial correlation coefficient is 0.766098 (totally uncorrelated = 0.0). 
 
---------- 
Processed: 
---------- 
D:\Thesis>ent ambient4.out 
 
Entropy = 0.168896 bits per byte. 
 
Optimum compression would reduce the size 
of this 165375 byte file by 97 percent. 
 
Chi square distribution for 165375 samples is 41171656.75, and randomly 
would exceed this value 0.01 percent of the times. 
 
Arithmetic mean value of data bytes is 1.1070 (127.5 = random). 
Monte Carlo value for Pi is 3.994485161 (error 27.15 percent). 
Serial correlation coefficient is 0.451847 (totally uncorrelated = 0.0). 
 
 
============================================================ 
AMBIENT5 - recorded with microphone in door to adjoining room 
============================================================ 
 
------------ 
Unprocessed: 
------------ 
D:\Thesis>ent ambient5.bin 
 
Entropy = 0.172124 bits per byte. 
 
Optimum compression would reduce the size 
of this 1323000 byte file by 97 percent. 
 
Chi square distribution for 1323000 samples is 326161051.50, and randomly 
would exceed this value 0.01 percent of the times. 
 
Arithmetic mean value of data bytes is 127.9992 (127.5 = random). 



 43 
 
 

Monte Carlo value for Pi is 3.999655329 (error 27.31 percent). 
Serial correlation coefficient is 0.978328 (totally uncorrelated = 0.0). 
 
 
---------- 
Processed: 
---------- 
D:\Thesis>ent ambient5.out 
 
Entropy = 0.345328 bits per byte. 
 
Optimum compression would reduce the size 
of this 165375 byte file by 95 percent. 
 
Chi square distribution for 165375 samples is 39945095.92, and randomly 
would exceed this value 0.01 percent of the times. 
 
Arithmetic mean value of data bytes is 3.5291 (127.5 = random). 
Monte Carlo value for Pi is 3.967926856 (error 26.30 percent). 
Serial correlation coefficient is 0.622835 (totally uncorrelated = 0.0). 
 

 
================ 
RADIO1 - 87.5 FM 
================ 
 
------------ 
Unprocessed: 
------------ 
D:\Thesis>ent radio1.bin 
 
Entropy = 4.349350 bits per byte. 
 
Optimum compression would reduce the size 
of this 1323000 byte file by 45 percent. 
 
Chi square distribution for 1323000 samples is 17856902.83, and randomly 
would exceed this value 0.01 percent of the times. 
 
Arithmetic mean value of data bytes is 127.9904 (127.5 = random). 
Monte Carlo value for Pi is 4.000000000 (error 27.32 percent). 
Serial correlation coefficient is 0.892238 (totally uncorrelated = 0.0). 
 
---------- 
Processed: 
---------- 
D:\Thesis>ent radio1.out 
 
Entropy = 7.998728 bits per byte. 
 
Optimum compression would reduce the size 
of this 165375 byte file by 0 percent. 
 
Chi square distribution for 165375 samples is 291.40, and randomly 
would exceed this value 10.00 percent of the times. 
 
Arithmetic mean value of data bytes is 127.1946 (127.5 = random). 
Monte Carlo value for Pi is 3.142732748 (error 0.04 percent). 
Serial correlation coefficient is -0.000279 (totally uncorrelated = 0.0). 
 

 
================ 
RADIO2 - 89.0 FM 
================ 
 
------------ 
Unprocessed: 
------------ 
D:\Thesis>ent radio2.bin 
 
Entropy = 5.137604 bits per byte. 
 
Optimum compression would reduce the size 
of this 1323000 byte file by 35 percent. 
 



 44 
 
 

Chi square distribution for 1323000 samples is 10221666.30, and randomly 
would exceed this value 0.01 percent of the times. 
 
Arithmetic mean value of data bytes is 127.9906 (127.5 = random). 
Monte Carlo value for Pi is 4.000000000 (error 27.32 percent). 
Serial correlation coefficient is 0.902722 (totally uncorrelated = 0.0). 
 
---------- 
Processed: 
---------- 
D:\Thesis>ent radio2.out 
 
Entropy = 7.999044 bits per byte. 
 
Optimum compression would reduce the size 
of this 165375 byte file by 0 percent. 
 
Chi square distribution for 165375 samples is 219.60, and randomly 
would exceed this value 90.00 percent of the times. 
 
Arithmetic mean value of data bytes is 127.4666 (127.5 = random). 
Monte Carlo value for Pi is 3.138524055 (error 0.10 percent). 
Serial correlation coefficient is 0.000822 (totally uncorrelated = 0.0). 
 

 
================ 
RADIO3 - 98.4 FM 
================ 
 
------------ 
Unprocessed: 
------------ 
D:\Thesis>ent radio3.bin 
 
Entropy = 4.291017 bits per byte. 
 
Optimum compression would reduce the size 
of this 1323000 byte file by 46 percent. 
 
Chi square distribution for 1323000 samples is 18884650.82, and randomly 
would exceed this value 0.01 percent of the times. 
 
Arithmetic mean value of data bytes is 127.9906 (127.5 = random). 
Monte Carlo value for Pi is 4.000000000 (error 27.32 percent). 
Serial correlation coefficient is 0.883871 (totally uncorrelated = 0.0). 
 
---------- 
Processed: 
---------- 
D:\Thesis>ent radio3.out 
 
Entropy = 7.998849 bits per byte. 
 
Optimum compression would reduce the size 
of this 165375 byte file by 0 percent. 
 
Chi square distribution for 165375 samples is 264.96, and randomly 
would exceed this value 50.00 percent of the times. 
 
Arithmetic mean value of data bytes is 127.8766 (127.5 = random). 
Monte Carlo value for Pi is 3.129816414 (error 0.37 percent). 
Serial correlation coefficient is 0.003124 (totally uncorrelated = 0.0). 
 

 
================ 
RADIO4 - 99.6 FM 
================ 
 
------------ 
Unprocessed: 
------------ 
D:\Thesis>ent radio4.bin 
 
Entropy = 4.319992 bits per byte. 
 



 45 
 
 

Optimum compression would reduce the size 
of this 1323000 byte file by 46 percent. 
 
Chi square distribution for 1323000 samples is 18523807.87, and randomly 
would exceed this value 0.01 percent of the times. 
 
Arithmetic mean value of data bytes is 127.9910 (127.5 = random). 
Monte Carlo value for Pi is 4.000000000 (error 27.32 percent). 
Serial correlation coefficient is 0.886075 (totally uncorrelated = 0.0). 
 
---------- 
Processed: 
---------- 
D:\Thesis>ent radio4.out 
 
Entropy = 7.998922 bits per byte. 
 
Optimum compression would reduce the size 
of this 165375 byte file by 0 percent. 
 
Chi square distribution for 165375 samples is 247.66, and randomly 
would exceed this value 50.00 percent of the times. 
 
Arithmetic mean value of data bytes is 127.5411 (127.5 = random). 
Monte Carlo value for Pi is 3.130106669 (error 0.37 percent). 
Serial correlation coefficient is -0.000295 (totally uncorrelated = 0.0). 
 

 
================= 
RADIO5 - 102.8 FM 
================= 
 
------------ 
Unprocessed: 
------------ 
D:\Thesis>ent radio5.bin 
 
Entropy = 4.844362 bits per byte. 
 
Optimum compression would reduce the size 
of this 1323000 byte file by 39 percent. 
 
Chi square distribution for 1323000 samples is 12666211.53, and randomly 
would exceed this value 0.01 percent of the times. 
 
Arithmetic mean value of data bytes is 127.9908 (127.5 = random). 
Monte Carlo value for Pi is 4.000000000 (error 27.32 percent). 
Serial correlation coefficient is 0.893247 (totally uncorrelated = 0.0). 
 
---------- 
Processed: 
---------- 
D:\Thesis>ent radio5.out 
 
Entropy = 7.998914 bits per byte. 
 
Optimum compression would reduce the size 
of this 165375 byte file by 0 percent. 
 
Chi square distribution for 165375 samples is 248.59, and randomly 
would exceed this value 50.00 percent of the times. 
 
Arithmetic mean value of data bytes is 127.5422 (127.5 = random). 
Monte Carlo value for Pi is 3.129961541 (error 0.37 percent). 
Serial correlation coefficient is -0.001425 (totally uncorrelated = 0.0). 
 



 46 
 
 

Appendix C:  WAV File Format 
 
This the standard format for a WAV file [7]. 
 
RIFF Chunk (12 bytes in length total)  
 

Byte Number 
0 - 3 "RIFF" (ASCII Characters) 

4 - 7 Total Length Of Package To 
Follow (Binary, little endian) 

8 - 11 "WAVE" (ASCII Characters) 

FORMAT Chunk (24 bytes in length total)  

Byte Number 

0 - 3 "fmt_" (ASCII Characters) 

4 - 7 Length Of FORMAT Chunk 
(Binary, always 0x10) 

8 - 9 Always 0x01 

10 - 11 Channel Numbers (Always 
0x01=Mono, 0x02=Stereo) 

12 - 15 Sample Rate (Binary, in Hz) 
16 - 19 Bytes Per Second 

20 - 21 
Bytes Per Sample: 1=8 bit 
Mono, 2=8 bit Stereo or 16 
bit Mono, 4=16 bit Stereo 

22 - 23 Bits Per Sample 

DATA Chunk  

Byte Number 

0 - 3 "data" (ASCII Characters) 
4 - 7 Length Of Data To Follow 
8 - end Data (Samples) 

 


