
__

 i

PREFACE

 This project was especially interesting for me because it successfully combined

my interests in computer programming and soccer. I have been doing computer

programming for the last five years ranging from class projects to intercollegiate

programming contests. In addition, I have played, coached, and followed soccer my

whole life.

 I would like to thank Professor David Evans for introducing me to swarm

programming and the UVa RoboCup effort, and supervising this project. I would also

like to thank Professor Bryan Pfaffenberger for what he has taught me to help me write

this report. In addition, I would like to thank Yannick Loitiere for providing me with

code to start the project with, providing an XML log file to work with, and answering

several questions.

__

 ii

TABLE OF CONTENTS

PREFACE .. i

TABLE OF DIAGRAMS ..iii

ABSTRACT... iv

I. INTRODUCTION ... 1
Problem Statement .. 1
Rationale and Scope .. 1
Organization .. 3

II. SWARM COMPUTING .. 4

III. METHODOLOGY.. 8
Software Use ... 8
Software Functionality .. 9
Software Advancement ... 10
Evaluation Criteria .. 10

IV. RESULTS ... 13
Process... 13
Results ... 13

V. CONCLUSIONS.. 16
Interpretation of Results .. 16
Recommendations ... 19

VI. BIBLIOGRAPHY... 22

VII. APPENDIX.. 24
Appendix A: Code Listing... 24

__

 iii

TABLE OF DIAGRAMS

Fig. 1 Software functionality from the user’s perspective .. 8

Fig. 2 Actual software functionality.. 9

__

 iv

ABSTRACT

“Swarm” computing is a promising, state of the art area of research in computer

science. It is a field with many possible applications, which makes it an important

research topic. The basic definition is: programming a group of computing elements to

work together and achieve some goal. With the recent rapid advancement in computer

hardware, swarm computing has become a reality and now it is up to computer science to

make use of these advancements.

The Department of Computer Science at the University of Virginia has been

working with swarm programming by applying it to simulated soccer. The broad goal of

this project is to aid in this research initiative. Swarm programming provides a special

challenge in that most programs do not simply succeed or fail. There are many levels of

success and failure which must somehow be measured. The specific objective of this

project is to achieve this by developing a software tool that can evaluate the performance

of a simulated soccer team’s defense.

Given a XML server log created by a simulation, the tool evaluates the team’s

defensive performance. Five separate evaluation criteria were developed to do this. The

software was developed with information hiding and modularity in mind, and is therefore

easier to work with from a programmer’s standpoint than less organized code. The

software was also designed with flexibility and extensibility in mind so that future users

can add or remove their own evaluation criteria as well as give weights to each one.

__

 v

 The resulting software has both advantages and disadvantages over manual

evaluation. It is much faster, more flexible and extensible, and can provide quantitative

analysis and results. However, it could require heavy computer usage, has a limited

evaluation scope, and its correctness can only be determined through manual means. The

software should be useful to programmers attempting to get an idea of how well their

group behavior controlling software is performing. It provides a quantitative analysis of

the behavior of a simulated group of objects so that the programmer may see the

strengths and weaknesses of the algorithms in use. The short term goal is a tool to

evaluate a specific type of swarm program, which the developed tool does. The long

term desired result is better swarm programming and an increased potential of swarm

computing. This cannot yet be determined, but the potential is there.

__

 1

I. INTRODUCTION

Swarm programming is a currently evolving area of research in computer science.

The possible benefits are numerous, and there is plenty of room for contribution. The

goal of the project is to contribute a software product that will hopefully aid swarm

programmers.

Problem Statement

“Swarm” computing refers to computing over a group of computing elements

rather than one stand-alone computer. These computing elements look at the state of

things around them and then decide what actions to take. Swarm programming is the

actual programming of these elements so that they behave as desired to accomplish some

group goal. However, research in the area is in its early stages. So much is being done in

terms of developing swarm programs, but not enough is being done in terms of

evaluating swarm programs. This evaluation is the focus of the project. By contributing

this project, the objective is to aid developers and, ultimately, lead to better programs

which can then be used to solve countless problems.

Rationale and Scope

A good way to go about developing better algorithms is by working with

simulated groups of elements. Working with simulations rather than actual groups of

__

 2

programmable objects eliminates many limitations and allows for easier testing and

debugging. Creating simulations of group behavior is a difficult task by itself, however.

Once a simulation is functional, there needs to be some way to evaluate it. Does it do

what it is supposed to? In the case of soccer, it can be evaluated by the result of the

game. Nevertheless, evaluating specific aspects of the team’s performance is more

difficult. Does it satisfy property A or property B? These are the types of questions that

this project will help answer.

Currently, there is no standard method for evaluating swarm programs. The ideal

evaluation method would be simple and quick to use and would provide quantitative data.

These are two advantages of creating software to perform the evaluation. Software is

customizable and can provide the simplest user experience possible as well as

quantitative results. These results can then be analyzed in an attempt to improve the

original swarm program.

The Department of Computer Science at the University of Virginia has been

working with swarm programming by applying it to simulated soccer. The UVa

RoboCup Team has their own simulated soccer team for which they have written the

code. The broad goal of this project is to aid in this research initiative. Swarm

programming provides a special challenge in that most programs do not simply succeed

or fail. There are many levels of success and failure which must somehow be measured.

The specific objective of this project is to achieve this measurement. Developing a

software tool that can evaluate a simulation involving a group of programmed players is

__

 3

the chosen method of doing so. Given a log created by a simulation, the tool is able to

evaluate the group performance according to specific criteria. For the purposes of this

project, the performance of a simulated soccer team’s defense is evaluated.

The software is also designed so that it may be easily changed. This way, the user

can add or remove evaluation criteria by adding their own functions or removing the

current ones without causing any side effects. The software should be useful to

programmers attempting to get an idea of how well their group behavior controlling

software is performing. The tool provides a quantitative analysis of the behavior of a

simulated group of objects (in this case the defense of the simulated soccer team) so that

the programmer may see the strengths and weaknesses of the algorithms in use.

Organization

Chapter 2 provides background. Chapter 3 discusses the software design

methodology used in the project. Chapter 4 gives the results. Chapter 5 interprets the

results and provides recommendations.

__

 4

II. SWARM COMPUTING

Computer programming originally consisted of applications that were fairly

complicated, but lacked the capability to achieve more advanced tasks. As both the

technological and theoretical aspects of computer science have advanced, so has the

scope of computer programs. The once limited applications have been replaced by

complicated projects that must accomplish many goals and satisfy many constraints.

While computer programs have evolved over the last fifty years or so, one aspect that has

not been taken into consideration is the changing computing medium.

Previously, programs ran on single stand-alone computers, whereas in 2000, less

than two per cent of the computing units deployed worldwide were stand-alone

computers [5]. Programs are starting to run on groups or swarms of computing elements,

which may come in may forms besides the traditional computer. Advancements in areas

like computer networking and computer architecture have made it possible for large tasks

to be run by a group of computing elements each behaving independently, yet working

together as a group. Further development of standards and methods for writing programs

that can handle this type of environment is important so that this new technology can be

fully taken advantage of.

Since swarm programming is a state of the art topic, the majority of the major

discoveries and advancements have been recent accomplishments. Much of the

underlying fundamental logic was developed several years ago, however. The concept of

__

 5

intelligent behavior arising from environmental interaction goes at least as far back as the

work of Herbert A. Simon in 1969 [8]. It was not until around 1985 that this concept was

applied to autonomous robots. In 1985, Rodney Brooks [3] wrote an important paper

about robot control and behavior in which he introduced two key ideas. The first of these

was that robot activity can be thought of as behaviors as opposed to separate functional

modules. The second idea was that a completely centralized control was not needed in

the case of multiple robots. Each can behave independently, with the group still

achieving the desired outcome if they are programmed correctly. By implementing these

ideas, “systems take advantage of individual agents' situatedness to reduce or eliminate

the need for centralized control or global knowledge. This reduces the need for

complexity of individuals and leads to robust, scalable systems” [8: 1].

The idea behind swarm programming is that each element of a group is

programmed with the same logic which is relied upon to decide what to do given the state

of its surrounding environment. By providing each element of the group with all it needs

to behave as desired, a manual control system is not needed. As applied to RoboCup

soccer, “the cooperative behaviors result from the interaction of simple individual

behaviors such as attraction to the ball, repulsion from obstacles, and patrolling of an area

when the ball is not visible” [8:5] as opposed to a global control system.

The only area of debate appears to be which research strategy should be taken.

Some computer scientists believe that the best way to develop group behavior programs

is to work with groups. Still, as Maja Mataric [7:1] points out, others claim that this is

__

 6

not feasible and that research “should first focus on the single-agent, single-robot case”.

Since virtual or simulated objects are easier to work with than actual robots, that seems to

be the most logical first step in developing algorithms for real robots or computing

elements. Real hardware elements have issues such as inaccurate/incomplete sensor info,

less than desirable communication quality, limited resources, and delayed feedback.

These issues make them harder to work with than software, because software can

eliminate or simulate any of these obstacles [7:1]. This project focuses on a simulated

environment which will be much easier to work with.

The sources consulted agree that swarm computing is an area of computer science

with great potential, and will surely revolutionize computing as it is known today. There

are some promising areas of research that relate directly to group behavior and swarm

programming. One such area is amorphous computing. Amorphous computing can be

defined as “engineering prespecified, coherent behavior from the cooperation of vast

numbers of unreliable parts interconnected in unknown, irregular, and time-varying

ways” [1:2]. Put simply, amorphous computing gets sensible results out of computing

elements working together in a seemingly insensible way. Amorphous computing takes

the group behavior computing philosophy and applies it to less conventional groups of

elements thereby expanding the possible applications of this technology.

A good example of an application currently being researched is cellular

computing. The way this works is by constructing logic circuits within living cells

through interactions between individual cells. Although cellular computing is currently

__

 7

at the primitive stage of development, “progress here would open a new frontier of

engineering which could dominate the information technology of the next century” [1:9].

Another promising area of research resulting directly from swarm computing is

networked sensors. Networked sensors are sensors that coordinate amongst themselves

to achieve a larger sensing task. This requires sensor network coordination which is

achieved by local algorithms where “simple node behavior achieves desired global

objective” [4:1]. Networked sensors can be used to gather information from previously

unreachable destinations and require little maintenance, which makes them a desirable

area of current and future research. While these two fields are by no means the only

promising research paths, they provide two good examples of the possibilities that arise

because of swarm computing.

Group behavior computing is a state of the art area of computer science. It is

constantly evolving and has already led to several promising areas of current and future

research. Now that the technology is available, swarm programming can really be

utilized and applied to many fields including, but not limited to, those discussed earlier.

Where this project fits in is evaluation of swarm programming algorithms in a simulated

environment. This project will evaluate the behavior of a simulated group of elements

according to some criteria, thus evaluating the algorithms that drive the group behavior.

This software will help in improving swarm programs, which can then be applied to real

life groups of computing elements.

__

 8

III. METHODOLOGY

The software developed takes an XML server log as input and produces its own

log of evaluation scores as output. This section discusses different aspects of this

software.

Software Use

From the user’s standpoint, the software is quite simple (see Fig. 2). As far as the

user is concerned, the software only has the following steps:

1) The user runs the program, providing the XML file as a command line

argument or allowing the default selection to be used.

2) They then wait as the program parses the XML, evaluates the data, calculates

scores, and outputs them to a text log.

3) When the program completes, the user will be able to check the text log file

created by the program which lists timestamp values and their corresponding

scores.

Fig. 1 Software functionality from the user’s perspective

__

 9

Software Functionality

Meanwhile, the program will actually be following these steps (see Fig. 3):

1) Once the XML file is supplied and evaluation settings are determined, the

program begins to parse the log.

2) The software extracts data and stores it. Data extraction and storage continues

for the current timestamp until the next one is reached.

3) The program calls each of the five individual evaluation functions and records

the scores.

4) It then comes up with a final overall score and prints it out to the text log file.

5) Steps 2) through 4) are repeated for each timestamp in the XML server log.

Fig. 2 Actual software functionality

__

 10

Software Advancement

 The software was designed with flexibility and extensibility in mind. The code is

easy to understand and the user can add, remove, or change evaluation functions without

causing the rest of the project to stop working. Several steps were taken to achieve this:

1) Comments were added at each potentially confusing or complicated piece of

code so that anyone looking at the code can understand what it is doing.

2) Each evaluation function was made into a separate file. This way a function

can be written completely separate from the rest of the project. Then all that

is required to incorporate it into the project is to add the file and change a

couple constant variable values

3) Common constants were all included in one file so that the user wouldn’t have

to search through the whole project just to change one thing.

4) The files were organized in a manner such that there are no circular includes

and the data clearly flows from one to the next (see Fig. 2).

Evaluation Criteria

The evaluation criteria mentioned above are examined in more detail here. Only

the simulated soccer team’s defensive performance is evaluated. The reason behind

limiting the scope is that the overall function of the software will not be altered, but the

evaluation functions will be more detailed and therefore more useful. Being able to

concentrate on one aspect of the team’s performance as opposed to the team’s overall

__

 11

performance as a whole makes it possible to come up with more effective evaluation

criteria.

Five evaluation criteria were considered:

1) Balance1: This evaluation functions tests whether the defense is balanced

between the right, middle, and left side of the field. This criterion doesn’t

take the location of attackers into consideration, relying strictly on the location

of the defenders. The more evenly balanced the defense is, the higher the

score will be.

2) Balance2: This also tests whether the defense is balanced between the right,

middle, and left side of the field. However, this criterion takes the location of

attackers into consideration. Instead of testing whether the defense is evenly

distributed across the field, it tests whether the defense is distributed in the

same way as the offense.

3) Numbers: This criterion tests that the number of defenders is high enough for

the number of attackers.

4) Marking: This function tests how well the attackers are marked by finding the

distances between each attacker and their nearest defender.

__

 12

5) Pressure: This tests how well the ball carrier is pressured by finding the

distance between them and the nearest defender, the distance between them

and the goal, and the position of the nearest defender in relation to them.

Each evaluation returns a score ranging from 0 to 100, where 100 is the best score

possible. If an evaluation is irrelevant based on the current data, it returns a value of -1,

letting the program know to ignore that particular instance of that evaluation. The first

four evaluation criteria are executed using an imaginary line on the field. The line starts

near the defensive goal and moves away from it, with the evaluation functions being

called at each location of the line. The functions only take into consideration the players

in between the imaginary line and the goal line. The score for each function is

determined by reconciling the individual scores at each location of the line. This makes it

possible to compare the scores at different distances from the goal. It also allows weights

to be given, making the scores from closer to the goal count more than scores from

further away from the goal.

__

 13

IV. RESULTS

Once the implementation was complete, the software was tested with an actual

XML server log. This section will discuss the outcome.

Process

 A XML server log from a previously played game was obtained and fed to the

program so that the results could be examined. The following statistics were recorded:

• The average evaluation scores for each of the five criteria for each team.

• The evaluation score for the UVA team for each criterion at every timestamp in

which a goal is scored against them.

Averages and final scores were then calculated for the above data.

Results

 The following average score data was recorded:

Average Scores

 UVA FCP

Balance1 70.347 99.058
Balance2 65.753 55.599
Numbers 84.818 89.230
Marking 77.450 99.395
Pressure 73.119 96.731
Final 76.032 97.231

This data shows that the program evaluated the FCP team much higher than the

UVA team. This makes sense since the final score of the game was 8 – 0 against the

UVA team. The scores were rather uniform for the UVA team, but there was some

__

 14

variation. The Balance2 score was lower than all the rest, showing that the UVA

defenders were not balanced across the field in the same way that the FCP attackers were.

In addition, the Numbers score was rather high, showing that UVA did have a good

number of defenders to deal with the number of FCP attackers, but could not stop them

from scoring.

The scores for the FCP team were almost all high, which is not surprising since

their defense was never pressured by the UVA offense. The average Balance2 and

Pressure for the FCP team can be somewhat misleading. These particular evaluations are

only calculated if UVA attackers and the ball are in the FCP team’s defensive half of the

field. Since this did not occur often in the game, there is not really enough data to make a

meaningful conclusion about the scores in these two categories. However, the other three

categories do show that the FCP team’s defense was solid by those criteria.

In addition, the following scores at times when goals were scored were recorded:

UVA Scores @ Times when goals are scored (8 total)

 Goal #1 Goal #2 Goal #3 Goal #4 Goal #5 Goal #6 Goal #7 Goal #8 Avg
Balance1 48.000 22.000 29.000 74.250 38.250 42.000 50.000 18.500 40.250
Balance2 75.401 37.464 80.663 68.428 83.748 81.501 76.775 86.445 73.803
Numbers 64.366 85.412 86.000 52.958 69.859 87.765 77.887 82.471 75.840
Marking 71.900 59.100 73.100 56.800 70.600 77.400 54.500 56.000 64.925
Pressure 33.333 N/A N/A 70.000 53.333 66.667 50.000 N/A 54.667
Final 58.600 50.994 67.191 64.487 63.158 71.066 61.832 60.854 61.897

This data shows that the evaluation scores for the UVA team were lower than the

average scores when goals were scored. This confirms what was expected. While four

of the five evaluations returned lower than average scores here, Balance2 actually

__

 15

returned a higher one. This suggests that the UVA team’s defense did a good job of

spreading the field in a way to match up with the opposing offensive players. However,

since the scores in the other four areas were lower, that was not enough to prevent the

other team from scoring.

Overall, the results were promising. Further discussion and interpretation will

follow in the next chapter.

__

 16

V. CONCLUSIONS

 This final chapter will provide an interpretation of the results as well as

recommendations for continued work on the project. In addition, it will discuss the

success of the project as a whole and its significance.

Interpretation of Results

 The specific objective of this project was to provide a tool to evaluate the defense

of a simulated soccer team. The success of the project in this aspect can be determined

by the actual results of testing the software. These results showed two major trends in the

scores.

1) The scores were higher for the winning team.

2) The scores for the UVA team were lower on average at points when goals

were scored.

Judging by these, the program can, to some extent, successfully analyze the

performance of a team’s defense. The second fact above is more important than the first

because the scores for the winning team are less relevant than the scores for the losing

team. Since the FCP team was not forced to play defense much in the game, the scores

evaluating their defense are less meaningful. However, the fact that the UVA evaluation

scores were lower when goals were scored is quite significant. Since the UVA defense

was constantly being pressured, the average scores were more meaningful than they were

for the FCP team as there was more data to work with. Since most goals occur, in part,

__

 17

due to lack of defense, the fact that the scores were lower when goals were scored makes

sense.

Since the scores the program calculates seem to make sense, the program can be

used to analyze and improve the defensive performance of the UVA team. The swarm

program that controls the team can be tweaked to achieve better scores from this tool.

This, ideally, would, in turn, improve the “on-field” performance of the team.

The broader objective was to provide swarm programmers with a new method of

evaluating the programs they write. That method is the use of software such as the tool

developed for this project. After developing and working with such a tool, the benefits

and drawbacks of this method can be analyzed.

Speed & ease of use. The software took approximately one minute to read in the

server log file, evaluate the data, and output its own log file. Going through the

XML server logs by hand would take so long it would be impractical. Watching

the game play out is another way to evaluate the team’s performance, but would

also take significantly longer than using software. The numerous tests and

calculations are only feasible if automated. By taking so little time to complete,

software evaluation allows more time for further analysis to be performed.

Flexibility & extensibility. Using programmed evaluation criteria is flexible as

well as efficient. Any criteria that can be transformed into code can be evaluated

__

 18

using this software. This allows the software to test an infinite amount of

properties. The ability to set weights for each function and to add or remove

evaluation functions also makes the software flexible. The user can manipulate

the evaluation criteria in several ways.

Quantitative analysis & results. This software provides quantitative analysis

and results. Multiple evaluations can be made and compared to each other

without any human error or bias. Quantifiable results provide a better foundation

for analysis of the results. This analysis will, in turn, help improve the original

swarm algorithms.

Evaluating swarm programs using software such as that developed for this project

also comes with a few disadvantages.

Computer usage. In all, the program required about 16 megabytes of hard disk

space. This included the input server log, the output logs, and the executable

itself. The program also used up to 14 megabytes of memory at a given time.

This data is from a log which had 2,834 timestamps. For a full soccer game, this

equates to about one timestamp for every two seconds of play. If more

timestamps were used, the hard disk and memory usage would increase, which

could be an issue, depending on the computer that is running the program.

__

 19

Limited evaluation scope. While the software can evaluate any properties

programmed into it, that is all it can evaluate. Therefore the program will miss

anything that wasn’t explicitly programmed into it. This can include very simple

properties that the programmer just did not think of, but would have picked up

from watching the game play out.

Evaluation correctness. The correctness of the evaluations provided by this tool

is dependent upon the programmer. If the programmer makes errors in coding,

the evaluations will have errors too. The only way to truly test the evaluations is

to watch the game play out and compare it with the evaluation scores to make

sure they are consistent.

Recommendations

 After reviewing the advantages and disadvantages of using this software tool to

evaluate swarm programs, there are definitely some tradeoffs. An optimal solution seems

to be a combination of the automated and manual approaches. The majority of evaluation

criteria should be coded and inserted into software. However, the game, or replay

thereof, should be analyzed by the user as well. This way the user does not miss simple

evaluation criteria that were not programmed into the software. Also, the user can test

the validity of the coded criteria by ensuring that it seems consistent with the game itself.

While, at first, this seems to defeat the purpose of creating the software, in reality it far

from does so. Watching games and replays a couple times for simple evaluations and to

check the coded criteria takes far less time than the alternative. The alternative is

__

 20

manually evaluating all properties by repeatedly watching the games, which would take

significantly longer.

There are several advancements that would have been made to this software given

more time, and that can still be made in the future. The goal was to create a functioning

program which is simple to use, which would not have been possible if the following

features were all included because they would have added too much development time.

User interface. One possible addition would be to add a user interface to the

program. Currently, the program uses simple command line input and output. A

nice interface would make the program a bit easier to use.

Evaluation criteria input. Another advancement that could be made is the

ability to accept evaluation criteria as input. While this would take a significant

amount of work, it would help users of the software. They would be able to add

properties to be evaluated without having to know how to program, and without

having to edit the software.

Generalized log input. The software could be changed so that it could read in a

more generalized type of XML log. This way, the program could evaluate other

simulations besides just soccer games. The tool could be very powerful if the

mentioned additions were implemented.

__

 21

Given the benefits and drawbacks of the software, it can be considered successful.

The goal was to create specific software to aid swarm programmers by providing a means

to evaluate their programs as well as explore the idea of software as a means of

evaluation. This tool does that, and provides some distinct advantages over manual

evaluation.

__

 22

VI. BIBLIOGRAPHY

[1] Harold Abelson, Don Allen, Daniel Coorel, Chris Hanson, George Homsy, Thomas

Knight, Radhika Nagpal, Erik Rauch, Gerald Jay Sussman and Ron Weiss.

"Amorphous Computing". Communications of the ACM Volume 43, Issue 5,

2000.

[2] Guillaume Belson, Frederique Biennier, Beat Hirsbrunner. “Multi-Robot Path-

Planning Based on implicit Cooperation in a Robotic Swarm.” Proceedings of the

Second International Conference on Autonomous Agents. Minneapolis,

Minnesota. May 10 - 13, 1998.

[3] Brooks, Rodney A. “A Robust Layered Control System for a Mobile Robot.” MIT AI

Lab Memo 864, September, 1985.

[4] Deborah Estrin, Ramesh Govindan, John Heidemann and Satish Kumar. "Next

Century Challenges: Scalable Coordination in Sensor Networks." Proceedings of

the Fifth Annual International Conference on Mobile Computing and Networks

(MobiCOM '99). Seattle, Washington, August, 1999.

[5] Evans, David. “Programming The Swarm.” July 24, 2000.

[6] Dani Goldberg and Maja Mataric. "Robust Behavior-Based Control for Distributed

Multi-Robot Collection Tasks," USC Institute for Robotics and Intelligent

Systems Technical Report IRIS-00-387. July. 2000.

[7] Mataric, Maja. “Coordination and Learning in Multirobot Systems.” IEEE

Intelligent Systems, Mar/Apr 1998.

__

 23

[8] Barry Werger and Maja Mataric. "From Insect to Internet: Situated Control for

Networked Robot Teams", Annals of Mathematics and Artificial Intelligence

31:1-4, pp. 173-198, 2001.

[9] Werger, Barry. “Cooperation Without Deliberation: A Minimal Behavior-based

 Approach to Multi-robot Teams.” Artificial Intelligence 110, pp. 293-320, 1999.

[10] Corten, Emiel. “SoccerServer Manual Ver.5. Rev. 00”

http://www.dsv.su.se/~johank/RoboCup/manual/ver5.1release/browsable/main.html

 Last visited in March, 2002.

[11] Brogan, D.C. and Hodjkins, J.K. “Group Behaviors for Systems with Significant

Dynamics” The Journal of Autonomous Robots. 1997.

[12] “RoboCup: What is Roboup” http://www.robocup.org/overview/21.html

 Last visited in March, 2002.

http://www.dsv.su.se/~johank/RoboCup/manual/ver5.1release/browsable/main.html
http://www.robocup.org/overview/21.html

__

 24

VII. APPENDIX

Appendix A: Code Listing

	PREFACE
	PREFACE	i
	TABLE OF DIAGRAMS
	ABSTRACT
	I. INTRODUCTION
	Problem Statement
	Rationale and Scope
	Organization

	II. SWARM COMPUTING
	III. METHODOLOGY
	Software Use
	Software Functionality
	Software Advancement
	Evaluation Criteria

	IV. RESULTS
	Process
	Results

	V. CONCLUSIONS
	Interpretation of Results
	Recommendations

	VI. BIBLIOGRAPHY
	VII. APPENDIX
	Appendix A: Code Listing

