
USING IDENTITY-BASED ENCRYPTION TO ELIMINATE
CERTIFICATES IN SSL TRANSACTIONS

A Thesis
In TCC 402

Presented to

The Faculty of the

School of Engineering and Applied Science
University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science in Computer Engineering

by

J. Adam Sowers

26 March 2002

On my honor as a University student, on this assignment I have neither given
nor received unauthorized aid as defined by the Honor Guidelines for Papers

in TCC Courses.

Approved ______________________________________ (Technical Advisor)
David Evans

Approved ______________________________________ (TCC Advisor)
Patricia Click

"DEAR SIR -- A favorable and a confidential opportunity offering by Mr.

Dupont de Nemours, who is revisiting his native country gives me an

opportunity of sending you a cipher to be used between us, which will

give you some trouble to understand, but, once understood, is the

easiest to use, the most indecipherable, and varied by a new key with

the greatest facility of any one I have ever known."

- Thomas Jefferson, in a letter to Robert R. Livingston, Apr. 18, 1802

 1

Table of Contents

TABLE OF FIGURES ...3

GLOSSARY OF TERMS ...4

GLOSSARY OF TERMS ...4

ABSTRACT...5

I. INTRODUCTION ..6
PURPOSE ... 6
BACKGROUND ... 6
THE PROBLEM... 9
SCOPE .. 11
OVERVIEW OF THESIS REPORT .. 11

2. REVIEW OF RELEVANT LITERATURE ..12

3. MATHEMATICAL BACKGROUND..16
RSA PUBLIC-KEY CRYPTOGRAPHY .. 16
ELLIPTIC CURVE CRYPTOGRAPHY (ECC)... 17

4. THE IBE SCHEME...19

5. IBE-SSL IMPLEMENTATION..21
SETTING UP THE MASTER PKG... 21
GETTING A PRIVATE KEY .. 22
COMMUNICATING OVER INSECURE NETWORKS .. 25

EFFICIENCY ANALYSIS...27

CONCLUSION..29
SUMMARY .. 29
INTERPRETATION ... 30
RECOMMENDATIONS ... 31

BIBLIOGRAPHY (WORKS CITED) ...33

APPENDIX A: MATHEMATICAL PROOF OF RSA SYSTEM...34

APPENDIX B: RAW DATA ..36

APPENDIX C: SELECTED CODE AND ITS OUTPUT...38
CLIENT.C – SIMPLE IBE-SSL CLIENT PROGRAM... 38

Program code .. 38
Program output.. 41
server.c – Simple IBE-SSL server program .. 42
Program code .. 42
Program output.. 45

 2

Table of Figures
FIGURE 1. DIAGRAM OF IBE SSL INTERACTIONS. ... 9
FIGURE 2. THE INITIAL SSL PAGE GENERATED FROM PKGHTML ... 23
FIGURE 3. THE SECOND GENERATED PAGE... 24
FIGURE 4. ENCRYPTION AND DECRYPTION TIMES FOR DIFFERENT FILE SIZES..................................... 28

 3

Glossary of terms

Asymmetric key pair - A key pair with a private and public key; used
in modern ciphers because of the difficulty in determining the private
key from the public key

Ciphertext – A message that has been encrypted so that its contents
cannot be determined without decrypting

Cryptography - (from Greek "secret writing") the process of
obscuring text or data by changing it using a method that can allow
the changes to be undone with a key

Cryptology - The study of cryptography

Key - In a cryptographic algorithm, the secret portion of the algorithm
that encrypts and decrypts the message

Plaintext – A message in its original readable form

Private Key - In an asymmetric key pair, the key that is known only
to the owner of the key pair

Public Key - In an asymmetric key pair, the key that is known to all

Symmetric key - a single key that is used both to encrypt and
decrypt messages

 4

Abstract

This thesis report discusses an alternative implementation of the current

Secure Sockets Language (SSL) protocol in use for secure communications on

the Internet. Using a different cryptographic protocol than the current SSL

standard, this new implementation uses identity-based encryption (IBE) to

eliminate the need for server-side certificates. The new system, called IBE-

SSL, involves the use of a private key generator (PKG) to create a private key

for the server. The server can then use its private key to decrypt any

messages sent to it by a client using the server’s DNS name as a public key.

The system can be implemented into modern browsers, and would provide an

alternative security system for web servers and clients.

The report includes a history of the new system along with the underlying

mathematical basis which provides the security of the system. The report also

includes the IBE system and its method of securely generating keys and the

encryption and decryption functions. Then an overview of the IBE-SSL system

implementation is given. An efficiency analysis is provided to gauge the

feasibility of using the implementation in an industrial setting.

A simple, yet complete, implementation for the IBE-SSL system was

completed and the source code is available online (See the conclusion section

for the URL.) The system includes a sample private key generator, as well as

test client and server.

 5

I. Introduction

Purpose

The purpose of this project is to demonstrate that traditional SSL can be

supplanted with identity-based encryption to eliminate the need of site

certificates. Code for the proof-of-concept is given, and the report includes

security and speed analyses.

Background

Throughout history there has been a race in the field of cryptology:

cryptographers strive to find new ciphers that are increasingly hard to break,

and cryptanalysts work to break the ciphers. In traditional (symmetric)

ciphers, there is a single key that allows the sender to encrypt a message,

and the recipient must use this same key to decrypt the message. Most of

these ciphers were hard to break in their time, but a large problem remained:

the single key [9]. If two parties were unsure about the security of their

connection, they might think to encrypt their messages using cryptography.

However, they first had to meet and exchange a common key in order to

decrypt each other’s messages. This was a problem if the pair could not meet

in person [6].

 Cryptographers Ron Rivest, Adi Shamir and Leonard Adleman developed

a revolutionary new method in 1977. Their method uses two keys: a private

 6

key known only to the owner and a public key that can be given to anyone.

The system is based on a complicated mathematical formula involving large

prime numbers and exponentiation [8]. When someone wishes to send a

message to a person, he or she must find that person’s public key and

encrypt the message. The recipient then decrypts the message with his or

her private key and receives the plaintext. When online retailers appeared on

the World Wide Web, experts realized that this new form of cryptography

(commonly called public-key cryptography) could allow these businesses to

conduct secure transactions. This new algorithm, called Secure Sockets

Language (SSL), quickly made its way into most web browsers.

In an SSL system, the server generates its own public and private key pair

and then publishes the public key to the Internet. Anyone wanting to transfer

sensitive data can then use the server’s public key to encrypt the data.

However, if a hacker compromised the server and replaced the server’s public

key with the hacker’s public key, then the hacker could intercept incoming

ciphertext messages and decrypt them [6]. To avoid this, the creators of SSL

introduced certificates. One of the unique properties about the public /

private key pair is that a person can encrypt a message with his or her

private key, and then anyone can get the person’s public key and decrypt the

message. Since the person’s public key decrypts the message, the

corresponding private key must have encrypted it, so anyone who decrypts

the message knows that the person sent it. This process is known as

 7

“signing.” In SSL, a trusted party (called a certificate authority or CA) will

issue a certificate for a server. Essentially, the certificate is the public key of

the server encrypted with the private key of the signer. Web browsers have

the public key of the CA embedded in their code and these keys are implicitly

trusted on SSL’s root-level certificate trust model. Since web browsers (and

users) trust that the CA has not given away its private key, they can decrypt

the server’s public key by decrypting with the CA’s public key with the

assurance that a hacker has not compromised the system security [9].

In 2001 D. Boneh and M. Franklin developed a similar method of public

key cryptography, except that it allowed the sender to pick one of the keys

using the Weil pairing. The Weil pairing is another system that is based on a

complicated mathematical formula - for the purposes of this explanation let

us assume that the mathematical function describes an ellipse. Since any

ellipse has two axes of symmetry, any point on the ellipse has an “opposite.”

If the mathematical function is “hard enough” – meaning it cannot be

determined by knowing only its inputs and outputs, then the output of this

ellipse function (its opposite) will be an effective key [2]. The advantage to

this system is that a person can pick his or her own public key, and rely on a

trusted third party called the Private key generator (PKG) to generate the

proper private key to decode the message. Since the public key can be

chosen, the scheme is called Identity-Based Encryption (IBE).

 8

The Problem

In the most common example, suppose that someone wants to buy a

product from an online retailer. With traditional SSL, the web browser

connects to the server and downloads the certificate. It checks to see that it

has been signed by a trusted party, and extracts the public key of the server.

It then encrypts data with the public key and sends it to the server, which

decrypts the data and completes the transaction. The main disadvantage to

this scheme is that certificates rely on the user to manage them, and most

web users are not even aware of SSL technology, much less certificates.

Certificates can also be revoked, but most users do not check the status of

the certificate before transferring secure data.

PKG
server

D”amazon.com” EPKG

Web
server

Browser
(client)

E(message, E”amazon.com”)

message message

If SSL used the IBE system instead, there would only be the need for one

certificate: the master certificate embedded in web browsers for the PKG. The

browser would then encrypt data with the URL of the website (e.g.

“amazon.com”) and send the encrypted text to the server. The server would

get the encrypted message from

the client and decrypt it with its

private key that it has received

from the PKG. There is no need

for the server to have its own

certificate: it merely needs the
Figure 1. Diagram of IBE SSL interactions.

 9

private key generated from the PKG to decrypt any message sent to it. This

process is shown graphically in Figure 1.

 10

Scope

In this project, I have developed a method of using IBE in SSL to

eliminate the need for certificates. I have provided proof-of-concept code to

set up the PKG, for the server to connect to the PKG and request its private

key, and for the client to encrypt with the server’s public key and connect to

the server. I anticipate that this project will have a positive impact in making

Internet transactions more secure. Although this solution does have certain

advantages over SSL, I do not expect the outcome of this project to serve as

a replacement; SSL has become an industry standard and completely

replacing SSL with an IBE SSL algorithm would prove unfeasible in modern e-

commerce.

Overview of Thesis Report

In the following chapters I will provide a more in-depth discussion of the

mathematics behind the systems and its applications in the algorithms. I will

present my code for the proof-of-concept demonstration, data on speed and

processor requirements, and a security analysis of the method. Finally, I will

conclude the report with a project summary and an interpretation of the data,

as well as recommendations for the future of this system.

 11

2. Review of Relevant Literature

It would be unwise to start any project using public-key cryptography

without researching the original papers on the subject. The first paper on a

simple and secure public-key cryptographic system was “New Directions in

Cryptography,” published in 1976 by Whitfield Diffie and Martin Hellman. In

this paper, the groundwork for public-key cryptography began: the authors

discovered the first way for two people to share a key over an insecure

connection. No longer would people have to resort to trusted couriers to

exchange keys for encrypted messages [3]. This proved to be a monumental

step in public-key cryptology, but still a significant problem remained: how

could one person verify that the other person was in fact the intended

recipient and not an imposter?

This question was answered by R. L. Rivest, A. Shamir and L. M. Adelman

in 1978 in a paper entitled “A Method for Obtaining Digital Systems and

Public-Key Cryptosystems.” The paper expanded on the concept of the Diffie-

Hellman algorithm to develop a (nearly) complete system of secure

communication over an insecure line using a matched set of keys [9]. The

researchers explained the mathematical basis behind their findings and

outlined the manner in which these methods could be used to generate

encrypted messages between any two people without fear of the message

being intercepted. This paper revolutionized the world of cryptology, as it

succeeded where others had failed for hundreds of years in the quest of

 12

developing secure communication between perfect strangers. Without this

paper, reliable security on the then fledgling Internet would not have been

possible, and modern e-commerce and a majority of other Internet

technologies would not exist [10]. As a side note, in 1997 the British

government declassified documents revealing that British cryptologists

developed virtually the same methods of the Diffie-Hellman and RSA

algorithms in the early 1970’s, but due to governmental security issues, they

were not allowed to publish their results [5]. Since the work was classified

until 1997, Rivest, Shamir, Adleman, Diffie, and Hellman are still credited with

the invention of modern cryptography since they developed it independently

and were the first to publish their findings [10].

The RSA algorithm (as it is commonly called) works perfectly well and

turns out to be very secure. However, the main drawback to the algorithm at

the time of its invention was that it was rather slow. Around the same time,

the NSA approved the use of another encryption algorithm called DES (Data

Encryption Standard). This algorithm suffered from the age-old problem of

key distribution but had a great advantage over RSA in that it was notably

faster [7]. Despite the key-distribution problem, DES was implemented in

banking systems and governmental security systems, among other uses [1].

In 1991, a programmer named Philip Zimmermann developed a simpler,

yet equally effective system using RSA for e-mail that he called PGP (Pretty

Good Privacy). Since the RSA algorithm was very slow to compute,

 13

Zimmermann decided to encrypt the text using a random key, which is much

faster for a PC to calculate. However, the key itself is encrypted with the RSA

algorithm and since the key size is relatively small, PGP takes less time to

encrypt than the original RSA encryption. Zimmermann worried that the

government would block him from distributing his program for several

reasons. The US government had listed cryptographic systems as non-

exportable munitions at the time, and the RSA algorithm is patented. Putting

the public interest of privacy over potential legal ramifications, he asked a

friend to publish the source code on the Internet to guarantee its rapid

spread [1]. Zimmermann’s program and his actions made him the subject of

a three-year investigation from the government. Nevertheless, at this time all

legal issues have been cleared up and now PGP is freely available to anyone

in the world thanks to more lax cryptographic export restrictions [1].

Due to the work of these cryptographic pioneers, users of the Internet can

benefit from high security while sending e-mails and online commerce.

However, there are still some drawbacks. For example, suppose that one

wants to send an e-mail with sensitive information to someone else over the

Internet. Using the PGP system, you can use the other person’s public key to

encrypt the data, but they might not have a PGP key, and even if they do,

how would one find it? Ron Shamir asked for a system in which the sender

can choose the public key. This remained unanswered until 2001 when two

researchers from Stanford, D. Boneh and M. Franklin, developed a system

 14

which does exactly that. For example, say Alice wants to send a message to

Bob, whose e-mail address is “bob@virginia.edu.” Alice simply encrypts the

message using Bob’s e-mail address as the public key and Bob decrypts it

with the help of the Private key generator [2].

This system uses many concepts of the previous algorithms but

implements a new system using a specialized form of elliptic curve

cryptography, in which a private key generator can be used to generate the

private key based on the public key by using mathematical equations on

special forms of ellipses. The Stanford team has shown that this system can

effectively work for e-mailing sensitive data [2].

The previous research in the field of public-key cryptography has proven

that strong cryptosystems can provide security over insecure networks in e-

mail and e-commerce. My research explores the possibilities of using the new

Weil pairing encryption system for SSL transactions with the removal of site

certificates. In my investigation, I implemented a system that improves

security on the Internet without adding unnecessary complexity to existing

systems, and avoids complications due to server authentication.

 15

3. Mathematical Background

RSA Public-Key Cryptography

The SSL system, as well as many public-key systems in use today, relies

on the RSA scheme. This relatively simple scheme uses known mathematical

challenges to provide the system’s security. The algorithm is as follows:

1. Pick two large prime numbers p and q.

2. Multiply these two numbers together to yield n = pq.

3. Choose two numbers e and d such that

)1)(1mod(1 −−≡ qped (3.1)

and d is relatively prime to (p -1)(q -1).

4. To encrypt a message M,

nMME e mod)(= (3.2)

5. To decrypt the ciphertext message C,

nCCD d mod)(= (3.3)

The encryption and decryption functions are both based on the numbers d

and e which are derived from the original prime numbers p and q. (A

mathematical proof of the assumptions in (3.2) and (3.3) is given in Appendix

A.) In the RSA system, n and e are public while p, q, and d are kept private.

The underlying security of the system rests in the fact that since p and q are

very large prime numbers, n is difficult to factor into p and q. So far, no

 16

method exists to factor a large number into its prime factors in any

reasonable amount of time, so p and q are hidden to outsiders and e cannot

be determined. Note also that e and d are interchangeable, so while (3.2)

and (3.3) are true, they both still hold if d and e are exchanged. This forms

the basis for both encryption and message signing in the RSA system.

Elliptic Curve Cryptography (ECC)

Elliptic curve cryptography, which the IBE system is based on, utilizes

certain mathematical properties of elliptic curves, that is, curves of the form

baxxxyy ++=+ 232 . (3.4)

Specifically, IBE uses the curve

 (3.5) 132 += xy

in its algorithm. In the traditional sense, the quantities for the variables are

real numbers, but in ECC these numbers may be any numbers in a given

finite field. In this field, numbers can be added and multiplied to yield other

numbers also in the field. In ECC, a person picks a particular elliptic curve

and a particular point on the elliptic curve (denoted as F). These parameters

can be shared in public between two users. Then each person i picks a

private key Ki (a random integer) and computes Ki F. This number serves as

the public key for person i. Say that Alice and Bob have agreed on an elliptic

curve and a point on the curve. Alice sends Bob KaF and Bob sends Alice KbF.

 17

Alice and Bob can now agree on a common key by multiplying the public key

of the other person by their private key. Alice would compute the key as

KaKbFKbFKaK ==)((3.6)

and Bob similarly calculates the key as

 KaKbFKbKaFKaFKbK ===)(. (3.7)

Note that this approach is similar to the Diffie-Hellman key exchange

algorithm, but using elliptic curve fields instead of prime integers. Since it is

hard to calculate Ki from KiF (based on the defined addition and multiplication

rules of the elliptic curve’s field), Alice and Bob can use these keys to

communicate securely. Whereas this method involves key exchange and

communication over a symmetric cryptosystem, the IBE system exploits a

property of the Weil pairing to allow for asymmetric cryptography.

 18

4. The IBE Scheme

The IBE scheme operates on a specialized form of ECC using the Weil

pairing. While the majority of this algorithm is beyond the range of this text,

essentially the Weil pairing can be used in ECC to create a bilinear map which

satisfies certain properties desirable for a public-key cryptosystem. Using this

pairing and its resulting bilinear map

 (4.1)

one can create a system which takes an arbitrary point on the curve and

generates the complement of the point based on the bilinear pairing. The IBE

system has four major algorithms, as follows:

 1. Setup – Generates private- and public-key parameters for the

particular IBE private key generator (PKG) server, along with a master key s.

 2. Extract – Maps an arbitrary string to a point on the

elliptic curve, calculates a private key d

*}1,0{∈ID

IDID sQ=

 3. Encrypt – Encrypts a message string M with public key mapped from

 along with a randomized parameter r. *}1,0{∈ID

 4. Decrypt – Determine if ciphertext message C is on elliptic curve; if

so, decrypt with extracted private key and remove r randomization.

The IBE system implements these algorithms to provide a complete

solution to the selected public key problem posed by Shamir. In the paper

 19

“Identity-Based Encryption from the Weil Pairing,” the Stanford team argues

convincingly that the IBE system is secure from the standpoint of chosen

ciphertext security in the random oracle model, that is, that given any private

keys that are not the same private key as the server and messages encoded

with these keys, an attacker still cannot learn anything useful about the

server’s private key.

 20

5. IBE-SSL Implementation

In this section, I will outline the steps taken to show that the IBE system

can be applied to a traditional SSL implementation. While SSL is traditionally

performed implicitly in modern browsers, I have chosen to write

demonstration programs to show a proof of concept. This demonstration

could be used at a later date in an actual open-source browser, such as

Mozilla, to test its usefulness in real-world applications. The user must

execute three main tasks for the system to work properly. These tasks are

outlined below.

Setting up the master PKG

The IBE system provides a program named gen which generates the

master system parameters for the PKG (i.e. the setup algorithm). In a real

SSL system, gen would be run on the master PKG (e.g. Verisign). The

program reads its system parameters from a configuration file (gen.cnf) and

generates a public and private set of parameters, much like Certificate

Authorities in SSL generate a master public and private key-pair. I have made

no changes in this program other than setting up the system parameters in

the configuration file to reflect the IBE-SSL system. Once the user has run

gen, he or she can distribute the public parameters freely for embedding into

browsers as long as the private parameters are held securely on the PKG

computer.

 21

Getting a private key

The IBE system also provides a tool called pkghtml which acts as an SSL

server and issues private keys to servers. The tool originally served as an

email-based system, but I modified it to write the private keys to files stored

on the PKG server. The original program also allowed anyone to have a

private key generated for this specific IBE system, but I again modified it to

only allow authenticated servers by use of an access file on the PKG server.

To set up the pkghtml program, the PKG needs public and private keys

generated for its SSL encryption. These keys can be generated from the

OpenSSL package available online. The public key file certificate (ca.cert) and

the private key (ca.priv) need to be placed in the same directory as the

program. The administrator for the pkghtml server also needs to create a

pkaccess file which includes the ID, password, and location to write the

private key file. As with gen, the pkghtml program has a configuration file

(pkg.cnf) which defines the basic parameters of the program. The

administrator runs pkghtml and server administrators can connect and

generate their private keys. Figure 2 shows the output of the pkghtml server

running on a current web browser over an SSL connection.

 22

Figure 2. The initial SSL page generated from pkghtml

 Once the server administrator has entered a valid id (usually the DNS

name of the server which will be receiving encrypted IBE-SSL messages) and

password for that ID, the pkghtml server will generate a new page (as shown

in Figure 3) confirming the key creation.

 23

Figure 3. The second generated page showing the key share written to the specified directory.

At this point, the server administrator can log into the PKG server in an

agreed-upon way (i.e. ssh, secure ftp, etc) and download the params file.

The administrator then needs to run ibe combine <ID> params to remove

 24

the password from the params file for use in the final step of the IBE-SSL

implementation.

Communicating over insecure networks

Once the server has received and decrypted the private key, it can use the

key to decrypt any message encrypted with its ID. To demonstrate the IBE’s

encrypt and decrypt functions in real time, I have implemented a simple

client / server system using standard sockets. As a test, the user can run

these two programs on the same machine, or on two machines connected

over the Internet. Of course, in a real SSL scheme, the client and server

would certainly be different computers, but the client and server programs I

have developed are merely meant to show that the system can quickly

encrypt and decrypt messages sent over an insecure network. The server

begins by reading parameters from a configuration file (server.cnf) – the port

to listen on, the file containing the private key generated from the PKG, and

the password to the file. Again, the password provided in the configuration

file is meant to be a convenience to the tester and in a real system should

not be placed in any file that might be intercepted by an intruder. The server

then listens for connections from the client on the specified port. The user

runs the client as client <server DNS name> <ID> <file>. The client

program connects to the server specified on the command line and reads in

the specified file. It encrypts the file with the given ID and sends the

 25

encrypted message to the server. The server then receives the encrypted file

and, using the private key for the ID, decrypts the file and sends the

unencrypted message back to the client to demonstrate that it has decrypted

the message successfully. This action would be completely unnecessary in a

real SSL implementation, but in these test programs, the user can verify that

the implementation can successfully encrypt messages, send them securely

over an insecure network, and decrypt the ciphertext at the server side. On

the client’s side, the unencrypted file will be stored with the same name as

the original file, except with “.out” appended to the end. The user can verify

that the contents of the files are the same by visual inspection or by using

the Unix command diff.

 26

Efficiency Analysis

To test the efficiency of the system, I encrypted and decrypted sample

files using the IBE system and measured the benchmark times for the

encryption and decryption stages. All tests were performed on an Intel

Pentium II CPU running at 450 MHz with 128MB of PC100 SDRAM and Redhat

Linux 7.2 using a Pentium II-optimized kernel. I ran the client and server

programs on the same machine to eliminate the possibility of lag between the

two programs which could affect results in the initialization phase. The

encryption phase benchmarks provided more results than the decryption

phase benchmarks, but in both cases the total time was provided. I chose

files of three sizes to send: ‘short.txt’ (a 35byte file), ‘virginia.txt’ (a 1.5

kilobyte file), and ‘charter.txt’ (a 6.6 kilobyte file.) I would have liked to test

larger files, but the ciphertext for any file in the IBE system is longer than the

plaintext, and IBE currently only supports ciphertexts up to 10 kilobytes. The

tests were run 10 times, and the raw results are available in Appendix B.

Figure 4 highlights the CPU times of encrypting the texts. The file size did not

seem to affect the processing of the file, and indeed the decryption time did

go down with the larger file. Realistically, this time should increase with much

larger files, but in an actual IBE-SSL system, the user would not be

transmitting much more than credit card information and mailing addresses,

so the total amount of information sent would be relatively low. The only

potential problem in this scheme is that the computer took about .15 seconds

 27

to decrypt a file. This corresponds to about 7 decryptions possible per

second, and a problem could arise on a busy e-commerce server which surely

has more than 7 secure connections per second during peak times. However,

these tests were performed on a single Pentium II without extensive speed

optimizations, so it is possible that servers running at e-commerce sites would

have much more processing power than my test server and could certainly

handle more secure connections per second.

Encryption / Decryption Time vs. File Size

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

ini
tia

liz
ati

on

co
mpu

tin
g rP

map_
to_

po
int

make
_o

rde
r_q

mille
r

tat
e p

ow
er

gid
^r

en
cry

pti
on

 tim
e

de
cry

pti
on

 tim
e

Function

Ti
m

e
(s

ec
)

short.txt
virginia.txt
charter.txt

Figure 4. Encryption and Decryption times for different file sizes.

 28

Conclusion

In this report, I have shown that a complete scheme for secure network

transactions can be accomplished without the need for certificates. I have

shown that an alternative cryptosystem to the current RSA system has

comparable security and similar ease of use. I will present a summary of the

findings, an interpretation of the data, and recommendations for the future of

the system.

Summary

In the proceeding text, I have shown that for a cryptosystem to effectively

operate as a secure network public-key cryptographic protocol, it must have

certain properties. Of course, the underlying cryptosystem must be secure. I

have shown the IBE team’s proof that the system has all of the desired

properties for a secure public-key cryptosystem. I have also shown how the

IBE system differs from RSA in terms of its mathematical properties. The

system must also exhibit some features for it to work similarly to SSL and I

have outlined these features also.

The protocol must first have the ability to create public and private keys

that are mathematically hard to break. The protocol must be able to quickly

generate private keys for servers and have a secure method of distributing

the private key to the server, and finally be able to decrypt messages sent to

 29

it based on its ID. I have shown that these features are easily implemented,

as well as sample output from a private key generator and a simple client /

server system illustrating this system in action. Lastly, I have shown that

these steps have been implemented in the system and that they work

together to provide a complete solution to the problem without the use of

certificates as in traditional SSL.

Interpretation

As the preceding results show, this system is feasible to implement as a

secure method of sending data over insecure networks and comparable to

the current SSL standard. However, as mentioned before, any system based

on RSA encryption relies on the difficulty of factoring large numbers into their

prime factors. Mathematicians have struggled without success to find a

method to quickly factor large numbers, but with the discovery of a

significantly more efficient number factoring method, the RSA algorithm

would no longer provide a secure method of exchanging messages and the

SSL system would fall apart. Mathematicians agree that in this event, security

systems would require the use of elliptic curve cryptography, which provides

the mathematical basis of IBE and has not yet shown any weakness to

cryptographic attack. Therefore, the IBE-SSL system fulfills a definite need in

current security measures.

 30

In addition, I have shown that the IBE system works in a relatively

efficient manner to generate private keys for servers from the PKG and to

encrypt and decrypt data. While a typical e-commerce server would need to

handle many requests at once, this server performed rather well on a modest

Intel Pentium II system running at 450 MHz and Redhat Linux 7.2. I would

imagine that industrial e-commerce servers would handle the IBE encryption

much faster than my test system and that the encryption / decryption process

might get a speed boost from extended code optimization. I believe that this

system is implementable in an industrial setting, and should be included in

future web browsers as an alternative to traditional SSL. Source code is

available online at http://www.people.virginia.edu/~jas8qs/ibessl/ibessl.tar

(as of 26 March 2002).

Recommendations

In this paper, I have presented only a simple implementation of a

complete working IBE-SSL system. There are numerous modifications that

could be made to this project in future designs. For example, an interesting

feature of IBE is that the PKG could generate the ID as “ID | <date>”. This

would cause keys to automatically expire after the specified date, and the

server could get a new key each day to further protect against attacks. I

intend to release this software to the open-source community to expand upon

it and port it from Linux to other systems. My hope is that other programmers

 31

will obtain this system and refine it for uses I have not foreseen, and

implement it as a standard along with traditional SSL. I believe that this

project will have a definite use in the Internet security community as an

alternative to SSL and as a potential replacement in the event that

mathematicians find a way to expedite the factoring algorithm that protects

RSA-based cryptosystems. I believe that this project has provided a

worthwhile contribution to the security community and the results found here

can aid future cryptographic protocols to increase the overall security of

public networks.

 32

Bibliography (works cited)

(Note: if a source has both a printed entry and online entry the online entry has been

provided as a secondary source for the reader’s convenience.)

,

1. Back, Adam. “PGP Timeline.” Online (Internet). 17 October 2001. Available:

http://www.cypherspace.org/~adam/timeline/

2. Boneh, D. and Franklin, M. “Identity-Based Encryption from the Weil Pairing.”

Proceedings of Crypto '2001, Lecture Notes in Computer Science, Vol. 2139,
Springer-Verlag, pp. 213-229, 2001. Available:
http://crypto.stanford.edu/~dabo/papers/ibe.pdf

3. Diffie, W. and Hellman, M. “New Directions in Cryptography.” IEEE

Transactions on Information Theory, 1976.

4. Evans, David. “Lecture 8: RSA.” Online (Internet). 23 March 2002. Available:

http://www.cs.virginia.edu/~evans/cs588/lectures/lecture8.pdf

5. Ellis, J. H. “The Possibility of Non-Secret Encryption.” CESG classified paper,

1970 (declassified 1997). Online (Internet). 17 October 2001. Available:
http://www.cesg.gov.uk/publications/media/nsecret/possnse.pdf

6. Garrett, Paul. Making, Breaking Codes. New Jersey: Prentice Hall, 2001.

7. Network Associates, Inc. An Introduction to Cryptography (Chapter 1 and 2).

PGP 6.5.1 documentation. Online (Internet). 17 October 2001. Available:
ftp://ftp.pgpi.org/pub/pgp/6.5/docs/english/IntroToCrypto.pdf

8. Rivest, R, Shamir, A, and Adleman, L. “A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems.” 1978.

9. Singh, Simon. The Code Book. New York: Anchor Books, 1999.

10. Wagner, D. and Schneier, B. “Analysis of the SSL 3.0 Protocol”. The

Second USENIX Workshop on Electronic Commerce Proceedings,
USENIX Press, November 1996, pp. 29-40. Online (Internet). 17
October 2001. Available: http://www.counterpane.com/ssl.pdf

 33

Appendix A: Mathematical proof of RSA system

(taken from “Lecture 8: RSA” from David Evans, a synopsis of “A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems” by Rivest,

Shamir, and Adleman)

For the RSA algorithm to work as a secure public key cryptosystem, the

following property must be met:

 (A.1) MMED =))((

 2. d and e are easy to compute

This property is true because:

 (A.2) nMME e mod)(=

 (A.3) nnMMED de mod)mod())((=

 M ed= (A.4) nmod

and e, d, and n can be chosen such that

 M (A.5) nM ed mod≅

 1 (A.6) nM ed mod1−≅

based on Euler’s totient (φ) function which states that for a and n relatively

prime,

 a (A.7) nx mod1)(≡ϕ

if a and n are relatively prime where

 =)(xϕ the number of numbers < n not relatively prime to n.

Since n is the product of two primes, we can pick a number d relatively prime

to n and its multiplicative inverse e such that

 34

 de)(mod1 nϕ≡ (A.8)

and d and e satisfy the equation

)1)(1()(1 −−==− qpned ϕ . (A.9)

Then

 1 (A.10) nM ed mod1−≡

and correspondingly

 M (A.11) nM ed mod=

 QED.

 35

Appendix B: Raw data

encrypt (short.txt)

trial initialization computing rP map_to_point make_order_q miller tate power gid^r encryption time
1 0 0.010297 0.007058 0.057512 0.033426 0.015579 0.007133 0.133565
2 0 0.010142 0.007039 0.057685 0.033429 0.015572 0.00733 0.133717
3 0 0.009598 0.007057 0.056898 0.033482 0.015643 0.007416 0.13262
4 0 0.010298 0.007059 0.057494 0.03338 0.01557 0.007286 0.133655
5 0 0.01105 0.007055 0.057627 0.033437 0.015571 0.007428 0.134694
6 0 0.009914 0.007038 0.057676 0.033416 0.015586 0.007197 0.133383
7 0 0.009905 0.007058 0.057638 0.033404 0.015599 0.007164 0.133287
8 0 0.010293 0.007068 0.057647 0.033394 0.015572 0.007237 0.133733
9 0 0.009726 0.007039 0.057414 0.033427 0.015579 0.007266 0.132971

10 0 0.009537 0.007058 0.057618 0.033397 0.015594 0.007161 0.132886
average 0 0.010076 0.0070529 0.0575209 0.0334192 0.0155865 0.0072618 0.1334511

encrypt (test.txt)

trial initialization computing rP map_to_point make_order_q miller tate power gid^r encryption time
1 0 0.009217 0.007061 0.057576 0.086297 0.015613 0.007302 0.186867
2 0 0.009769 0.007045 0.057653 0.078618 0.015519 0.007262 0.18075
3 0 0.010461 0.007412 0.057825 0.033553 0.015476 0.007225 0.135711
4 0 0.009727 0.007044 0.057684 0.079077 0.015538 0.00716 0.18004
5 0 0.010885 0.007059 0.057622 0.033237 0.015461 0.00719 0.135143
6 0 0.008963 0.007065 0.057731 0.033513 0.015496 0.007204 0.133695
7 0 0.012025 0.00707 0.102341 0.033622 0.015489 0.007274 0.181644
8 0 0.009527 0.007062 0.057772 0.033505 0.016303 0.007127 0.135138
9 0 0.010086 0.007041 0.057902 0.033528 0.015479 0.007154 0.134887

10 0 0.009928 0.007043 0.057762 0.078537 0.015509 0.007191 0.179767
average 0 0.0100588 0.0070902 0.0621868 0.0523487 0.0155883 0.0072089 0.1583642

 36

 encrypt(charter.txt)
trial initialization computing rP map_to_point make_order_q miller tate power gid^r encryption time

1 0 0.009627 0.007045 0.057468 0.033366 0.041242 0.007252 0.16392
2 0 0.009318 0.007183 0.057133 0.033372 0.015681 0.007197 0.137669
3 0 0.011103 0.007099 0.057466 0.033401 0.015585 0.007401 0.139795
4 0 0.009501 0.007175 0.083838 0.033439 0.015581 0.007261 0.164581
5 0 0.009583 0.007043 0.057483 0.033386 0.015575 0.007372 0.13818
6 0 0.009487 0.007182 0.057403 0.033222 0.015556 0.007157 0.137789
7 0 0.010962 0.007064 0.083149 0.033432 0.015587 0.007309 0.165372
8 0 0.010902 0.007061 0.058185 0.033359 0.015572 0.007204 0.140057
9 0 0.009855 0.007043 0.083138 0.033395 0.015585 0.007143 0.164066

10 0 0.010603 0.007048 0.057456 0.033224 0.01558 0.007384 0.13931
average 0 0.0100941 0.0070943 0.0652719 0.0333596 0.0181544 0.007268 0.1490739

decrypt (short.txt) decrypt (virginia.txt) decrypt (charter.txt)
trial decryption time trial dec time trial dec time

1 0.153968 1 0.13077 1 0.132094
2 0.153687 2 0.12518 2 0.173337
3 0.119674 3 0.154441 3 0.125117
4 0.146095 4 0.154871 4 0.129594
5 0.124175 5 0.148521 5 0.128571
6 0.169278 6 0.140944 6 0.138826
7 0.14298 7 0.149942 7 0.121921
8 0.162181 8 0.122283 8 0.129095
9 0.153936 9 0.152558 9 0.130597
10 0.152241 10 0.153792 10 0.129856

average 0.1478215 average 0.1433302 average 0.1339008

 37

Appendix C: selected code and its output

client.c – simple IBE-SSL client program

Program code

 #include <stdio.h>
 #include <stdlib.h>
 #include <unistd.h>
 #include <errno.h>
 #include <string.h>
 #include <netdb.h>
 #include <sys/types.h>
 #include <netinet/in.h>
 #include <sys/socket.h>
 #include "ibe.h"
 #include "format.h"
 #include "ibe_progs.h"

 CONF_CTX *cnfctx;

 int portnum;

 #define MAXDATASIZE 1000 // max number of bytes we can get at once

 int main(int argc, char *argv[])
 {
 char defaultcnffile[] = "client.cnf";
 char tempfile[] = "temp.cli";
 char *cnffile = defaultcnffile;
 char *paramsfile;
 char *receivefile;
 int status;
 int sockfd, numbytes;
 char buf[MAXDATASIZE];
 struct hostent *he;
 struct sockaddr_in their_addr; // connector's address information

 byte_string_t M;
 char *id;
 unsigned char *buftemp;
 int pbufsize = 100;
 char *idarray[2];
 unsigned char *ptext;
 int ptextlen;
 char filebuf[MAXDATASIZE];
 int count;
 FILE *fp;

printf("\nIBE-SSL test client v1.0\nby J. Adam Sowers
(jasowers@virginia.edu)\n");

 printf("based on Stanford IBE 0.21\n\n");

 if (argc != 3) // need the server's DNS name and file to encrypt
 {
 fprintf(stderr,"usage: %s hostname filename\n", argv[0]);
 fprintf(stderr, "The client will automatically encrypt

with the hostname provided.\n\n");
 exit(1);
 }

 printf("Loading config file...\n");

 38

 cnfctx = LoadConfig(cnffile);

 if (!cnfctx)
 {
 fprintf(stderr, "error opening %s\n", cnffile);
 exit(1);
 }

 portnum = GetIntParam(cnfctx, "port", 0, 31832);
 paramsfile = GetPathParam(cnfctx, "params", 0, "params.txt");

 IBE_init();
 status = FMT_load_params(paramsfile);
 if (status != 1)
 {
 fprintf(stderr, "error loading params file %s\n", paramsfile);
 exit(1);
 }

 // get the host info
 if ((he=gethostbyname(argv[1])) == NULL)
 {
 perror("gethostbyname");
 exit(1);
 }

 // set up the socket
 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
 perror("socket");
 exit(1);
 }

 // standard TCP/IP socket parameters
 their_addr.sin_family = AF_INET; // host byte order
 their_addr.sin_port = htons(portnum); // short, network byte order
 their_addr.sin_addr = *((struct in_addr *)he->h_addr);
 memset(&(their_addr.sin_zero), '\0', 8); // zero the rest of the struct

 printf("Connecting to %s...\n", argv[1]);

 // connecto to socket
 if (connect(sockfd,(struct sockaddr *)

& their_addr,sizeof(struct sockaddr)) == -1)
 {
 perror("connect");
 exit(1);
 }

 // receive server header string
 if ((numbytes=recv(sockfd, buf, MAXDATASIZE-1, 0)) == -1)
 {
 perror("recv");
 exit(1);
 }

 buf[numbytes] = '\0';
 printf("Received: %s",buf);

 // make IBE id from argument specified
 id = IBE_make_id(argv[1], NULL);

 printf("opening %s...\n", argv[2]);
 fp = fopen(argv[2], "r");
 if(!fp)
 {
 printf("error opening file %s.\n", argv[2]);
 close(sockfd);
 return 1;
 }

 printf("encrypting file with public key %s...\n", argv[1]);

 39

 ptext = (unsigned char *) malloc(pbufsize);
 ptextlen = 0;

 // read in contents of file, put in buffer to encrypt
 for(;;)
 {
 if (feof(fp)) break;
 fgets(filebuf, 256, fp);
 count = 0;
 while((filebuf[count] != '\0') && !feof(fp))
 {
 ptext[ptextlen] = filebuf[count];
 count++;
 ptextlen++;
 if (ptextlen >= pbufsize)
 {
 pbufsize *= 2;
 buftemp = (unsigned char *) malloc(pbufsize);
 memcpy(buftemp, ptext, ptextlen);
 free(ptext);
 ptext = buftemp;
 }
 }
 }

 // close original file
 fclose(fp);
 printf("Encryption successful. Sending encrypted message...\n");

 idarray[0] = id;
 idarray[1] = NULL;
 M->data = ptext;
 M->len = ptextlen;

 // open encrypted file for writing
 fp = fopen(tempfile, "w");

 fprintf(fp, "\n-----BEGIN IBE-----\n");
 FMT_encrypt(fp, M, idarray);
 fprintf(fp, "-----END IBE-----\n");

 byte_string_clear(M);

 fflush(fp);
 rewind(fp);
 fclose(fp);

 // reopen the encrypted file to read in and send to server
 fp = fopen(tempfile, "r");
 fgets(filebuf, 256, fp);
 while(!feof(fp))
 {
 send(sockfd, filebuf, 256, 0);
 fgets(filebuf, 256, fp);
 }

 fclose(fp);
 remove(tempfile);

 printf("Done sending message.\nReceving unencrypted message...\n");

 numbytes = 1;

 receivefile = argv[2];
 strcat(receivefile, ".out");

 fp = fopen(receivefile, "w");

 // receive server's response (unencrypted message; should be the same as
 //the original file.
 while(numbytes)

 40

 {
 if ((numbytes = recv(sockfd, buf, MAXDATASIZE - 1, 0)) == -1)
 {
 perror("recv");
 exit(1);
 }

 buf[numbytes] = '\0';

 if(strcmp(buf, "!!!disconnect!!!") == 0)
 {
 numbytes = 0;
 printf("\nDone receving message. Server closing connection...");
 }
 else
 fprintf(fp, "%s", buf);
 }

 fflush(fp);
 fclose(fp);
 printf(" done. \nProgram exiting...\n");

 // all done, close the socket and exit
 close(sockfd);
 return 0;
 }

Program output

[root@ibessl clientserver]# ./client ibessl.dynu.com virginia.txt

IBE-SSL test client v1.0
by J. Adam Sowers (jasowers@virginia.edu)
based on Stanford IBE 0.21

Loading config file...
Connecting to ibessl.dynu.com...
Received: IBE-SSL server v1.0
opening virginia.txt...
encrypting file with public key ibessl.dynu.com...
Encryption successful. Sending encrypted message...
benchmarks:
0.000000 initialization
0.035897 computing rP
0.007169 first part of map_to_point
0.073525 make_order_q
0.033572 miller
0.015626 Tate power
0.007283 gid^r
elapsed time: 0.177013
Done sending message.
Receving unencrypted message...

Done receving message. Server closing connection... done.
Program exiting...

 41

server.c – Simple IBE-SSL server program

Program code

 #include <stdio.h>
 #include <stdlib.h>
 #include <unistd.h>
 #include <errno.h>
 #include <string.h>
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <netinet/in.h>
 #include <arpa/inet.h>
 #include <sys/wait.h>
 #include <signal.h>
 #include "ibe.h"
 #include "format.h"
 #include "ibe_progs.h"

 #define MYPORT 3490 // the port users will be connecting to
 #define MAXDATASIZE 1000 // the maximum num bytes to receive
 #define BACKLOG 10 // how many pending connections queue will hold

 CONF_CTX *cnfctx;

 /* this function kills off zombies that occur from fork()'ed processes */
 void sigchld_handler(int s)
 {
 while(wait(NULL) > 0);
 }

 int main(int argc, char **argv)
 {
 int sockfd, new_fd; // listen on sock_fd, new connection on new_fd
 struct sockaddr_in my_addr; // my address information
 struct sockaddr_in their_addr; // connector's address information
 socklen_t sin_size;
 struct sigaction sa;
 int yes = 1;
 int textlen;
 FILE *fp;
 int portnum;
 int numbytes;

 byte_string_t key;
 byte_string_t M;
 char *pw;
 char *privkeyfile;
 char *paramsfile;
 int status;
 char cnffile[] = "server.cnf";
 char tmpfile[] = "temp.svr";
 char buf[MAXDATASIZE];

 IBE_init();

 printf("\nIBE-SSL server v1.0\nby J. Adam Sowers (jasowers@virginia.edu)\n");
 printf("based on Stanford IBE 0.21\n\n");

 // load configuration file
 cnfctx = LoadConfig(cnffile);
 if (!cnfctx) {
 fprintf(stderr, "error opening %s\n", cnffile);
 fprintf(stderr, "using default values\n");
 cnfctx = constructCTX();
 }

 42

 paramsfile = GetPathParam(cnfctx, "params", 0, "params.txt");
 status = FMT_load_params(paramsfile);
 if (status != 1) {
 fprintf(stderr, "error loading params file %s\n", paramsfile);
 return(1);
 }

 // get parameters from configuration file
 portnum = GetIntParam(cnfctx, "port", 0, 31832);
 pw = GetStringParam(cnfctx, "password", 0, "");
 privkeyfile = GetPathParam(cnfctx, "path", 0, "keyfile");

 // set up socket
 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
 perror("socket");
 exit(1);
 }
 if (setsockopt(sockfd,SOL_SOCKET,SO_REUSEADDR,&yes,sizeof(int)) == -1)
 {
 perror("setsockopt");
 exit(1);
 }

 // standard TCP/IP socket parameters
 my_addr.sin_family = AF_INET; // host byte order
 my_addr.sin_port = htons(portnum); // short, network byte order
 my_addr.sin_addr.s_addr = INADDR_ANY; // automatically fill with my IP
 memset(&(my_addr.sin_zero), '\0', 8); // zero the rest of the struct

 // bind socket
 if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr)) == -1)
 {
 perror("bind");
 exit(1);
 }

 // listen on socket
 if (listen(sockfd, BACKLOG) == -1)
 {
 perror("listen");
 exit(1);
 }

 sa.sa_handler = sigchld_handler; // reap all dead processes
 sigemptyset(&sa.sa_mask);
 sa.sa_flags = SA_RESTART;
 if (sigaction(SIGCHLD, &sa, NULL) == -1)
 {
 perror("sigaction");
 exit(1);
 }

 // main accept() loop
 while(1)
 {
 sin_size = sizeof(struct sockaddr_in);
 if ((new_fd = accept(sockfd, (struct sockaddr *)&their_addr,
 &sin_size)) == -1)
 {
 perror("accept");
 continue;
 }

 // received a new connection
 printf("server: got connection from %s\n",

inet_ntoa(their_addr.sin_addr));

 // test for child process
 if (!fork())
 {

 43

 close(sockfd); // child doesn't need the listener

 if (send(new_fd, "IBE-SSL server v1.0\r\n", 21, 0) == -1)
 perror("send");

 // open a temporary file for storing the encrypted text
 fp = fopen(tmpfile, "w");

 printf("Receving encrypted message...\n");

 // store incoming message to the temp file
 numbytes = 1;
 while(numbytes)
 {
 if ((numbytes = recv(new_fd, buf, MAXDATASIZE - 1, 0)) == -1)
 {
 perror("recv");
 exit(1);
 }

 buf[numbytes] = '\0';
 fprintf(fp, "%s", buf);

 textlen = 0;
 if(strcmp(buf, "-----END IBE-----\n") == 0) numbytes = 0;
 }

 fflush(fp);
 fclose(fp);

 printf("Finished receiving message.\n");

 // reopen file to load text for decryption
 fp = fopen(tmpfile, "r");

 // load the private key file
 printf("Loading private key file...\n");
 status = FMT_crypt_load(privkeyfile, key, pw);
 if (status != 1)
 {
 fprintf(stderr, "error loading private key %s\n", privkeyfile);
 return 1;
 }

 // decrypt using IBE functions
 printf("Decrypting message...\n");
 status = FMT_decrypt(M, fp, key);
 if (status != 1)
 {
 fprintf(stderr, "error in decryption\n");
 return 1;
 }

 printf("Message decrypted.\n");

 fclose(fp);
 remove(tmpfile);

 // open the file again, this time to write out the decrypted message
 fp = fopen(tmpfile, "w");
 byte_string_fprintf(fp, M, "%c");
 fclose(fp);

 // open once more, to send the message back to the client
 fp = fopen(tmpfile, "r");
 printf("Sending unencrypted message...\n");
 fgets(buf, 256, fp);
 while(!feof(fp))
 {
 send(new_fd, buf, 256, 0);
 fgets(buf, 256, fp);

 44

 45

 }

 // send disconnection notice to client
 send(new_fd, "!!!disconnect!!!", 16, 0);

 // remove temporary file
 remove(tmpfile);

 // close up connection
 printf("Finished sending unencrypted message. Closing

connection...\n");
 close(new_fd);
 exit(0);
 }

 close(new_fd); // parent doesn't need this
 }

 return 0;
 }

Program output

[root@ibessl clientserver]# ./server

IBE-SSL server v1.0
by J. Adam Sowers (jasowers@virginia.edu)
based on Stanford IBE 0.21

server: got connection from 127.0.0.1
Receving encrypted message...
Finished receiving message.
Loading private key file...
Decrypting message...
dec time: 0.269544
Message decrypted.
Sending unencrypted message...
Finished sending unencrypted message. Closing connection...

	Table of Figures
	Glossary of terms
	Abstract
	Purpose
	Background
	The Problem
	Scope
	Overview of Thesis Report

	2. Review of Relevant Literature
	3. Mathematical Background
	RSA Public-Key Cryptography
	Elliptic Curve Cryptography (ECC)

	4. The IBE Scheme
	5. IBE-SSL Implementation
	Setting up the master PKG
	Getting a private key
	Communicating over insecure networks

	Efficiency Analysis
	Conclusion
	Summary
	Interpretation
	Recommendations

	Bibliography (works cited)
	Appendix A: Mathematical proof of RSA system
	Appendix B: Raw data
	Appendix C: selected code and its output
	client.c – simple IBE-SSL client program
	Program code
	Program output
	server.c – Simple IBE-SSL server program
	Program code
	Program output

