Curved Surfaces

- Motivation
 - Exact boundary representation for some objects
 - More concise representation than polygonal mesh

Curved Surfaces

- What makes a good surface representation?
 - Accurate
 - Concise
 - Intuitive specification
 - Local support
 - Affine invariant
 - Arbitrary topology
 - Guaranteed continuity
 - Natural parameterization
 - Efficient display
 - Efficient intersections

Parametric Surfaces

- Boundary defined by parametric functions:
 - $x = f_x(u,v)$
 - $y = f_y(u,v)$
 - $z = f_z(u,v)$

- Example: ellipsoid
 - $x = r_1 \cos \phi \cos \theta$
 - $y = r_2 \cos \phi \sin \theta$
 - $z = r_3 \sin \phi$
Surface of revolution

- **Idea:** take a curve and rotate it about an axis

![Surface of revolution](demetri.png)

Swept surface

- **Idea:** sweep one curve along path of another curve

![Swept surface](demetri.png)

Parametric Surfaces

Advantage: easy to enumerate points on surface.

![Parametric Surfaces](FtOFH Figure 11.42.png)

Disadvantage: need piecewise-parametric surface to describe complex shape.

Piecewise Parametric Surfaces

- **Surface is partitioned into parametric patches:**

![Piecewise Parametric Surfaces](Watt Figure 6.25.png)

Same ideas as parametric splines!
Parametric Patches

• Each patch is defined by blending control points

Same ideas as parametric curves! FvDFH Figure 11.44

Parametric Patches

• Point $Q(u,v)$ on the patch is the tensor product of parametric curves defined by the control points

Let the Control Points Move

• Call the Bézier parameter v, and let the $N+1$ control points depend on some other parameter u:

$$ p(u,v) = \sum_{i=0}^{N} p_i(u) B^u_i(v) $$

• Each “u-contour” is a normal Bézier curve, but at different u values, the control points are at different positions

• Think of the surface as a changing Bézier curve sweeping through space

• How do the control points change?

Bézier Patches

• Let’s allow the control points to move along their own Bézier curves:

$$ p_i(u) = \sum_{j=0}^{N} p_{ij} B^u_j(u) $$

• Putting this together with our original definition of our surface, we get the tensor product form for the Bézier patch:

$$ p(u,v) = \sum_{i=0}^{M} \sum_{j=0}^{N} p_{ij} B^u_i(u) B^v_j(v) $$
Parametric Bicubic Patches

Point \(Q(u,v) \) on any patch is defined by combining control points with polynomial blending functions:

\[
Q(u,v) = UM = \begin{bmatrix}
P_{11} & P_{12} & P_{13} & P_{14} \\
P_{21} & P_{22} & P_{23} & P_{24} \\
P_{31} & P_{32} & P_{33} & P_{34} \\
\cdot & \cdot & \cdot & \cdot \\
\end{bmatrix} \begin{bmatrix}
M_{11} & M_{12} & M_{13} & M_{14} \\
M_{21} & M_{22} & M_{23} & M_{24} \\
M_{31} & M_{32} & M_{33} & M_{34} \\
\cdot & \cdot & \cdot & \cdot \\
\end{bmatrix} V^T
\]

\[
U = [u^3 \quad u^2 \quad u \quad 1] \quad V = [v^3 \quad v^2 \quad v \quad 1]
\]

Where \(M \) is a matrix describing the blending functions for a parametric cubic curve (e.g., Bezier, B-spline, etc.)

Bezier Patches

\[
Q(u,v) = UM_{\text{Bezier}} = \begin{bmatrix}
P_{11} & P_{12} & P_{13} & P_{14} \\
P_{21} & P_{22} & P_{23} & P_{24} \\
P_{31} & P_{32} & P_{33} & P_{34} \\
\cdot & \cdot & \cdot & \cdot \\
\end{bmatrix} \begin{bmatrix}
M_{\text{Bezier}}_{11} & M_{\text{Bezier}}_{12} & M_{\text{Bezier}}_{13} & M_{\text{Bezier}}_{14} \\
M_{\text{Bezier}}_{21} & M_{\text{Bezier}}_{22} & M_{\text{Bezier}}_{23} & M_{\text{Bezier}}_{24} \\
M_{\text{Bezier}}_{31} & M_{\text{Bezier}}_{32} & M_{\text{Bezier}}_{33} & M_{\text{Bezier}}_{34} \\
\cdot & \cdot & \cdot & \cdot \\
\end{bmatrix} V
\]

\[
M_{\text{Bezier}} = \begin{bmatrix}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\end{bmatrix}
\]

B-Spline Patches

\[
Q(u,v) = UM_{\text{B-Spline}} = \begin{bmatrix}
P_{11} & P_{12} & P_{13} & P_{14} \\
P_{21} & P_{22} & P_{23} & P_{24} \\
P_{31} & P_{32} & P_{33} & P_{34} \\
\cdot & \cdot & \cdot & \cdot \\
\end{bmatrix} \begin{bmatrix}
M_{\text{B-Spline}}_{11} & M_{\text{B-Spline}}_{12} & M_{\text{B-Spline}}_{13} & M_{\text{B-Spline}}_{14} \\
M_{\text{B-Spline}}_{21} & M_{\text{B-Spline}}_{22} & M_{\text{B-Spline}}_{23} & M_{\text{B-Spline}}_{24} \\
M_{\text{B-Spline}}_{31} & M_{\text{B-Spline}}_{32} & M_{\text{B-Spline}}_{33} & M_{\text{B-Spline}}_{34} \\
\cdot & \cdot & \cdot & \cdot \\
\end{bmatrix} V
\]

\[
M_{\text{B-Spline}} = \begin{bmatrix}
\frac{1}{6} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{6} \\
\frac{1}{2} & -1 & \frac{1}{2} & 0 \\
-\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
\frac{1}{6} & \frac{1}{3} & -\frac{1}{6} & 0 \\
\end{bmatrix}
\]

Bezier Patches

- Properties:
 - Interpolates four corner points
 - Convex hull
 - Local control

Watt Figure 6.22

Watt Figure 6.28
Beziers Surfaces

- Continuity constraints are similar to the constraints for Bezier splines

Drawing Beziers Surfaces

- Simple approach is to loop through uniformly spaced increments of u and v

```c
void DrawSurface()
{
    for (int i = 0; i < imax; i++) {
        float u = umin + i * ustep;
        for (int j = 0; j < jmax; j++) {
            float v = vmin + j * vstep;
            DrawQuadrilateral(...);
        }
    }
}
```
Drawing Bezier Surfaces

- Better approach is to use adaptive subdivision:

```c
void DrawSurface(surf)
{
    if Flat(surface, epsilon) {
        DrawQuadrilateral(surface);
    } else {
        SubdivideSurface(surface, ...);
        DrawSurface(surfaceLL);
        DrawSurface(surfaceLR);
        DrawSurface(surfaceRL);
        DrawSurface(surfaceRR);
    }
}
```

Bézier Curves in OpenGL

- Use `evaluators`
- `glMap` defines the set of control points
- `glMapGrid` defines how finely to evaluate the surface
- `glEvalCoord/glEvalMesh` cause the mesh to be drawn

Defining the Control Points

- `glMap2`\[df\](target, u1, u2, ustride, uorder, v1, v2, vstride, vorder, points)
 - `target` specifies what OpenGL command will be executed when this mesh is evaluated, and what's in the control mesh. For drawing, usually use `GL_MAP2_VERTEX_3`
 - `u1,u2,v1,v2` define a mapping from values passed to `glEvalCoord` to \((0,1)\), the domain of the Bézier functions
 - `ustride`, `vstride` indicate how the data is packed in the array
 - `uorder`, `vorder` define the dimensions of the point array
 - `points` is the actual data
- `glMap2d(GL_MAP2_VERTEX_3, 0, 1, 3, 4, 0, 1, 12, 4, &ctrlpoints[0][0][0]);`

Defining the Mesh Parameters

- `glMapGrid` specifies how the mesh will be evaluated based on the control points
- `glMapGrid2`\[df\](un, u1, u2, vn, v1, v2)
 - `un, vn` define the number of partitions at which to evaluate the surface
 - `u1,u2, v1,v2` define the range of grid variables
- `glMapGrid2d(20, 0.0, 1.0, 20, 0.0, 1.0);`
Drawing the Mesh

- We can draw the whole mesh at once with `glEvalMesh`
- `glEvalMesh2(mode, i1, i2, j1, j2)`
 - mode specifies points, lines, or polygons
 - i1,i2,j1,j2 define the range over which to evaluate the mesh
- `glEvalMesh2(GL_LINE, 0, 20, 0, 20);`

Drawing Bezier Surfaces

- One problem with adaptive subdivision is avoiding cracks at boundaries between patches at different subdivision levels

![Crack](Watt_Figure_6.33)

Avoid these cracks by adding extra vertices and triangulating quadrilaterals whose neighbors are subdivided to a finer level.

Parametric Surfaces

- Advantages:
 - Easy to enumerate points on surface
 - Possible to describe complex shapes
- Disadvantages:
 - Control mesh must be quadrilaterals
 - Continuity constraints difficult to maintain
 - Hard to find intersections

Next Time

- Subdivision Surfaces
Blender (www.blender.nl)