<table>
<thead>
<tr>
<th>Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Image representation</td>
</tr>
<tr>
<td>• What is an image?</td>
</tr>
<tr>
<td>• Halftoning and dithering</td>
</tr>
<tr>
<td>• Trade spatial resolution for intensity resolution</td>
</tr>
<tr>
<td>• Reduce visual artifacts due to quantization</td>
</tr>
<tr>
<td>• Sampling and reconstruction</td>
</tr>
<tr>
<td>• Key steps in image processing</td>
</tr>
<tr>
<td>• Avoid visual artifacts due to aliasing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Image Processing and Sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greg Humphreys</td>
</tr>
<tr>
<td>CS445: Intro Graphics</td>
</tr>
<tr>
<td>University of Virginia, Fall 2004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>What is an Image?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• An image is a 2D rectilinear array of pixels</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Image Acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Pixels are samples from continuous function</td>
</tr>
<tr>
<td>• Photoreceptors in eye</td>
</tr>
<tr>
<td>• CCD cells in digital camera</td>
</tr>
<tr>
<td>• Rays in virtual camera</td>
</tr>
</tbody>
</table>

| A pixel is a sample, not a little square! |

<table>
<thead>
<tr>
<th>Image Acquisition Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera</td>
</tr>
<tr>
<td>View Plane</td>
</tr>
</tbody>
</table>
Image Display

- Re-create continuous function from samples
 - Example: cathode ray tube

 ![Image is reconstructed by displaying pixels with finite area (Gaussian)]

Image Resolution

- Intensity resolution
 - Each pixel has only “Depth” bits for colors/intensities
- Spatial resolution
 - Image has only “Width” x “Height” pixels
- Temporal resolution
 - Monitor refreshes images at only “Rate” Hz

<table>
<thead>
<tr>
<th>Typical Resolutions</th>
<th>Width x Height</th>
<th>Depth</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTSC</td>
<td>640 x 480</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>Workstation</td>
<td>1280 x 1024</td>
<td>24</td>
<td>75</td>
</tr>
<tr>
<td>Film</td>
<td>3000 x 2000</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Laser Printer</td>
<td>6600 x 5100</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Sources of Error

- Intensity quantization
 - Not enough intensity resolution
- Spatial aliasing
 - Not enough spatial resolution
- Temporal aliasing
 - Not enough temporal resolution

\[E^2 = \sum_{(x,y)} (I(x,y) - P(x,y))^2 \]

Overview

- Image representation
 - What is an image?
 - Halftoning and dithering
 - Reduce visual artifacts due to quantization
- Sampling and reconstruction
 - Reduce visual artifacts due to aliasing

Quantization

- Artifacts due to limited intensity resolution
 - Frame buffers have limited number of bits per pixel
 - Physical devices have limited dynamic range

Uniform Quantization

\[P(x, y) = \text{trunc}(I(x, y) + 0.5) \]

P(x, y) = \text{trunc}(I(x, y) + 0.5)

I(x,y)

P(x,y)

(2 bits per pixel)
Uniform Quantization

- Images with decreasing bits per pixel:
 - 8 bits
 - 4 bits
 - 2 bits
 - 1 bit

Reducing Effects of Quantization

- Halftoning
 - Classical halftoning
- Dithering
 - Random dither
 - Ordered dither
 - Error diffusion dither

Classical Halftoning

- Use dots of varying size to represent intensities
 - Area of dots proportional to intensity in image

Classical Halftoning

Newspaper image from North American Bridge Championships Bulletin, Summer 2003

Halftone patterns

- Use cluster of pixels to represent intensity
 - Trade spatial resolution for intensity resolution

Dithering

- Distribute errors among pixels
 - Exploit spatial integration in our eye
 - Display greater range of perceptible intensities

Figure 14.37 from H&B
Random Dither

- Randomize quantization errors
 - Errors appear as noise

\[P(x, y) = \text{trunc}(I(x, y) + \text{noise}(x, y) + 0.5) \]

Ordered Dither

- Pseudo-random quantization errors
 - Matrix stores pattern of thresholds

\[
\begin{align*}
i &= x \mod n \\
 j &= y \mod n \\
e &= I(x, y) - \text{trunc}(I(x, y)) \\
\text{if } (e > D(i, j)) \\
P(x, y) &= \text{ceil}(I(x, y)) \\
\text{else} \\
P(x, y) &= \text{floor}(I(x, y))
\end{align*}
\]

Error Diffusion Dither

- Spread quantization error over neighbor pixels
 - Error dispersed to pixels right and below

\[\alpha + \beta + \gamma + \delta = 1.0 \]

Figure 14.42 from H&B
Dither Comparison

Original (8 bits) | Random Dither (1 bit) | Ordered Dither (1 bit) | Floyd-Steinberg Dither (1 bit)

Overview

• Image representation
 ▶ What is an image?
• Halftoning and dithering
 ▶ Reduce visual artifacts due to quantization
 ▶ Sampling and reconstruction
 ▶ Reduce visual artifacts due to aliasing

Sampling and Reconstruction

Sampling and Reconstruction

Sampling

Reconstruction

Figure 19.9 FvDFH

Aliasing

• In general:
 ▶ Artifacts due to under-sampling or poor reconstruction
• Specifically, in graphics:
 ▶ Spatial aliasing
 ▶ Temporal aliasing

Spatial Aliasing

• Artifacts due to limited spatial resolution

Figure 14.17 FvDFH

Figure 14.17 FvDFH

Under-sampling
Spatial Aliasing
- Artifacts due to limited spatial resolution
 - *Jaggies*

Temporal Aliasing
- Artifacts due to limited temporal resolution
 - Strobing
 - Flickering

Temporal Aliasing
- Artifacts due to limited temporal resolution
 - Strobing
 - Flickering

Temporal Aliasing
- Artifacts due to limited temporal resolution
 - Strobing
 - Flickering

Temporal Aliasing
- Artifacts due to limited temporal resolution
 - Strobing
 - Flickering

Antialiasing
- Sample at higher rate
 - Not always possible
 - Doesn’t always solve problem
- Pre-filter to form bandlimited signal
 - Form bandlimited function (low-pass filter)
 - Trades aliasing for blurring

Must consider sampling theory!
Sampling Theory
- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?

Spectral Analysis
- **Spatial domain:**
 - Function: \(f(x) \)
 - Filtering: convolution

- **Frequency domain:**
 - Function: \(F(u) \)
 - Filtering: multiplication

Any signal can be written as a sum of periodic functions.

Fourier Transform
- **Fourier transform:**
 \[F(u) = \int_{-\infty}^{\infty} f(x) e^{-j2\pi xu} \, dx \]

- **Inverse Fourier transform:**
 \[f(x) = \int_{-\infty}^{\infty} F(u) e^{j2\pi xu} \, du \]

Convolution
- **Convolution of two functions (= filtering):**
 \[g(x) = f(x) \ast h(x) = \int_{-\infty}^{\infty} f(\lambda) h(x-\lambda) \, d\lambda \]

- **Convolution theorem**
 - Convolution in frequency domain is same as multiplication in spatial domain, and vice-versa

A signal is bandlimited if its highest frequency is bounded. The frequency is called the bandwidth.
Image Processing

<table>
<thead>
<tr>
<th>Quantization</th>
<th>Filtering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform Quantization</td>
<td>Blur</td>
</tr>
<tr>
<td>Random dither</td>
<td>Detecedges</td>
</tr>
<tr>
<td>Ordered dither</td>
<td></td>
</tr>
<tr>
<td>Floyd-Steinberg dither</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pixel operations</th>
<th>Warping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add random noise</td>
<td>Scale</td>
</tr>
<tr>
<td>Add luminance</td>
<td>Rotate</td>
</tr>
<tr>
<td>Add contrast</td>
<td>Warps</td>
</tr>
<tr>
<td>Add saturation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Combining</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphs</td>
<td></td>
</tr>
<tr>
<td>Composite</td>
<td></td>
</tr>
</tbody>
</table>

Image Processing

- Consider reducing the image resolution
- Image processing is a resampling problem

![Image Processing Diagram](image.png)

Thou shalt avoid aliasing!

Antialiasing in Image Processing

- General Strategy
 - Pre-filter transformed image via convolution with low-pass filter to form bandlimited signal
- Rationale
 - Prefer blurring over aliasing

Image Processing

- Real world
 - Sample
 - Discrete samples (pixels)
 - Reconstruct
 - Reconstructed function
 - Transform
 - Transformed function
 - Filter
 - Bandlimited function
 - Sample
 - Discrete samples (pixels)
 - Reconstruct
 - Display

- Continuous Function

![Image Processing Diagram](image.png)
Image Processing

Real world
Sample
Discrete samples (pixels)
Reconstruct
Transform
Reconstructed function
Transformed function
Filter
Bandlimited function
Sample
Discrete samples (pixels)
Reconstruct
Display

Image Processing

Real world
Sample
Discrete samples (pixels)
Reconstruct
Transform
Reconstructed function
Transformed function
Filter
Bandlimited function
Sample
Discrete samples (pixels)
Reconstruct
Display

Image Processing

Real world
Sample
Discrete samples (pixels)
Reconstruct
Transform
Reconstructed function
Transformed function
Filter
Bandlimited function
Sample
Discrete samples (pixels)
Reconstruct
Display

Image Processing

Real world
Sample
Discrete samples (pixels)
Reconstruct
Transform
Reconstructed function
Transformed function
Filter
Bandlimited function
Sample
Discrete samples (pixels)
Reconstruct
Display

Image Processing

Real world
Sample
Discrete samples (pixels)
Reconstruct
Transform
Reconstructed function
Transformed function
Filter
Bandlimited function
Sample
Discrete samples (pixels)
Reconstruct
Display

Image Processing

Real world
Sample
Discrete samples (pixels)
Reconstruct
Transform
Reconstructed function
Transformed function
Filter
Bandlimited function
Sample
Discrete samples (pixels)
Reconstruct
Display
Ideal Low-Pass Filter

- **Frequency domain**

- **Spatial domain**

Sinc(x) = \(\frac{\sin \pi x}{\pi x}\)

Practical Image Processing

- **Finite low-pass filters**
 - Point sampling (bad)
 - Triangle filter
 - Gaussian filter

Triangle Filter

- Convolution with triangle filter

Gaussian Filter

- Convolution with Gaussian filter

Image Processing

- **Quantization**
 - Uniform Quantization
 - Random dither
 - Ordered dither
 - Floyd-Steinberg dither

- **Pixel operations**
 - Add random noise
 - Add luminance
 - Add contrast
 - Add saturation

- **Filtering**
 - Blur
 - Detect edges

- **Warping**
 - Scale
 - Rotate
 - Warps

- **Combining**
 - Morphs
 - Composite

Brightness

- Simply scale pixel components
 - Must clamp to range (e.g., 0 to 255)
- Trick: interpolate (extrapolate) from a black image

Figure 4.5 Wolberg

Figure 2.4 Wolberg
Contrast

- Compute mean luminance L for all pixels
 - Luminance = $0.30*r + 0.59*g + 0.11*b$
- Scale deviation from L for each pixel component
- Interpolate (extrapolate) from an average gray image

Image Processing

<table>
<thead>
<tr>
<th>Quantization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform Quantization</td>
</tr>
<tr>
<td>Random dither</td>
</tr>
<tr>
<td>Ordered dither</td>
</tr>
<tr>
<td>Floyd-Steinberg dither</td>
</tr>
</tbody>
</table>

- Pixel operations
 - Add random noise
 - Add luminance
 - Add contrast
 - Add saturation
- Filtering
 - Blur
 - Detect edges
- Warping
 - Scale
 - Rotate
 - Warps
- Combining
 - Morphs
 - Composite

Blur and Sharpen

- Convolve with a filter whose entries sum to one
 - Each pixel becomes a weighted average of its neighbors
- Trick: extrapolate from blurry image = sharpen!
 - "Unsharp mask" in Photoshop

Saturation

- Interpolate (extrapolate) from grayscale version

Edge Detection

- Convolve with a filter that finds differences between neighbor pixels

- Filter =

\[
\begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1 \\
\end{bmatrix}
\]
Scaling

- Resample with triangle or Gaussian filter

```
Original  0.5 resolution  2x resolution
```

More on this next lecture!

Image Processing

- Image processing is a resampling problem
 - Avoid aliasing
 - Use filtering

Summary

- Image representation
 - A pixel is a sample, not a little square
 - Images have limited resolution
- Halftoning and dithering
 - Reduce visual artifacts due to quantization
 - Distribute errors among pixels
 » Exploit spatial integration in our eye
- Sampling and reconstruction
 - Reduce visual artifacts due to aliasing
 - Filter to avoid undersampling
 » Blurring is better than aliasing