Texture Mapping

Greg Humphreys
CS445: Intro Graphics
University of Virginia, Fall 2004

Textures

- Describe color variation in interior of 3D polygon
 - When scan converting a polygon, vary pixel colors according to values fetched from a texture

3D Rendering Pipeline (for direct illumination)

3D Primitives
- Modeling
- Transformations
- Lighting

3D World Coordinates
- Projection
- Transformation
- Clipping
- Camera Coordinates
- Screen Coordinates
- Texture Mapping
- Image

Surface Textures

- Add visual detail to surfaces of 3D objects

Surface Textures

- Add visual detail to surfaces of 3D objects

Parameterization

- Q: How do we decide where on the geometry each color from the image should go?

[Daren Horley]
Option: Varieties of projections

Option: unfold the surface

Option: make an atlas

Option: it’s the artist’s problem

Overview

• Texture mapping methods
 ➢ Parameterization
 ➢ Mapping
 ➢ Filtering

• Texture mapping applications
 ➢ Modulation textures
 ➢ Illumination mapping
 ➢ Bump mapping
 ➢ Environment mapping
 ➢ Image-based rendering
 ➢ Volume textures
 ➢ Non-photorealistic rendering

Texture Mapping

• Steps:
 ➢ Define texture
 ➢ Specify mapping from texture to surface
 ➢ Lookup texture values during scan conversion
Texture Mapping

- When scan convert, map from:
 - image coordinate system \((x,y)\) to
 - modeling coordinate system \((u,v)\) to
 - texture image \((t,s)\)

Naïve Texture Mapping

- A first cut at a texture-mapping rasterizer:
 - For each pixel:
 - Interpolate \(u\) & \(v\) down edges and across spans
 - Look up nearest texel in texture map
 - Color pixel according to texel color (possibly modulated by lighting calculations)
 - McMillan’s demo of this is at http://graphics.cs.mtu.edu/classes/6.837/F98/Lecture21/Slide05.html
 - What artifacts do you see in this demo?

Naïve Texturing Artifacts

- Warping at edges of triangles
- A more obvious example:
 http://graphics.cs.mtu.edu/classes/6.837/F98/Lecture21/Slide06.html
- Consider the geometry of interpolating parameters more carefully

Interpolating Parameters

- The problem turns out to be fundamental to
 - interpolating parameters in screen-space
 - Uniform steps in screen space ≠ uniform steps in world space

Linear interpolation of texture coordinates
Correct interpolation with perspective divide

Hill Figure 8.42
Interpolating Parameters

- Perspective foreshortening is not getting applied to our interpolated parameters
 - Parameters should be compressed with distance
 - Linearly interpolating them in screen-space doesn’t do this
- Is this a problem with Gouraud shading?
 - A: It can be, but we usually don’t notice (why?)
 - [Link](http://graphics.cs.utah.edu/asseti/6.837/F98/lecture21/Slides17.html)

Perspective-Correct Interpolation

- Skipping a bit of math to make a long story short...
 - Rather than interpolating u and v directly, interpolate u/z and v/z
 - These do interpolate correctly in screen space
 - Also need to interpolate z and multiply per-pixel
 - Problem: we don’t know z anymore
 - Solution: we do know $w = 1/z$
 - So...interpolate uw and vw and w, and compute $u = uw/w$ and $v = vw/w$ for each pixel
 - This unfortunately involves a divide per pixel (Just 1?)
 - [Link](http://graphics.cs.utah.edu/asseti/6.837/F98/lecture21/Slides14.html)

Overview

- Texture mapping methods
 - Parameterization
 - Mapping
 - Filtering
- Texture mapping applications
 - Modulation textures
 - Illumination mapping
 - Bump mapping
 - Environment mapping
 - Image-based rendering
 - Non-photorealistic rendering

Texture Filtering

- Must sample texture to determine color at each pixel in image

Texture Map Aliasing

- Naive texture mapping aliases badly
 - Look familiar?
  ```
  int uval = (int) (u * denom + 0.5f);
  int vval = (int) (v * denom + 0.5f);
  int pix = texture.getPixel(uval, vval);
  ```
 - Actually, each pixel maps to a region in texture
 - $|PIX| < |TEX|$:
 - Easy: interpolate (bilinear) between texel values
 - $|PIX| > |TEX|$:
 - Hard: average the contribution from multiple texels
 - $|PIX| \sim |TEX|$
 - Still need interpolation!

Texture Filtering

- Size of filter depends on projective warp
 - Can prefilter images
 - Mip maps
 - Summed area tables
 - Angel Figure 9.14
Mip Maps

- Keep textures prefiltered at multiple resolutions
 - For each pixel, linearly interpolate between two closest levels (e.g., trilinear filtering)
 - Fast, easy for hardware

- Why “Mip” maps?

Summed-area tables

- At each texel keep sum of all values down & right
 - To compute sum of all values within a rectangle, do two subtracts and an add
 - Better ability to capture very oblique projections
 - But, cannot store values in a single byte

Overview

- Texture mapping methods
 - Parameterization
 - Mapping
 - Filtering

- Texture mapping applications
 - Modulation textures
 - Illumination mapping
 - Bump mapping
 - Environment mapping
 - Image-based rendering
 - Non-photorealistic rendering

MIP-map Example

- No filtering:
 - AAAAAAAGH MY EYES ARE BURNING

- MIP-map texturing:
 - Where are my glasses?

Summed-Area Tables

- Mipmaps assume that each pixel projects to a square in the texture (which is a lie)
- SAT can integrate texels covered by the pixel more exactly (but still quickly)
- Example:

Overview

- Texture mapping methods
 - Parameterization
 - Mapping
 - Filtering

- Texture mapping applications
 - Modulation textures
 - Illumination mapping
 - Bump mapping
 - Environment mapping
 - Image-based rendering
 - Non-photorealistic rendering

Modulation textures

Map texture values to scale factor

\[I = T_c(\alpha L + \beta F) + \sum (K_a(N \cdot L) + K_s(V \cdot R) S \cdot I_a + K_d F_a + K_v I_v) \]
Texture Mapping Variations

- A texture can modulate any parameter in the Phong lighting equation

Texture as R,G,B:

Texture as diffuse lighting coefficients:

Bump Mapping

- Texture = change in surface normal!

More Bump Mapping

- How can you tell a bumped-mapped object from an object in which the geometry is explicitly modeled?

Displacement Mapping

Illumination Maps

- Quake introduced illumination maps or light maps to capture lighting effects in video games

Texture map:

Light map

Texture map + light map:

Environment Maps

Images from Illumination and Reflection Maps:
Simulated Objects in Simulated and Real Environments
Gene Waiter and C. Robert Hoffman
SIGGRAPH 1984 "Advanced Computer Graphics Animation" Course Notes
Solid textures

Texture values indexed by 3D location (x,y,z)
- Expensive storage, or
- Compute on the fly, e.g. Perlin noise

Procedural Texture

Procedural Texture Gallery