Image Analogies

Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and David H. Salesin
What is an image analogy?
Assumptions

• Markov random field model
 – Conditional distribution
 • Pixels relate to one another in a neighborhood system
 – $P(x_{ij}|x_{(i-1)j}, x_{i(j-1)}, \ldots)$

• What properties should we track?
Computational Complexity

- Track features
 - RGB
 - YIQ
 - Filter responses
- Index and search over A, A’, and B
 - Uses a similarity metric
Avoiding Complexity

- Images
 - A unfiltered source image
 - A' filtered source image
 - B unfiltered target image
 - B' outputted filtered target image

- Feature vector for each pixel
 - Note: Features used for A and B need not be the same for A' and B'

- For source pixel \(p \) and target pixel \(q \), \(s(q) = p \)
- Multiscale representations at each resolution
Creating the Analogy

- Compute Gaussian pyramid representations
- Compute feature vectors
- Find best match
 - At each level, compare each target pixel q to every source pixel p
- Set feature vector in target filtered image to feature vector of best-matched p in source filtered image
- Record source of target pixel [$p=s(q)$]
Finding the Best Match

- **Approximate-Nearest Neighbor Search**
 - Tries to find closest matching pixel according to p, q, and their neighborhoods

- **Coherence Search**
 - Based on Ashikhmin’s approach
 - Tries to preserve coherence with neighboring synthesized pixels

- **Coherence parameter (κ)**
 - Larger values favor coherence over accuracy
Mapping the pixels

\[A_{l,1} \rightarrow A_1 \]
\[B_{l,1} \rightarrow B_1' \]

\[p \]
\[q \]
Feature Vectors

- RGB: too many dimensions
- Alternative: YIQ
 - Use luminosity (Y) only
 - Recover color by copying I and Q channels of B to B'
- Alternative: Steerable filters
 - Detects similar orientations
Luminance Remapping

- Challenge: light A and dark B
- Solution: Luminance transformation

\[Y(p) \leftarrow \frac{\sigma_B}{\sigma_A} (Y(p) - \mu_A) + \mu_B \]

- \(\mu_A \) and \(\mu_B \) are mean luminances
- \(\sigma_A \) and \(\sigma_B \) are standard deviations of the luminances
Traditional Image Filters
Improved Texture Synthesis

Input image
Wei-Levoy
Ashikhmin
Hertzmann et al
Super-resolution:
Training data
Super-resolution: Results
Texture Transfer
Artistic Filters
Texture-by-numbers
Texture-by-numbers
Interactive Editing
Future work

• Speed
• Estimating other statistics
• Better features
• Better color processing
• Automatic texture segmentation
• 3D models and animation
• Filter learning problems