3D vision

Jason Lawrence (some slides by Szymon Rusinkiewicz)
CS 651, Spring 2007: Computer Vision
3D perception: illusions

[Block and Yuker]
3D perception: illusions

[Block and Yuker]
3D perception: illusions

[Block and Yuker]
3D perception: illusions
3D perception: illusions
3D perception: conclusions

- perspective is assumed
- relative depth ordering
- occlusion is important
- local consistency
3D perception: stereo
3D perception: stereo

- experiments show that absolute depth estimation not very accurate
 - low “relief” judged to be deeper than it is

- relative depth estimation very accurate
 - can judge which object is closer for stereo disparities of a few seconds of arc
3D computer vision

- recover representation of 3D shapes from (primarily) images:

[Debevec et al.]
3D data types

- point data
- volumetric data
- surface data
3D data types: point data

• “point clouds”
• advantage: simplest data type
• disadvantage: no information on adjacency/connectivity
3D data types: volumetric data

- regularly-spaced grid in \((x,y,z)\): “voxels”
- for each grid cell, store
 - occupancy (binary: occupied/empty)
 - density
 - other properties
- popular in medical imaging
 - CAT scans
 - MRI
3D data types: volumetric data

The National Library of Medicine's
Visible Human Project (TM)

Human-Computer Interaction Lab
Univ. of Maryland at College Park

3D data types: volumetric data

- **advantages:**
 - can “see inside” objects
 - uniform sampling: simpler algorithms

- **disadvantages:**
 - lots of data
 - wasteful if only storing surface
 - most “vision” sensors / algorithms return point or surface data
3D data types: surface data

- polyhedral
 - piecewise planar
 - polygons connected together
 - most popular: “triangle meshes”
- smooth
 - higher-order (quadratic, cubic, etc.) curves
 - Bezier patches, splines, NURBS, subdivision surfaces, etc.
3D data types: surface data

• advantages:
 - preserves adjacency information
 - usually returned by vision sensors / algorithms

• disadvantages:
 - difficult to define for translucent objects
 - non-uniform parameterization
 - non-topology-preserving algorithms difficult
3D data types: surface data

- implicit surfaces (cf. parametric)
 - zero set of a 3D function
 - usually regularly sampled (voxel grid)
- advantage: easy to write algorithms that change topology
- disadvantage: wasted space / time
3D data type: implicit surfaces
2.5-D data

color along each ray
depth along each ray

http://www.ixbt.com
2.5-D data

- image: stores an intensity / color along each set of regularly-spaced rays in space
- range images: stores a depth along each of a set of regularly-spaced rays in space
- not a complete 3D description: does not store objects occluded (from some view)
- view-dependent scene description
2.5-D data

- this is what most sensors / algorithms actually return

- advantages:
 - uniform parameterization
 - adjacency / connectivity information

- disadvantages:
 - does not represent entire object
 - view dependent
2.5-D data

- range images
- range surfaces
- depth images
- depth maps
- height fields
- 2.5-D images
- surface profiles
- xyz maps
- ...

...
range acquisition taxonomy

Range acquisition
 - Contact
 - Mechanical (CMM, jointed arm)
 - Inertial (gyroscope, accelerometer)
 - Ultrasonic trackers
 - Magnetic trackers
 - Transmissive
 - Industrial CT
 - Ultrasound
 - MRI
 - Reflective
 - Non-optical
 - Radar
 - Sonar
 - Optical
touch probes

- jointed arms with angular encoders
- return position, orientation of tip

Faro Arm - Faro Technologies, Inc.
range acquisition taxonomy

Optical methods

Passive

- Shape from X:
 - stereo
 - motion
 - shading
 - texture
 - focus
 - defocus

Active

- Active variants of passive methods
 - Stereo w. projected texture
 - Active depth from defocus
 - Photometric stereo

- Time of flight
- Triangulation
optical range acquisition methods

✦ advantages:
 - non-contact
 - safe
 - usually inexpensive
 - usually fast

✦ disadvantages:
 - sensitive to transparency
 - confused by specularity and interreflection
 - texture (helps some methods, hurts others)
stereo

- find feature in one image, search along epipolar line in other image for correspondence:
epipolar geometry
stereo example
stereo

- advantages:
 - passive
 - cheap hardware (2 cameras)
 - intuitive analogue to human vision
- disadvantages:
 - only acquire good data at “features”
 - sparse, relatively noisy data (correspondence is hard)
 - bad around silhouettes
 - confused by non-diffuse surfaces
- variant: incorporate multiple cameras into multibaseline stereo to reduce ambiguity
shape from motion

- "limiting case" of multibaseline stereo
- track a feature in a video sequence
- for N frames and F features
 have $2NF$ knowns and $6N+3F$ unknowns

[Tomasi and Kanade]
shape from motion

✦ advantages:
 - feature tracking easier than correspondence in far-away views
 - mathematically more stable (large baseline)

✦ disadvantages:
 - does not accommodate object motion
 - still problems in areas of low texture, non-diffuse regions, and around silhouettes
shape from shading

\[\vec{n}(x, y) \quad \text{and} \quad h(x, y) \]

[For syth and Ponce]
shape from shading

- problem: ambiguity

[Pentland]
shape from shading

✦ advantages:
 - single image
 - no correspondences
 - analogue in human vision
✦ disadvantages:
 - mathematically unstable
 - can’t have texture
✦ “photometric stereo” (active method) more practical than passive version
shape from texture

- mathematically similar to shape from shading, but uses distortion of texture
shape from texture

- analogue to human vision
- same disadvantage as shape from shading
shape from focus

- shape from focus: at which focus setting is a given image region sharpest?
- shape from defocus: how out-of-focus is each image region?
- passive versions rarely used
- active depth from defocus can be made practical
active optical methods

✦ advantages:
 - can usually obtain dense data
 - usually much more robust and accurate than passive techniques

✦ disadvantages:
 - introduces light into the scene
 - not motivated by human vision
terminology

- range acquisition, shape acquisition, rangefinding, range scanning, 3D scanning
- alignment, registration
- surface reconstruction, 3D scan merging, scan integration, surface extraction
- 3D model acquisition
related fields

- computer vision
 - passive range sensing
 - rarely construct complete, accurate models
 - application: recognition
- metrology
 - main goal: absolute accuracy
 - high precision, provable errors more important than scanning speed, complete coverage
 - industrial inspection, quality control, etc.
related fields

- humanities
 - want complete and accurate model
 - field acquisition
 - archival, visualization, education, etc.

- computer graphics
 - often want complete model
 - low noise, geometrically consistent model more important than absolute accuracy
 - application: animated CG characters
vision in geometric modeling

Greg Dykstra