Outline

• Introduction
• Syllabus
• Coursework
• Miscellaneous
Introduction: What is CG?

• 2D image processing
• 3D object representation & manipulation
• Simulating physical processes & materials
• Animating any of the above
Introduction: What is CG?

2D image processing

- 3D object representation & manipulation
- Simulating physical processes & materials
- Animating any of the above
Introduction: What is CG?

- 2D image processing
- 3D object representation & manipulation
- Simulating physical processes & materials
- Animating any of the above

“Ratatouille” Pixar/Disney
Introduction: What is CG?

• 2D image processing
• 3D object representation & manipulation
• Simulating physical processes & materials
• Animating any of the above

Procedural Shader from Pixar Studios
Introduction: What is CG?

• 2D image processing
• 3D object representation & manipulation
• Simulating physical processes & materials

Animating any of the above (4D)
Introduction: What is CG?

“You know it when you see it…”

Work by Jim Rygiel for “102 Dalmatians”
Introduction: What is CG?

“You know it when you see it… maybe.”

Work by Jim Rygiel for “102 Dalmatians”
Introduction: Applications

• Entertainment
• Computer Aided Design
• Scientific Visualization
• Training & Education
• Commerce
• Art
Introduction: Applications

Entertainment

• Computer Aided Design
• Scientific Visualization
• Training & Education
• Commerce
• Art

“El Laberinto del Fauno”

“Bioshock” 2K Games
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
- Commerce
- Art

Completely virtual model built in 3D:
- Shorten the development period
- Shorten the learning curve
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
- Commerce
- Art

Aspirin in RasMol
Courtesy of Michael Friendly

The Visible Human
Courtesy of NLM

Flow Visualization
Roettger et al.

Right Side
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
- Commerce
- Art

Microsoft Flight Simulator

Image courtesy of Agrawala et al.
Introduction: Applications

• Entertainment
• Computer Aided Design
• Scientific Visualization
• Training & Education
• Commerce
• Art

http://www.miniusa.com/crm/mini_entrance.jsp
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
- Commerce
- Art

“Cyberflower Duet” by Roman Verostko

“Conflagration” by Diane Vetere
Outline

• Introduction
• Syllabus
• Coursework
• Miscellaneous
Syllabus

- Image Processing (2D)
- Ray Tracing (3D)
- Rendering (3D)
- Modeling (3D)
- Animation (4D)
Syllabus:

• Image Processing
 ◦ Color Models
 ◦ Quantization and Dithering
 ◦ Sampling
 ◦ Filters
 ◦ Warping, Morphing, and Compositing
Syllabus:

• Ray Tracing
 ◦ Cameras
 ◦ Primitives
 ◦ Lights
 ◦ Spatial Data Structures
 ◦ Reflection, Transparency and Refraction

• Rendering
 ◦ Coordinate Systems and Modeling Transformations
 ◦ Viewing transformations
 ◦ Shading
 ◦ Textures
 ◦ Visibility
 ◦ OpenGL
Syllabus:

• Modeling
 ◦ Triangles
 ◦ Splines
 ◦ Subdivision Surfaces
 ◦ Procedural Models
 ◦ Point Based Models

• Animation
 ◦ Key-Framing
 ◦ Kinematics
 ◦ Dynamics
Outline

- Introduction
- Syllabus
- Coursework
- Miscellaneous
Coursework

• Lots of work!
• Exams (30%)
• Programming assignments (60%)
• Class participation (10%)
Coursework

- Lots of work!

Exams (30%)
 - Two midterms
 - 10/27 and 12/16

- Programming assignments (60%)
- Class participation (10%)
Coursework

• Lots of work!

• Exams (30%)

Programming assignments (60%)
 ◦ Image Processing (15%)
 ◦ Ray Tracing (15%)
 ◦ OpenGL Rendering (15%)
 ◦ Animation (15%)

• Class participation (10%)
Coursework

• Lots of work!

• Exams (30%)

Programming assignments (60%)
 ◦ Knowledge of C/C++ assumed!
 ◦ Must be turned in by 23:55 on due date
 ◦ 5 (discrete!) late days

• Class participation (10%)
Coursework: Collaboration Policy

• You must write your own code
• You must reference sources of ideas/code

• It’s okay to:
 ◦ Discuss ideas with other students
 ◦ Get ideas from books, web sites, etc.
 ◦ Get “support code” from books, web, etc.
 » But reference it!

• It is not okay to:
 ◦ Share code with other students
 ◦ Copy code from other students
 ◦ Use ideas or code from other sources without attribution
Coursework

- Lots of work!
- Exams (30%)
- Programming assignments (60%)
- Class participation (10%)

Bottom line:
If you don’t LOVE programming, don’t take this class!
Coursework

• Lots of work!
• Exams (30%)
• Programming assignments (60%)

Class participation (10%)
Outline

• Introduction
• Syllabus
• Coursework
• Miscellaneous
Miscellaneous

• Course web page:
 ° www.cs.virginia.edu/~gfx/Courses/2008/IntroGraphics

• No required text book.

• Suggested reading (in bookstore):
Miscellaneous

- **TAs:**
 - Michael Skalak
 - Balaji Dhanasekaran

- **Office hours:**
 - Mine: MT 1:00 – 3:00 @ Olsson 212
 - Balaji: TBA
 - Michael: TBA
 - Or, by appointment

- **Keeping in touch:**
 - Email classmates: cs445-f2008@collab.itc.virginia.edu
Miscellaneous

• Submitting work:
 ◦ We will use UVa Collab
 ◦ http://collab.itc.virginia.edu
 ◦ Setup your workspace and find this course SOON!