Scene Graphs and Barycentric Coordinates

Jason Lawrence

CS445: Graphics

Acknowledgment: slides by Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin
Last Time

• 2D Transformations
 ➢ Basic 2D transformations
 ➢ Matrix representation
 ➢ Matrix composition

• 3D Transformations
 ➢ Basic 3D transformations
 ➢ Same as 2D
Homogeneous Coordinates

• Add a 4th coordinate to every 3D point
 \((x, y, z, w) \) represents a point at location \((x/w, y/w, z/w) \)

• Represent transformations by 4x4 matrices
 The top-left 3x3 block represents the linear part of the transformation
 The last column represents the translation

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 w
\end{bmatrix} = \begin{bmatrix}
 a & b & c & t_x \\
 d & e & d & t_y \\
 g & h & e & t_z \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 w
\end{bmatrix}
\]

• Transformations (translations/rotations/scales) can be composed using simple matrix multiplication
Overview

• 2D Transformations
 ➢ Basic 2D transformations
 ➢ Matrix representation
 ➢ Matrix composition

• 3D Transformations
 ➢ Basic 3D transformations
 ➢ Same as 2D

• Transformation Hierarchies
 ➢ Scene graphs
 ➢ Ray casting

• Barycentric Coordinates
Transformation Example 1

• An object may appear in a scene multiple times

Draw same 3D data with different transformations
Transformation Example 1

- Building
 - Floor 1
 - Floor 2
 - Floor 3
 - Floor 4
 - Floor 5

- Floor Furniture
 - Office 1
 - Office N

- Office Furniture
 - Bookshelf 1
 - Desk 1
 - Desk 2
 - Chair 1
 - Chair K

Definitions
Instances
Transformation Example 2

- Well-suited for humanoid characters

```
Root
  /     \
|      |
|      |
Chest  LHip  RHip
/     /     /
|     |     |
|     |     |
Neck  LCollar  RCollar  LKnee  RKnee
/     /     /     /     /
|     |     |     |     |
|     |     |     |     |
Head  LShld  RShld  LAnkle  RAnkle
/     /     /     /     /
|     |     |     |     |
|     |     |     |     |
LElbow  RElbow
/     /     /
|     |     |
|     |     |
LWrist  RWrist
```

Rose et al. '96
Scene Graphs

• Allow us to have multiple instances of a single model – providing a reduction in model storage size

• Allow us to model objects in local coordinates and then place them into a global frame – particularly important for animation
Scene Graphs

- Allow us to have multiple instances of a single model – providing a reduction in model storage size
- Allow us to model objects in local coordinates and then place them into a global frame – particularly important for animation
- Accelerate ray-tracing by providing a hierarchical structure that can be used for bounding volume testing
Ray Casting with Hierarchies

\[M = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \]
Ray Casting with Hierarchies

- Transform the shape (M)
- Compute the intersection

\[M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{1}{2} \end{bmatrix} \]
Ray Casting with Hierarchies

- Transform the ray (M^{-1})
- Compute the intersection
- Transform the intersection (M)

$M = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$
Ray Casting With Hierarchies

- Transform rays, not primitives
 - For each node ...
 » Transform ray by inverse of matrix
 » Intersect transformed ray with primitives
 » Transform hit information by matrix
Applying a Transformation

- Position
- Direction
- Normal

\[
\begin{bmatrix}
a & b & c & tx \\
d & e & f & ty \\
g & h & i & tz \\
0 & 0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & tx \\
0 & 1 & 0 & ty \\
0 & 0 & 1 & tz \\
0 & 0 & 0 & 1
\end{bmatrix} \times \begin{bmatrix}
a & b & c & 0 \\
d & e & f & 0 \\
g & h & i & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Applying a Transformation

• Position
 ◦ Apply the full affine transformation:
 \[p' = M(p) = (M_T \times M_L)(p) \]

• Direction

• Normal

\[
\begin{bmatrix}
 a & b & c & tx \\
 d & e & f & ty \\
 g & h & i & tz \\
 0 & 0 & 0 & 1
\end{bmatrix}
= \begin{bmatrix}
 1 & 0 & 0 & tx \\
 0 & 1 & 0 & ty \\
 0 & 0 & 1 & tz \\
 0 & 0 & 0 & 1
\end{bmatrix}
\times
\begin{bmatrix}
 a & b & c & 0 \\
 d & e & f & 0 \\
 g & h & i & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]
Applying a Transformation

- Position
- Direction
 - Apply the linear component of the transformation:
 \[p' = M_L(p) \]
- Normal

<table>
<thead>
<tr>
<th>Affine</th>
<th>Translate</th>
<th>Linear</th>
</tr>
</thead>
</table>
| \[
\begin{bmatrix}
 a & b & c & tx \\
 d & e & f & ty \\
 g & h & i & tz \\
 0 & 0 & 0 & 1 \\
\end{bmatrix}
\] | \[
\begin{bmatrix}
 1 & 0 & 0 & tx \\
 0 & 1 & 0 & ty \\
 0 & 0 & 1 & tz \\
 0 & 0 & 0 & 1 \\
\end{bmatrix}
\] | \[
\begin{bmatrix}
 a & b & c & 0 \\
 d & e & f & 0 \\
 g & h & i & 0 \\
 0 & 0 & 0 & 1 \\
\end{bmatrix}
\] |

\[M \times M_T \times M_L \]
Applying a Transformation

• Position

• Direction
 ▪ Apply the linear component of the transformation:
 \[p' = M_L(p) \]

A direction vector \(v \) is defined as the difference between two positional vectors \(p \) and \(q \): \(v = p - q \).
Applying a Transformation

- Position
- Direction
 - Apply the linear component of the transformation:
 \[p' = M_L(p) \]

A direction vector \(v \) is defined as the difference between two positional vectors \(p \) and \(q \): \(v = p - q \).

Applying the transformation \(M \), we compute the transformed direction as the distance between the transformed positions: \(v = M(p) - M(q) \).
Applying a Transformation

- Position
- Direction
 - Apply the linear component of the transformation:
 \[p' = M_L(p) \]

A direction vector \(\mathbf{v} \) is defined as the difference between two positional vectors \(\mathbf{p} \) and \(\mathbf{q} \):
\[\mathbf{v} = \mathbf{p} - \mathbf{q} \].

Applying the transformation \(M \), we compute the transformed direction as the distance between the transformed positions:
\[\mathbf{v} = M(p) - M(q) \].

The translation terms cancel out!
Ray Casting With Hierarchies

- Transform rays, not primitives
 - For each node ...
 - Transform ray by inverse of matrix
 - Intersect transformed ray with primitives
 - Transform hit information by matrix
Transforming a Ray

- If M is the transformation mapping a scene-graph node into the global coordinate system, then we transform a ray r by:
 - $r\.start = M^{-1}(r\.start)$
 - $r\.direction = M_L^{-1}(r\.direction)$

<table>
<thead>
<tr>
<th>Affine</th>
<th>Translate</th>
<th>Linear</th>
</tr>
</thead>
</table>
| \[
\begin{bmatrix}
a & b & c & tx \\
d & e & f & ty \\
g & h & i & tz \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\] | \[
\begin{bmatrix}
1 & 0 & 0 & tx \\
0 & 1 & 0 & ty \\
0 & 0 & 1 & tz \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\] | \[
\begin{bmatrix}
a & b & c & 0 \\
d & e & f & 0 \\
g & h & i & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\] |
Applying a Transformation

- Position
- Direction
- Normal

\[p' = ? \]

Affine \[M \]

\[
\begin{bmatrix}
 a & b & c & t_x \\
 d & e & f & t_y \\
 g & h & i & t_z \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

Translate \[M_T \]

\[
\begin{bmatrix}
 1 & 0 & 0 & t_x \\
 0 & 1 & 0 & t_y \\
 0 & 0 & 1 & t_z \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

Linear \[M_L \]

\[
\begin{bmatrix}
 a & b & c & 0 \\
 d & e & f & 0 \\
 g & h & i & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]
Normal Transformation

2D Example:

\[
\begin{bmatrix}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix} \times \begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\(M \quad M_T \quad M_L \)
Normal Transformation

2D Example:

If v is a direction in 2D, and n is a vector perpendicular to v, we want the transformed n to be perpendicular to the transformed v:

$$\langle v, n \rangle = 0 \quad \Rightarrow \quad \langle M_L(v), n' \rangle = 0$$

$$
\begin{bmatrix}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix}
\times
\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{bmatrix}
$$

M, M_T, M_L
Normal Transformation

2D Example:

\[
\begin{bmatrix}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix}
\times
\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Say \(\mathbf{v} = (2,2) \)...
Normal Transformation

2D Example:

\[
\begin{bmatrix}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1 \\
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
\end{bmatrix}
\times
\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

Say \(v = (2,2) \)… then \(n = (-\sqrt{5}, \sqrt{5}) \)
Normal Transformation

2D Example:

\[
\begin{bmatrix}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1 \\
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
\end{bmatrix} \times \begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

Say \(\mathbf{v} = (2,2) \)… then \(\mathbf{n} = \left(-\sqrt{5}, \sqrt{5}\right) \)

Transforming, \(M_L(\mathbf{v}) = (2,4) \)…

\[\langle \mathbf{v}, \mathbf{n} \rangle = 0\]
Normal Transformation

2D Example:

\[
\begin{bmatrix}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix} \times \begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Say \(v = (2,2) \ldots \) then \(n = (-\sqrt{5}, \sqrt{5}) \).
Transforming, \(M_L(v) = (2,4) \ldots \) and \(M_L(n) = (-\sqrt{5}, \sqrt{2}) \).

\[\langle v, n \rangle = 0 \]
\[\langle M_L(v), M_L(n) \rangle \neq 0 \]
Normal Transformation

2D Example:

\[
\begin{bmatrix}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix}
\times
\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[M = M_T \times M_S\]

Simply applying the directional part of the transformation to \(n\) does not result in a vector that is perpendicular to the transformed \(v\).

\[
\langle v, n \rangle = 0
\]

\[
\langle M_L(v), M_L(n) \rangle \neq 0
\]
Recall

Transposes:

- The transpose of a matrix M is the matrix M^t whose (i,j)-th coeff. is the (j,i)-th coeff. of M:

\[
M = \begin{bmatrix}
m_{11} & m_{21} & m_{31} \\
m_{12} & m_{22} & m_{32} \\
m_{13} & m_{23} & m_{33}
\end{bmatrix}
\quad \quad \quad M^t = \begin{bmatrix}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{bmatrix}
\]
Recall

Transposes:

- The transpose of a matrix M is the matrix M^t whose (i,j)-th coeff. is the (j,i)-th coeff. of M:

 $$
 M = \begin{bmatrix}
 m_{11} & m_{21} & m_{31} \\
 m_{12} & m_{22} & m_{32} \\
 m_{13} & m_{23} & m_{33}
 \end{bmatrix}
 \quad \quad
 M^t = \begin{bmatrix}
 m_{11} & m_{12} & m_{13} \\
 m_{21} & m_{22} & m_{23} \\
 m_{31} & m_{32} & m_{33}
 \end{bmatrix}
 $$

- If M and N are two matrices, then the transpose of the product is the inverted product of the transposes:

 $$
 (MN)^t = N^t M^t
 $$
Recall

Dot-Products:

- The dot product of two vectors \(\mathbf{v} = (v_x, v_y, v_z) \) and \(\mathbf{w} = (w_x, w_y, w_z) \) is obtained by summing the product of the coefficients:

\[
\langle \mathbf{v}, \mathbf{w} \rangle = v_x w_x + v_y w_y + v_z w_z
\]
Recall

Dot-Products:

- The dot product of two vectors $v = (v_x, v_y, v_z)$ and $w = (w_x, w_y, w_z)$ is obtained by summing the product of the coefficients:
 $\langle v, w \rangle = v_x w_x + v_y w_y + v_z w_z$

- Can also express as a matrix product:
 $\langle v, w \rangle = v^t w = \begin{bmatrix} v_x & v_y & v_z \end{bmatrix} \begin{bmatrix} w_x \\ w_y \\ w_z \end{bmatrix}$
Recall

Transposes and Dot-Products:

• If M is a matrix, the dot product of v with M applied to w is the dot product of the transpose of M applied to v with w:
Recall

Transposes and Dot-Products:

• If M is a matrix, the dot product of v with M applied to w is the dot product of the transpose of M applied to v with w:

$$\langle v, Mw \rangle = v^t (Mw)$$
Recall

Transposes and Dot-Products:

- If M is a matrix, the dot product of v with M applied to w is the dot product of the transpose of M applied to v with w:

$$\langle v, Mw \rangle = v^t (Mw)$$

$$= (v^t M)_w$$
Recall

Transposes and Dot-Products:

- If M is a matrix, the dot product of v with M applied to w is the dot product of the transpose of M applied to v with w:

$$\langle v, Mw \rangle = v^t (Mw)$$

$$= (v^t M)v$$

$$= (M^tv)w$$
Recall

Transposes and Dot-Products:

• If \(M \) is a matrix, the dot product of \(v \) with \(M \) applied to \(w \) is the dot product of the transpose of \(M \) applied to \(v \) with \(w \):

\[
\langle v, Mw \rangle = v^t (Mw) \\
= \langle v^t M \rangle w \\
= \langle M^t v \rangle w \\
\langle v, Mw \rangle = \langle M^t v, w \rangle
\]
Applying a Transformation

• If we apply the transformation M to 3D space, how does it act on normals?
Applying a Transformation

• If we apply the transformation M to 3D space, how does it act on normals?

• A normal n is defined by being perpendicular to some vector(s) v. The transformed normal n' should be perpendicular to $M(v)$:

$$\langle n, v \rangle = \langle n', Mv \rangle$$
Applying a Transformation

• If we apply the transformation M to 3D space, how does it act on normals?

• A normal n is defined by being perpendicular to some vector(s) v. The transformed normal n' should be perpendicular to $M(v)$:

$$\langle n,v \rangle = \langle n',Mv \rangle$$

$$= \langle M^t n',v \rangle$$
Applying a Transformation

• If we apply the transformation M to 3D space, how does it act on normals?

• A normal n is defined by being perpendicular to some vector(s) v. The transformed normal n' should be perpendicular to $M(v)$:

$$
\langle n, v \rangle = \langle n', Mv \rangle \\
= \langle M^t n', v \rangle \\
n = M^t n'
$$
Applying a Transformation

• If we apply the transformation M to 3D space, how does it act on normals?

• A normal n is defined by being perpendicular to some vector(s) v. The transformed normal n' should be perpendicular to $M(v)$:

$$\langle n, v \rangle = \langle n', Mv \rangle = \langle M^t n', v \rangle$$

$$n = M^t n'$$

$$n' = (M^t)^{-1} n$$
Applying a Transformation

• Position
 \[p' = M(p) \]

• Direction
 \[p' = M_L(p) \]

• Normal
 \[p' = ((M_L)^t)^{-1}(p) \]

\[
\begin{bmatrix}
 a & b & c & tx \\
 d & e & f & ty \\
 g & h & i & tz \\
 0 & 0 & 0 & 1 \\
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 & tx \\
 0 & 1 & 0 & ty \\
 0 & 0 & 1 & tz \\
 0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 a & b & c & 0 \\
 d & e & f & 0 \\
 g & h & i & 0 \\
 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
Ray Casting With Hierarchies

• Transform rays, not primitives
 ◦ For each node ...
 » Transform ray by inverse of matrix
 » Intersect transformed ray with primitives
 » Transform hit information by matrix
Transforming a Ray

- If M is the transformation mapping a scene-graph node into the global coordinate system, then we transform the hit information hit by:
 - $hit \cdot position = M \cdot (hit \cdot position)$
 - $hit \cdot normal = ((M_L)^t)^{-1}(hit \cdot normal)$

Affine
\[
\begin{bmatrix}
 a & b & c & tx \\
 d & e & f & ty \\
 g & h & i & tz \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

Translate
\[
\begin{bmatrix}
 1 & 0 & 0 & tx \\
 0 & 1 & 0 & ty \\
 0 & 0 & 1 & tz \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

Linear
\[
\begin{bmatrix}
 a & b & c & 0 \\
 d & e & f & 0 \\
 g & h & i & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]
Overview

• 2D Transformations
 ➢ Basic 2D transformations
 ➢ Matrix representation
 ➢ Matrix composition

• 3D Transformations
 ➢ Basic 3D transformations
 ➢ Same as 2D

• Transformation Hierarchies
 ➢ Scene graphs
 ➢ Ray casting

• Barycentric Coordinates
Triangles

These are the basic building blocks of 3D models.

- Often 3D models are complex, and the surfaces are represented by a triangulated approximation.
Triangles

A triangle is defined by three non-collinear vertices:

- Any point q in the triangle is on the line segment between one vertex and some other point q' on the opposite edge.
Barycentric Coordinates

A triangle is defined by three non-collinear vertices:

• Any point \(q \) in the triangle is on the line segment between one vertex and some other point \(q' \) on the opposite edge.

• Any point on the triangle can be expressed as:
 • \(q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \geq 0 \} \)
Barycentric Coordinates

A triangle is defined by three non-collinear vertices:

• Any point q in the triangle is on the line segment between one vertex and some other point q' on the opposite edge.

• Any point on the triangle can be expressed as:
 • $q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \geq 0 \}$

\[
\alpha p_1 + \beta p_2 + \gamma p_3 = \alpha p_1 + (1 - \alpha) \left(\frac{\beta p_2 + \gamma p_3}{1 - \alpha} \right)
\]
Barycentric Coordinates

A triangle is defined by three non-collinear vertices:

• Any point \(q \) in the triangle is on the line segment between one vertex and some other point \(q' \) on the opposite edge.

• Any point on the triangle can be expressed as:
 • \(q=\{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \geq 0 \} \)

\[\alpha p_1 + \beta p_2 + \gamma p_3 = \alpha p_1 + (1-\alpha) \left(\frac{\beta p_2 + \gamma p_3}{1-\alpha} \right) \]

\[= \alpha p_1 + (1-\alpha) \left(\frac{\beta p_2 + \gamma p_3}{\beta + \gamma} \right) \]

A point \(q \) on the segment between \(p_2 \) and \(p_3 \)
Barycentric Coordinates

A triangle is defined by three non-collinear vertices:

• Any point \(q \) in the triangle is on the line segment between one vertex and some other point \(q' \) on the opposite edge.

• Any point on the triangle can be expressed as:
 • \(q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \geq 0 \} \)

\[
\alpha p_1 + \beta p_2 + \gamma p_3 = \alpha p_1 + (1-\alpha) \left(\frac{\beta p_2 + \gamma p_3}{\beta + \gamma} \right)
\]

A point \(q \) on the segment between \(p_1 \) and \(q' \)
Barycentric Coordinates

The barycentric coordinates of a point q:

$$q = \alpha p_1 + \beta p_2 + \gamma p_3$$

allow us to express q as a weighted average of the vertices of the triangles.
Barycentric Coordinates

Any point on the triangle can be expressed as:

- \(q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \geq 0 \} \)

Questions:

- What happens if \(\alpha, \beta, \) or \(\gamma < 0 \)?
Barycentric Coordinates

Any point on the triangle can be expressed as:

- \(q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \geq 0 \} \)

Questions:

- What happens if \(\alpha, \beta, \) or \(\gamma < 0? \)
 - \(q \) is not inside the triangle but it is in the plane spanned by \(p_1, p_2, \) and \(p_3. \)
Barycentric Coordinates

Any point on the triangle can be expressed as:

- \(q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \geq 0 \} \)

Questions:

- What happens if \(\alpha, \beta, \) or \(\gamma < 0 \)?
- What happens if \(\alpha + \beta + \gamma \neq 1 \)?
Barycentric Coordinates

Any point on the triangle can be expressed as:

\[q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \geq 0 \} \]

Questions:

• What happens if \(\alpha, \beta, \) or \(\gamma < 0 \)?

• What happens if \(\alpha + \beta + \gamma \neq 1 \)?

 \(q \) is not in the plane spanned by \(p_1, p_2, \) and \(p_3 \).
Barycentric Coordinates

Any point on the triangle can be expressed as:

\[q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \geq 0 \} \]

Questions:

• What happens if \(\alpha, \beta, \) or \(\gamma < 0? \)

• What happens if \(\alpha + \beta + \gamma \neq 1? \)

Note: If we force \(\alpha = 1 - \beta - \gamma, \) we always get \(\alpha + \beta + \gamma = 1 \) so the point \(q \) is always in the plane containing the triangle.
Barycentric Coordinates

Barycentric coordinates are needed in:

• Ray-Tracing, to test for intersection
• Rendering, to interpolate triangle information
Barycentric Coordinates

Barycentric coordinates are needed in:

• Ray-Tracing, to test for intersection

• Rendering, to interpolate triangle information

```c
Float TriangleIntersect(Ray r, Triangle tgl) {
    Plane p = PlaneContaining(tgl);
    Float t = IntersectionDistance(r, p);
    if (t < 0) { return -1; }
    else {
        (α, β, γ) = Barycentric(r(t), tgl);
        if (α < 0 or β < 0 or γ < 0) { return -1; }
        else { return t; }
    }
}
```
Barycentric Coordinates

Barycentric coordinates are needed in:

• Ray-Tracing, to test for intersection
• Rendering, to interpolate triangle information
 ◦ In 3D models, information is often associated with vertices rather than triangles (e.g. color, normals, etc.)
Barycentric Coordinates

For example:

- We could associate the same normal/color to every point on the face of a triangle by computing:

\[
 n = \frac{(p_2 - p_1) \times (p_3 - p_1)}{\|(p_2 - p_1) \times (p_3 - p_1)\|}
\]
Barycentric Coordinates

For example:

- We could associate the same normal/color to every point on the face of a triangle by computing:

\[
\mathbf{n} = \frac{\mathbf{p}_2 - \mathbf{p}_1 \times (\mathbf{p}_3 - \mathbf{p}_1)}{\|\mathbf{p}_2 - \mathbf{p}_1 \times (\mathbf{p}_3 - \mathbf{p}_1)\|}
\]

This gives rise to flat shading/coloring across the faces.
Barycentric Coordinates

Instead:

• We could associate normals to every vertex:

\[T = ((p_1, n_1), (p_2, n_2), (p_3, n_3)) \]

so that the normal at some point \(q \) in the triangle is the interpolation of the normals at the vertices:

\[
n(q) = \frac{\alpha(q)n_1 + \beta(q)n_2 + \gamma(q)n_3}{\|\alpha(q)n_1 + \beta(q)n_2 + \gamma(q)n_3\|}
\]
Barycentric Coordinates

Instead:

- We could associate normals to every vertex:
 \[T = ((p_1, n_1), (p_2, n_2), (p_3, n_3)) \]
 so that the normal at some point \(q \) in the triangle
 is the interpolation of the normals at the vertices:

Triangle Normals

Interpolated Point Normals
Barycentric Coordinates

So given the points p_1, p_2, and p_3, how do we compute the barycentric coordinates of a point q in the plane spanned by p_1, p_2, and p_3?

Matrix Inversion:

We can approach this as a linear system with three equations and two unknowns:

$$
q_x = (1 - \beta - \gamma) p_{1x} + \beta p_{2x} + \gamma p_{2x}
$$

$$
q_y = (1 - \beta - \gamma) p_{1y} + \beta p_{2y} + \gamma p_{2y}
$$

$$
q_z = (1 - \beta - \gamma) p_{1z} + \beta p_{2z} + \gamma p_{2z}
$$
Barycentric Coordinates

So given the points p_1, p_2, and p_3, how do we compute the barycentric coordinates of a point q in the plane spanned by p_1, p_2, and p_3?

(Signed) Area Ratios:

$$\alpha = \frac{A_1}{A_1 + A_2 + A_3}$$

$$\beta = \frac{A_2}{A_1 + A_2 + A_3}$$

$$\gamma = \frac{A_3}{A_1 + A_2 + A_3}$$
Barycentric Coordinates

So given the points p_1, p_2, and p_3, how do we compute the barycentric coordinates of a point q in the plane spanned by p_1, p_2, and p_3?

(Signed) Area Ratios:

$$
\alpha = \frac{A_1}{A_1 + A_2 + A_3} \\
\beta = \frac{A_2}{A_1 + A_2 + A_3} \\
\gamma = \frac{A_3}{A_1 + A_2 + A_3}
$$

Solving this equation requires computing the areas of three triangles for every point q. (DERIVATION IN CLASS)