feature detection;
hough transform
corner detection

what could we compute that would help detect corners?
edges

\[I(x, y) \]

\[
\begin{pmatrix}
\frac{\partial I}{\partial x} \\
\frac{\partial I}{\partial y}
\end{pmatrix}
\]
corners

\[
\text{average} \left(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \right)
\]
gradient covariance matrix

$$C = \begin{pmatrix}
\sum I_x^2 & \sum I_x I_y \\
\sum I_x I_y & \sum I_y^2
\end{pmatrix}$$

summarizes second-order statistics of the gradient
quick digression

$$Ax = \lambda x$$

- let A be a square $N \times N$ matrix
- x is an eigenvector of A
- λ is its associated eigenvalue
- A can have at most N unique eigenvectors
- The rank(A) = number of eigenvectors with eigenvalues $\neq 0$
- rank(A) = dimensionality of the range of A
case #1: uniform

\[\left(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \right) = (?, ?) \]
case #2: single edge

\[\left(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \right) = (a, b) \]
case #3: corner

\[
\left(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \right) = (a, b) \text{ and } (c, d)
\]
Tomasi-Kanade corner detector

- C has one large eigenvalue \Rightarrow edge
- C has two large eigenvalues \Rightarrow corner
implementation

• compute image gradient

• for each $M \times M$ neighborhood, compute C

• if smaller eigenvalue is larger than threshold record a corner (MATLAB: `eig`)

• nonmaximum suppression: keep strongest corner in each $M \times M$ window
corner detection

- application: good features for tracking, image correspondence, etc.
- why do corners make better features than edges?
- other corner detectors
 - curvature in edge detector output
 - color segmentation in neighborhoods
 - others...
“good” image features (small neighborhoods of pixels)
camera calibration
3d scene reconstruction from image sequences
detecting lines

what is the difference between detecting edges and lines?
detecting lines

answer: local vs. global
brainstorm
the Hough transform

• “vote” for lines to which detected edges may belong
• votes will accumulate around actual lines
• issues:
 • what parameterization of lines?
 • how finely should we discretize line-space?
\[y = ax + b \]
$y = ax + b$
bucket size

- what resolution (“bucket size”) in line space?
 - too small: poor performance on noisy data (aliasing)
 - too large: poor accuracy (false positives)
parameterization

• what’s wrong with slope-intercept?

\[y = ax + b \]
parameterization

• what’s wrong with slope-intercept?
• non-uniform sampling of directions
• can’t represent vertical lines

\[y = ax + b \]
parameterization

• better to use angle-distance parameterization
• show on board...
50% threshold

70% threshold

Image Credits: Bob Fisher
food for thought

• what does total accumulation of votes tell us about the line?

• what else can we detect with the Hough transform?

• circles? rectangles? human faces?
what is the dimensionality of parameter space?
what is the dimensionality of parameter space?

3 = 2 for center + 1 for radius
each pixel => 2D “sheet” of possible circles
what if we consider edge information?
often too noisy for final estimate, but good starting point for linear regression...
$y = mx + c$

initial guess
(e.g., output of HT)
y = mx + c
least-squares fitting

\[E = \sum ((mx_i + c) - y_i)^2 \]

putting the “squares” in least-squares
least-squares fitting

\[y = mx + c \]

\[\begin{pmatrix} x & 1 \end{pmatrix} \begin{pmatrix} m \\ c \end{pmatrix} = y \]

\((0, 3), (2, 3), (4, 4), (-1, 2) \)

\[A = \begin{pmatrix} 0 & 1 \\ 2 & 1 \\ 4 & 1 \\ -1 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 3 \\ 3 \\ 4 \\ 2 \end{pmatrix} \quad p = \begin{pmatrix} m \\ c \end{pmatrix} \]

minimize: \((Ap - b)^T (Ap - b) \)
least-squares fitting

find p that minimizes:

$$E = (Ap - b)^T (Ap - b)$$

$$(Ap - b) = 0$$

$$Ap = b$$

$$A^T Ap = A^T b$$

$$p = (A^T A)^{-1} A^T b$$
outliers

- generative process: think of data as being generated by adding vertical Gaussian noise to best-fit line
- outliers = points with extremely low probability of occurrence within this model
- strongly influence least squares
robust estimation

• goal: develop parameter estimation methods insensitive to **small numbers of large errors**

• general approach: try to give large deviations less weight

• M-estimators: minimize some function other than \((y-f(x,a,b,...))^2\)
least absolute value fitting

- minimize \(\sum_i |y_i - f(x_i, a, b, \ldots)| \)

 instead of \(\sum_i (y_i - f(x_i, a, b, \ldots))^2 \)

- points far away from trend get comparatively less influence
RANSAC

- **RANdom SAmple Consensus**: designed for bad data (in best case, up to 50% outliers)

 - take many random subsets of data

 - compute least squares fit for each subset

 - see how many points agree: \((y_i-f(x_i))^2 < \text{threshold}\)

 - threshold user-specified or estimated from more trials

 - at end, use fit that agreed with most points

 - can perform one final LS with all inliers