CS 4810: Computer Graphics

Jason Lawrence

jdl@cs.virginia.edu

Acknowledgement: slides by Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin
Introduction: What is CG?

• 2D image processing
• 3D object representation & manipulation
• Simulating physical processes & materials
• Animating any of the above
Introduction: What is CG?

2D image processing

- 3D object representation & manipulation
- Simulating physical processes & materials
- Animating any of the above
Introduction: What is CG?

- 2D image processing
- 3D object representation & manipulation
- Simulating physical processes & materials
- Animating any of the above

“Ratatouille” Pixar/Disney
Introduction: What is CG?

- 2D image processing
- 3D object representation & manipulation
- Simulating physical processes & materials
- Animating any of the above
Introduction: What is CG?

• 2D image processing
• 3D object representation & manipulation
• Simulating physical processes & materials

Animating any of the above (4D)
Introduction: What is CG?

“You know it when you see it…”

Work by Jim Rygiel for “102 Dalmatians”
Introduction: What is CG?

“You know it when you see it… maybe.”

Work by Jim Rygiel for “102 Dalmatians”
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
- Commerce
- Art
Introduction: Applications

Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
- Commerce
- Art

“El Laberinto del Fauno”

“Bioshock” 2K Games
Introduction: Applications

- Entertainment
- Computer Aided Design
 - Scientific Visualization
 - Training & Education
 - Commerce
 - Art

Completely virtual model built in 3D:
 - Shorten the development period
 - Shorten the learning curve

Boeing 7E7
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
- Commerce
- Art

Flow Visualization
Roettger et al.

Aspirin in RasMol
Courtesy of Michael Friendly

The Visible Human
Courtesy of NLM
Introduction: Applications

• Entertainment
• Computer Aided Design
• Scientific Visualization
• Training & Education
• Commerce
• Art

Microsoft Flight Simulator

Image courtesy of Agrawala et al.
Introduction: Applications

• Entertainment
• Computer Aided Design
• Scientific Visualization
• Training & Education
• Commerce
• Art

http://www.miniusa.com/crm/mini_entrance.jsp
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
- Commerce

"Cyberflower Duet" by Roman Verostko

"Conflagration" by Diane Vetere
Outline

• Introduction
• Syllabus
• Coursework
• Miscellaneous
Syllabus

• Image Processing (2D)
• Ray Tracing (3D)
• Polygon Scanline Rendering (3D)
• Modeling (3D)
• Animation (4D)
Syllabus:

• Image Processing
 o Human Vision
 o Color Models
 o Quantization and Dithering
 o Sampling
 o Filters
 o Warping, Morphing, and Compositing
Syllabus:

- Ray Tracing
 - Cameras
 - Primitives
 - Lights
 - Intersection Acceleration Data Structures
 - Reflection, Transparency and Refraction

- Scanline Rendering
 - Coordinate Systems and Modeling Transformations
 - Viewing transformations
 - Shading
 - Textures
 - Visibility
 - OpenGL
Syllabus:

• Modeling
 • Triangles
 • Splines
 • Subdivision Surfaces

• Animation
 • Key-Framing
 • Kinematics
 • Dynamics
Outline

• Introduction
• Syllabus
• Coursework
• Miscellaneous
Coursework

• Lots of work!
• Exams (30%)
• Programming assignments (60%)
• Class participation (10%)
Coursework

• Lots of work!

Exams (30%)
 • Two midterms
 • 10/12 and 12/05

• Programming assignments (60%)

• Class participation (10%)
Coursework

- Lots of work!
- Exams (30%)
- Programming assignments (60%)
 - Image Processing (20%)
 - Ray Tracing (20%)
 - OpenGL Rendering (20%)
- Class participation (10%)
Coursework

• Lots of work!

• Exams (30%)

Programming assignments (60%)
 ◦ Knowledge of C/C++ assumed
 ◦ Must be turned in by 11:55PM on due date
 ◦ 5 (discrete) late days

• Class participation (10%)
Coursework: Collaboration Policy

• You must write your own code
• You must reference sources of ideas/code
• It’s okay to:
 o Discuss ideas with other students
 o Get ideas from books, web sites, etc.
 » But reference it!
• It is not okay to:
 o Share code with other students
 o Copy code from other students
 o Use ideas or code from other sources without attribution and first receiving permission from me
Coursework

• Lots of work!
• Exams (30%)

Programming assignments (60%)
• Class participation (10%)

Bottom line: Expect to do a LOT of programming in this class!
Coursework

• Lots of work!
• Exams (30%)
• Programming assignments (60%)
• Class participation (10%)
Outline

• Introduction
• Syllabus
• Coursework
• Miscellaneous
Resources

• Course web page: www.cs.virginia.edu/~gfx/Courses/2011/IntroGraphics

• Suggested text books (on reserve at Brown):
Support

• TA:
 - Liu Zhenyang (introduce yourself!)

• Office hours:
 - Mine: MW 3:30 – 5:30 @ Olsson 212 -> Rice 505
 - Liu: TBA
 - Or, by appointment

• Keeping in touch:
 - Email classmates: cs4810@collab.itc.virginia.edu
Miscellaneous

- UVA Collab:
 - http://collab.itc.virginia.edu
 - We will use collab for submitting work, managing grades, and posting announcements
 - Setup your workspace and find this course NOW!