Parametric Curves

Jason Lawrence

CS4810: Introduction to Graphics

Acknowledgment: slides by Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin
Parametric Curves and Surfaces

Part 1: Curves

Part 2: Surfaces

Courtesy of C.K. Shene
Curves

• Splines: mathematical way to express curves

• Motivated by “loftsman’s spline”
 o Long, narrow strip of wood/plastic
 o Used to fit curves through specified data points
 o Shaped by lead weights called “ducks”
 o Gives curves that are “smooth” or “fair”

• Have been used to design:
 o Automobiles
 o Ship hulls
 o Aircraft fuselage/wing
Goals

• Some attributes we might like to have:
 - Predictable/local control
 - Simple
 - Continuous

• We’ll satisfy these goals using:
 - Piecewise
 - Polynomials
Many applications in graphics

• Animation paths

• Shape modeling

• etc…
What is a Spline in CG?

A spline is a *piecewise polynomial function* whose derivatives satisfy some *continuity constraints* across curve boundaries.

So let’s look at what this means…
What is a Spline in CG?

Piecewise: the spline is actually a collection of individual segments joined together.

Polynomial functions: each of these segments is expressed by a polynomial function.
Parametric Curves

A parametric curve in d-dimensions is defined by a collection of 1D functions of one variable that give the coordinates of points on the curve at each value of u:

$$\Phi(u) = \left(x_1(u), \ldots, x_d(u)\right)$$

\[\Phi(u) = (\cos(u), u, \sin(u)) \]

Note:
A parametric curve is **not** the graph of a function, it is the path traced out as the value of t is allowed to change.

Courtesy of C.K. Shene
Derivatives

If \(\Phi(u) = (x(u), y(u)) \) is the parametric equation of a curve, the parametric derivative of the curve at a point \(u_0 \) is the vector:

\[
\Phi'(u_0) = \left(x'(u_0), y'(u_0) \right)
\]

which points in a direction tangent to the curve.

Note:
The direction of the derivative is determined by the path that the curve traces out.

The magnitude of the parametric derivative is determined by the tracing speed.
Polynomials

A polynomial in the variable u is:

• “An algebraic expression written as a sum of constants multiplied by different powers of a variable.”

$$P(u) = a_0 + a_1u + a_2u^2 + \ldots + a_nu^n = \sum_{k=0}^{n} a_k u^k$$

The constant a_k is referred to as the k-th coefficient of the polynomial P.
Polynomials (Degree)

\[P(u) = a_0 + a_1 u + a_2 u^2 + \ldots + a_n u^n = \sum_{k=0}^{n} a_k u^k \]

A polynomial \(P \) has degree \(n \) if for all \(k > n \), the coefficients of the polynomial satisfy \(a_k = 0 \).

Wednesday, November 16, 11
Polynomials (Degree)

\[P(u) = a_0 + a_1 u + a_2 u^2 + \ldots + a_n u^n = \sum_{k=0}^{n} a_k u^k \]

A polynomial \(P \) has degree \(n \) if for all \(k > n \), the coefficients of the polynomial satisfy \(a_k = 0 \).

A polynomial of degree \(n \) has \(n + 1 \) degrees of freedom.

Knowing \(n + 1 \) pieces of information about a polynomial of degree \(n \) gives enough information to reconstruct the coefficients.
Polynomials (Matrices)

\[P(u) = a_0 + a_1 u + a_2 u^2 + \ldots + a_n u^n = \sum_{k=0}^{n} a_k u^k \]

The polynomial \(P \) can be expressed as the matrix multiplication of a column vector and a row vector:

\[P(u) = \begin{pmatrix} u^n & \ldots & u^0 \end{pmatrix} \begin{pmatrix} a_n \\ \vdots \\ a_0 \end{pmatrix} \]
Polynomials (Matrices)

$P(u) = \sum_{k=0}^{n} a_k u^k$

Example:

If we know the values of the polynomial P at $n+1$ different values:

$$P(u_0) = p_0, \ldots, P(u_n) = p_n$$

We can compute the coefficients of P by inverting the appropriate matrix:

$$\begin{pmatrix} p_0 \\
\vdots \\
p_n \end{pmatrix} = \begin{pmatrix} (u_0)^n & \cdots & (u_0)^0 \\
\vdots & \ddots & \vdots \\
(u_n)^n & \cdots & (u_n)^0 \end{pmatrix} \begin{pmatrix} a_n \\
\vdots \\
a_0 \end{pmatrix}$$

$$\begin{pmatrix} a_n \\
\vdots \\
a_0 \end{pmatrix} = \begin{pmatrix} (u_0)^n & \cdots & (u_0)^0 \end{pmatrix}^{-1} \begin{pmatrix} p_0 \\
\vdots \\
p_n \end{pmatrix}$$
Polynomials (Matrices)

Example:

So, if we are given the values of the polynomial P at the $n+1$ positions u_0, \ldots, u_n, we can compute the value of P at any position u by solving:

$$P(u) = \left(u^n \ldots u^0 \right) \begin{pmatrix} (u_0)^n \cdots (u_0)^0 \end{pmatrix}^{-1} \begin{pmatrix} p_0 \\ \vdots \\ (u_n)^n \cdots (u_n)^0 \end{pmatrix} \begin{pmatrix} p_0 \\ \vdots \\ p_n \end{pmatrix}$$
Parametric Polynomial Curves

• A parametric polynomial curve of degree n in d dimensions is a collection of d polynomials, each of which is of degree no larger than n:

$$\Phi(u) = \left(x_1(u) = \sum_{k=0}^{n} a_{1,k} u^k, \ldots, x_d(u) = \sum_{k=0}^{n} a_{d,k} u^k \right)$$
Parametric Polynomial Curves

Examples:

- When $x(u)=u$, the curve is just the graph of $y(u)$.
- Different parametric equations can trace out the same curve.
- As the degree gets larger, the complexity of the curve increases.

<table>
<thead>
<tr>
<th>$y(u)=u$</th>
<th>$y(u)=u^2/2-2$</th>
<th>$y(u)=u^3/2-2u$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x(u)=u$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x(u)=u^2/2-2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x(u)=u^3/2-2u$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parametric Curves

Goal:

Given a collection of \(m \) points in \(d \) dimensions:

\[
\{ p_1 = (x_{1,1}, \ldots, x_{1,d}) \ldots, p_m = (x_{m,1}, \ldots, x_{m,d}) \}\]

define a parametric curve that passes through (or near) the points.
Parametric Curves

Direct Approach:

Solve for the m coefficients of a parametric polynomial curve of degree $m-1$, passing through the points.
Parametric Curves

Direct Approach:

Solve for the m coefficients of a parametric polynomial curve of degree $m-1$, passing through the points.

Limitations:

• No local control

• As the number of points increases, the dimension gets larger, and the curve oscillates more.
Splines

Approach:

Fit low-order polynomials to groups of points so that the combined curve passes through (or near) the points while providing:

- Local Control
- Simplicity
- Continuity/Smoothness
Splines

Approach:

Fit low-order polynomials to groups of points so that the combined curve passes through (or near) the points while providing:

- Local Control
- Simplicity
- Continuity/Smoothness
Splines

Approach:

Fit low-order polynomials to groups of points so that the combined curve passes through (or near) the points while providing:

- Local Control
- Simplicity
- Continuity/Smoothness
Splines

Approach:

Fit low-order polynomials to groups of points so that the combined curve passes through (or near) the points while providing:

- Local Control
- Simplicity
- Continuity/Smoothness
Splines

Approach:

Fit low-order polynomials to groups of points so that the combined curve passes through (or near) the points while providing:

- Local Control
- Simplicity
- Continuity/Smoothness
Piecewise parametric polynomials

Approach:

Fit low-order polynomials to groups of points so that the combined curve passes through (or near) the points while providing:

- **Local Control:**
 - Individual curve segments are defined using only local information

- **Simplicity**
 - Curve segments are low-order polynomials
Approach:

Fit low-order polynomials to groups of points so that the combined curve passes through (or near) the points while providing:

- **Local Control:**
 - Individual curve segments are defined using only local information

- **Simplicity**
 - Curve segments are low-order polynomials

- **Continuity/Smoothness**
 - How do we guarantee smoothness at the joints?
Continuity/Smoothness

Continuity:

Within the parameterized domain, the polynomial functions are continuous and smooth.

The derivatives of our polynomial functions must satisfy continuity constraints across the curve boundaries.
Continuity/Smoothness

Parametric continuity: derivatives of the two curves are equal where they meet.

- C^0 means two curves just meet
- C^1 means 1st derivatives equal
- C^2 means both 1st and 2nd derivates equal
Continuity/Smoothness

Geometric continuity: derivatives of the two curves are proportional (i.e. point in the same direction) where they meet.

- G^0 means two curves just meet
- G^1 means G^0 and 1$^{\text{st}}$ derivatives proportional
- G^2 means G^1 and 2$^{\text{nd}}$ derivatives proportional
- Parametric continuity used more frequently than geometric.
What is a Spline in CG?

A spline is a **piecewise polynomial function** whose derivatives satisfy some **continuity constraints** across curve boundaries.

$$P_i(x) \quad x \in [0,1).$$
What is a Spline in CG?

A spline is a piecewise polynomial function whose derivatives satisfy some continuity constraints across curve boundaries.

$$P_i(x) = \sum_{j=0}^{n} a_{ij}x^j$$
Overview

• What is a Spline?

• Specific Examples:
 o Hermite Splines
 o Cardinal Splines
 o Uniform Cubic B-Splines

• Comparing Cardinal Splines to Uniform Cubic B-Splines
Specific Example: Hermite Splines

- Interpolating piecewise *cubic* polynomial

- Specified with:
 - A pair of control points
 - Tangent at each control point

- Iteratively construct the curve between adjacent end points
Specific Example: Hermite Splines

• Interpolating piecewise cubic polynomial

• Specified with:
 o A pair of control points
 o Tangent at each control point

• Iteratively construct the curve between adjacent end points
Specific Example: Hermite Splines

• Interpolating piecewise cubic polynomial

• Specified with:
 o A pair of control points
 o Tangent at each control point

• Iteratively construct the curve between adjacent end points
Specific Example: Hermite Splines

• Interpolating piecewise cubic polynomial

• Specified with:
 - A pair of control points
 - Tangent at each control point

• Iteratively construct the curve between adjacent end points
Specific Example: Hermite Splines

- Interpolating piecewise cubic polynomial
- Specified with:
 - A pair of control points
 - Tangent at each control point
- Iteratively construct the curve between adjacent end points
Specific Example: Hermite Splines

- Interpolating piecewise cubic polynomial

- Specified with:
 - A pair of control points
 - Tangent at each control point

- Iteratively construct the curve between adjacent end points
Specific Example: Hermite Splines

- Interpolating piecewise *cubic* polynomial

- Specified with:
 - A pair of control points
 - Tangent at each control point

- Iteratively construct the curve between adjacent end points

Because the end-points of adjacent curves share the same position and derivatives, the Hermite spline has C^1 continuity.
Specific Example: Hermite Splines

- Let $P_k(u) = (P_{k,x}(u), P_{k,y}(u))$ with $0 \leq u \leq 1$ be a parametric cubic point function for the curve section between control points p_k and p_{k+1}.

- Boundary conditions are:
 - $P_k(0) = p_k$
 - $P_k(1) = p_{k+1}$
 - $P'_k(0) = Dp_k$
 - $P'_k(1) = Dp_{k+1}$
Specific Example: Hermite Splines

Let $P_k(u) = (P_{k,X}(u), P_{k,Y}(u))$ with $0 \leq u \leq 1$ be a parametric cubic point function for the curve section between control points p_k and p_{k+1}.

- Boundary conditions are:
 - $P_k(0) = p_k$
 - $P_k(1) = p_{k+1}$
 - $P_k'(0) = Dp_k$
 - $P_k'(1) = Dp_{k+1}$

- Solve for the coefficients of the polynomials $P_{k,X}(u)$ and $P_{k,Y}(u)$ that satisfy the boundary condition.
Specific Example: Hermite Splines

We can express the polynomials:
• \(P(u) = au^3 + bu^2 + cu + d \)
• \(P'(u) = 3au^2 + 2bu + c \)

using the matrix representations:

\[
\begin{align*}
P(u) &= \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \\
\end{align*}
\]

\[
\begin{align*}
P'(u) &= \begin{bmatrix} 3u^2 & 2u & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \\
\end{align*}
\]
Specific Example: Hermite Splines

We can express the polynomials:

- \(P(u) = au^3 + bu^2 + cu + d \)
- \(P'(u) = 3au^2 + 2bu + c \)

using the matrix representations:

\[
\begin{bmatrix}
 u^3 & u^2 & u & 1
\end{bmatrix}
\begin{bmatrix}
a \\
b \\
c \\
d
\end{bmatrix}
\quad
\begin{bmatrix}
 3u^2 & 2u & 1 & 0
\end{bmatrix}
\begin{bmatrix}
a \\
b \\
c \\
d
\end{bmatrix}
\]

By abuse of notation, we will think of the coefficients \(a, b, c,\) and \(d\) as 2-vectors rather than scalars so that \(P\) is a function taking values in 2D.
Specific Example: Hermite Splines

Given the matrix representations:

\[P(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \\ a \\ b \\ c \\ d \end{bmatrix} \quad P'(u) = \begin{bmatrix} u^2 & 2u & 1 & 0 \end{bmatrix} \]
Specific Example: Hermite Splines

Given the matrix representations:

\[
P(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \quad \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}
\]

\[
P'(u) = \begin{bmatrix} 3u^2 & 2u & 1 & 0 \end{bmatrix} \quad \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}
\]

we can express the values at the end-points as:

\[
p_k = P(0) = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}
\]

\[
Dp_k = P'(0) = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} \quad \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}
\]

\[
p_{k+1} = P(1) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}
\]

\[
Dp_{k+1} = P'(1) = \begin{bmatrix} 3 & 2 & 1 & 0 \end{bmatrix} \quad \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}
\]
Specific Example: Hermite Splines

We can combine the equations

\[p_k = P(0) = \begin{bmatrix} 0 & 0 & 0 & 1 \\ a \\ b \\ c \\ d \end{bmatrix} \quad Dp_k = P'(0) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ a \\ b \\ c \\ d \end{bmatrix} \]

\[p_{k+1} = P(1) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ a \\ b \\ c \\ d \end{bmatrix} \quad Dp_{k+1} = P'(1) = \begin{bmatrix} 3 & 2 & 1 & 0 \\ a \\ b \\ c \\ d \end{bmatrix} \]

into a single matrix expression:
Specific Example: Hermite Splines

We can combine the equations

\[
p_k = P(0) = \begin{bmatrix} 0 & 0 & 0 & 1 \\ a \\ b \\ c \\ d \end{bmatrix}, \quad Dp_k = P'(0) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ a \\ b \\ c \\ d \end{bmatrix}
\]

\[
p_{k+1} = P(1) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ a \\ b \\ c \\ d \end{bmatrix}, \quad Dp_{k+1} = P'(1) = \begin{bmatrix} 3 & 2 & 1 & 0 \\ a \\ b \\ c \\ d \end{bmatrix}
\]

into a single matrix expression:

\[
\begin{bmatrix}
 p_k \\
 p_{k+1} \\
 Dp_k \\
 Dp_{k+1}
\end{bmatrix} =
\begin{bmatrix}
 0 & 0 & 0 & 1 \\
 1 & 1 & 1 & 1 \\
 0 & 0 & 1 & 0 \\
 3 & 2 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
 a \\
 b \\
 c \\
 d
\end{bmatrix}
\]
Specific Example: Hermite Splines

Inverting the matrix in the equation:

\[
\begin{bmatrix}
 p_k \\
p_{k+1} \\
 Dp_k \\
 Dp_{k+1}
\end{bmatrix} = \begin{bmatrix}
 0 & 0 & 0 & 1 \\
 1 & 1 & 1 & 1 \\
 0 & 0 & 1 & 0 \\
 3 & 2 & 1 & 0
\end{bmatrix}\begin{bmatrix}
a \\
b \\
c \\
d
\end{bmatrix}
\]

we get:
Specific Example: Hermite Splines

Inverting the matrix in the equation:

\[
\begin{bmatrix}
p_k \\
p_{k+1} \\
Dp_k \\
Dp_{k+1}
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{bmatrix} \begin{bmatrix}
a \\
b \\
c \\
d
\end{bmatrix}
\]

we get:

\[
\begin{bmatrix}
a \\
b \\
c \\
d
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{bmatrix}^{-1} \begin{bmatrix}
p_k \\
p_{k+1} \\
Dp_k \\
Dp_{k+1}
\end{bmatrix}
\]
Specific Example: Hermite Splines

Inverting the matrix in the equation:

\[
\begin{bmatrix}
 p_k \\
 p_{k+1} \\
 Dp_k \\
 Dp_{k+1}
\end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}
\]

we get:

\[
\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} p_k \\ p_{k+1} \\ Dp_k \\ Dp_{k+1} \end{bmatrix} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_k \\ p_{k+1} \\ Dp_k \\ Dp_{k+1} \end{bmatrix}
\]
Specific Example: Hermite Splines

Using the facts that:

\[
\begin{bmatrix}
a \\
b \\
c \\
d
\end{bmatrix} =
\begin{bmatrix}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
p_k \\
p_{k+1} \\
Dp_k \\
Dp_{k+1}
\end{bmatrix}
\]

we get:

\[
P(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix}
\]
Specific Example: Hermite Splines

Using the facts that:

\[
\begin{bmatrix}
 a \\
 b \\
 c \\
 d
\end{bmatrix}
= \begin{bmatrix}
 2 & -2 & 1 & 1 \\
 -3 & 3 & -2 & -1 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 p_k \\
 p_{k+1} \\
 Dp_k \\
 Dp_{k+1}
\end{bmatrix}
\]

we get:

\[
P(u) = \begin{bmatrix}
 u^3 & u^2 & u & 1
\end{bmatrix}
\begin{bmatrix}
 2 & -2 & 1 & 1 \\
 -3 & 3 & -2 & -1 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 a \\
 b \\
 c \\
 d
\end{bmatrix}
\]

parameters \(M_{\text{Hermite}} \) boundary info
Specific Example: Hermite Splines

and we can execute matrix multiplies below

\[P(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_k \\ p_{k+1} \\ Dp_k \\ Dp_{k+1} \end{bmatrix} \]

to get

\[P(u) = p_k (2u^3 - 3u^2 + 1) + p_{k+1} (-2u^3 + 3u^2) + \\
Dp_k (u^3 - 2u^2 + u) + Dp_{k+1} (u^3 - u^2) \]
Specific Example: Hermite Splines

Setting:

- \(H_0(u) = 2u^3 - 3u^2 + 1 \)
- \(H_1(u) = -2u^3 + 3u^2 \)
- \(H_2(u) = u^3 - 2u^2 + u \)
- \(H_3(u) = u^3 - u^2 \)

we can re-write the equation:

\[
P(u) = p_k (2u^3 - 3u^2 + 1) + p_{k+1} (-2u^3 + 3u^2) + \]

as:

\[
Dp_k (u^3 - 2u^2 + u) + Dp_{k+1} (u^3 - u^2) \]

\[
P(u) = p_k H_0(u) + p_{k+1} H_1(u) + Dp_k H_2(u) + Dp_{k+1} H_3(u) \]
Specific Example: Hermite Splines

Setting:

\[H_0(u) = 2u^3 - 3u^2 + 1 \]
\[H_1(u) = -2u^3 + 3u^2 \]
\[H_2(u) = u^3 - 2u^2 + u \]
\[H_3(u) = u^3 - u^2 \]

Blending Functions

\[P(u) = p_k H_0(u) + p_{k+1} H_1(u) + Dp_k H_2(u) + Dp_{k+1} H_3(u) \]
Specific Example: Hermite Splines

Setting:
- $H_0(u) = 2u^3 - 3u^2 + 1$
- $H_1(u) = -2u^3 + 3u^2$
- $H_2(u) = u^3 - 2u^2 + u$
- $H_3(u) = u^3 - u^2$

When $u=0$:
- $H_0(u) = 1$
- $H_1(u) = 0$
- $H_2(u) = 0$
- $H_3(u) = 0$

So $P(0) = p_k$

$P(u) = p_k H_0(u) + p_{k+1} H_1(u) + Dp_k H_2(u) + Dp_{k+1} H_3(u)$
Specific Example: Hermite Splines

Setting:
- \(H_0(u) = 2u^3 - 3u^2 + 1 \)
- \(H_1(u) = -2u^3 + 3u^2 \)
- \(H_2(u) = u^3 - 2u^2 + u \)
- \(H_3(u) = u^3 - u^2 \)

When \(u = 1 \):
- \(H_0(u) = 0 \)
- \(H_1(u) = 1 \)
- \(H_2(u) = 0 \)
- \(H_3(u) = 0 \)

So \(P(1) = p_{k+1} \)

\[
P(u) = p_k H_0(u) + p_{k+1} H_1(u) + Dp_k H_2(u) + Dp_{k+1} H_3(u)
\]
Specific Example: Hermite Splines

Setting:

- $H_0(u) = 2u^3 - 3u^2 + 1$
- $H_1(u) = -2u^3 + 3u^2$
- $H_2(u) = u^3 - 2u^2 + u$
- $H_3(u) = u^3 - u^2$

When $u = 0$:

- $H_0'(u) = 0$
- $H_1'(u) = 0$
- $H_2'(u) = 1$
- $H_3'(u) = 0$

So $P'(0) = Dp_k$

$$P'(u) = p_k H_0'(u) + p_{k+1} H_1'(u) + Dp_k H_2'(u) + Dp_{k+1} H_3'(u)$$
Specific Example: Hermite Splines

Setting:
- \(H_0(u) = 2u^3 - 3u^2 + 1 \)
- \(H_1(u) = -2u^3 + 3u^2 \)
- \(H_2(u) = u^3 - 2u^2 + u \)
- \(H_3(u) = u^3 - u^2 \)

When \(u = 1 \):
- \(H_0'(u) = 0 \)
- \(H_1'(u) = 0 \)
- \(H_2'(u) = 0 \)
- \(H_3'(u) = 1 \)

So \(P'(1) = Dp_{k+1} \)

\[
P'(u) = p_k H_0'(u) + p_{k+1} H_1'(u) + Dp_k H_2'(u) + Dp_{k+1} H_3'(u)
\]
Specific Example: Hermite Splines

- Interpolating piecewise cubic polynomial

- Specified with:
 - Set of control points
 - Tangent at each control point

- Iteratively construct the curve between adjacent end points

Given the control points, how do we define the value of the tangents/derivatives?
Overview

• What is a Spline?

• Specific Examples:
 o Hermite Splines
 o Cardinal Splines
 o Uniform Cubic B-Splines

• Comparing Cardinal Splines to Uniform Cubic B-Splines
Specific Example: Cardinal Splines

- Interpolating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents
Specific Example: Cardinal Splines

• Interpolating piecewise cubic polynomial
• Specified with four control points
• Iteratively construct the curve between middle two points using adjacent points to define tangents
Specific Example: Cardinal Splines

- Interpolating piecewise \emph{cubic} polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents

\[p_0, p_1, p_2, p_3, p_4, p_5, p_6, p_7 \]
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents

Specific Example: Cardinal Splines

![Diagram showing cardinal splines with control points labeled as p₀, p₁, p₂, p₃, p₄, p₅, p₆, and p₇.](image-url)
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents
Specific Example: Cardinal Splines

- Interpolating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents
Specific Example: Cardinal Splines

• Interpolating piecewise *cubic* polynomial

• Specified with four control points

• Iteratively construct the curve between middle two points using adjacent points to define tangents
Specific Example: Cardinal Splines

- Interpolating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents
Specific Example: Cardinal Splines

- Interpolating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents

Because the end-points of adjacent curves share the same position and derivatives, the Cardinal spline has C^1 continuity.
Specific Example: Cardinal Splines

- Let $P_k(u) = (P_{k,X}(u), P_{k,Y}(u))$ with $0 \leq u \leq 1$ be a parametric cubic point function for the curve section between control points p_k and p_{k+1}.

- Boundary conditions are:

 $\begin{align*}
 &\circ P(0) = p_k \\
 &\circ P(1) = p_{k+1} \\
 &\circ P'(0) = \frac{1}{2}(1 - t)(p_{k+1} - p_{k-1}) \\
 &\circ P'(1) = \frac{1}{2}(1 - t)(p_{k+2} - p_k)
 \end{align*}$

- Solve for the coefficients of the polynomials $P_{k,X}(u)$ and $P_{k,Y}(u)$ that satisfy the boundary condition.

Specific Example: Cardinal Splines
Specific Example: Cardinal Splines

Recall:

The Hermite matrix determines the coefficients of the polynomial from the positions and the derivatives of the end-points.

\[
\begin{bmatrix}
 p_k \\
p_{k+1}
\end{bmatrix} =
\begin{bmatrix}
 2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 u^3 \\
 u^2 \\
 u \\
 1
\end{bmatrix}
\]

where \(M_{\text{Hermite}}\) is the Hermite matrix and the parameters are \(u^3, u^2, u, 1\).
Specific Example: Cardinal Splines

Using same methods as with Hermite spline, from boundary conditions on previous slide we can get

\[
P(u) = \left[u^3 \quad u^2 \quad u \quad 1\right] \begin{bmatrix}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
p_k \\
p_{k+1} \\
s(p_{k+1} - p_{k-1}) \\
s(p_{k+2} - p_k)
\end{bmatrix}
\]

where \(s = (1 - t)/2 \)

The parameter \(t \) is called the **tension parameter**.
- Controls looseness versus tightness of curve.
Specific Example: Cardinal Splines

We can express the boundary conditions as a matrix applied to the points \(p_{k-1}, p_k, p_{k+1}, \) and \(p_{k+2} \):

\[
\begin{bmatrix}
 p_k \\
 p_{k+1} \\
 s(p_{k+1} - p_{k-1}) \\
 s(p_{k+2} - p_k)
\end{bmatrix} =
\begin{bmatrix}
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 -s & 0 & s & 0 \\
 0 & -s & 0 & s
\end{bmatrix}
\begin{bmatrix}
 p_{k-1} \\
 p_k \\
 p_{k+1} \\
 p_{k+2}
\end{bmatrix}
\]

to get
Specific Example: Cardinal Splines

We can express the boundary conditions as a matrix applied to the points p_{k-1}, p_k, p_{k+1}, and p_{k+2}:

$$
\begin{bmatrix}
 p_k \\
p_{k+1} \\
s(p_{k+1} - p_{k-1}) \\
s(p_{k+2} - p_k)
\end{bmatrix} =
\begin{bmatrix}
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 -s & 0 & s & 0 \\
 0 & -s & 0 & s
\end{bmatrix}
\begin{bmatrix}
p_{k-1} \\
p_k \\
p_{k+1} \\
p_{k+2}
\end{bmatrix}
$$

to get

$$P(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix}
\begin{bmatrix}
 2 & -2 & 1 & 1 \\
 -3 & 3 & -2 & -1 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 -s & 0 & s & 0 \\
 0 & -s & 0 & s
\end{bmatrix}
\begin{bmatrix}
p_{k-1} \\
p_k \\
p_{k+1} \\
p_{k+2}
\end{bmatrix}$$
Specific Example: Cardinal Splines

Multiplying the interior matrices in:

\[
P(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s & 0 & s & 0 \\ 0 & -s & 0 & s \end{bmatrix} \begin{bmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{bmatrix}
\]

we get the Cardinal matrix representation.
Specific Example: Cardinal Splines

Combining the matrices in:

\[
P(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s & 0 & s & 0 \\ 0 & -s & 0 & s \end{bmatrix} \begin{bmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{bmatrix}
\]

we get the Cardinal matrix representation

\[
P(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} -s & 2 - s & s - 2 & s \\ 2s & s - 3 & 3 - 2s & -s \\ -s & 0 & s & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{bmatrix}
\]

\[M_{\text{Cardinal}}\]
Specific Example: Cardinal Splines

Setting:

- \(C_0(u) = -su^3 + 2su^2 - su \)
- \(C_1(u) = (2-s)u^3 + (s-3)u^2 + 1 \)
- \(C_2(u) = (s-2)u^3 + (3-2s)u^2 + su \)
- \(C_3(u) = su^3 - su^2 \)

Blending Functions

For \(s=0 \):

\[
P(u) = C_0(u)p_{k-1} + C_1(u)p_k + C_2(u)p_{k+1} + C_3(u)p_{k+2}
\]
Specific Example: Cardinal Splines

Setting:
- \(C_0(u) = -su^3 + 2su^2 - su \)
- \(C_1(u) = (2-s)u^3 + (s-3)u^2 + 1 \)
- \(C_2(u) = (s-2)u^3 + (3-2s)u^2 + su \)
- \(C_3(u) = su^3 - su^2 \)

For \(s=0 \):

Properties:
- \(C_0(u) + C_1(u) + C_2(u) + C_3(u) = 1 \)
- \(C_j(u) = C_{3-j}(1-u) \)
- \(C_0(1) = C_3(0) = 0 \)

\[
P(u) = C_0(u)p_{k-1} + C_1(u)p_k + C_2(u)p_{k+1} + C_3(u)p_{k+2}
\]
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents

![Diagram of Cardinal Splines]

- p_0
- p_1
- p_2
- p_3
- p_4
- p_5
- p_6
- p_7
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents

At the first and last end-points, you can:
- Not draw the final segments
- Double up end points
- Loop the spline around
Overview

• What is a Spline?

• Specific Examples:
 o Hermite Splines
 o Cardinal Splines
 o Uniform Cubic B-Splines

• Comparing Cardinal Splines to Uniform Cubic B-Splines
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents

Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents
Specific Example: Uniform Cubic B-Splines

• Approximating piecewise cubic polynomial
• Specified with four control points
• Iteratively construct the curve around middle two points using adjacent points to define tangents
Specific Example: Uniform Cubic B-Splines

• Approximating piecewise cubic polynomial
• Specified with four control points
• Iteratively construct the curve around middle two points using adjacent points to define tangents
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise \textit{cubic} polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents
Specific Example: Uniform Cubic B-Splines

• Approximating piecewise cubic polynomial
• Specified with four control points
• Iteratively construct the curve around middle two points using adjacent points to define tangents
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise \textit{cubic} polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents
Specific Example: Uniform Cubic B-Splines

- Let $P_k(u) = (P_{k,X}(u), P_{k,Y}(u))$ with $0 \leq u \leq 1$ be a parametric cubic point function for the curve section around the control points p_k and p_{k+1}.

- Boundary conditions are:
 - $P(0) = \frac{1}{6}(p_{k-1} + 4p_k + p_{k+1})$
 - $P(1) = \frac{1}{6}(p_k + 4p_{k+1} + p_{k+2})$
 - $P'(0) = \frac{1}{2}(1 - t)(p_{k+1} - p_{k-1})$
 - $P'(1) = \frac{1}{2}(1 - t)(p_{k+2} - p_k)$

- Solve for the coefficients of the polynomials $P_{k,X}(u)$ and $P_{k,Y}(u)$ that satisfy the boundary condition.
Specific Example: Uniform Cubic B-Splines

Using same methods as with Hermite spline, from boundary conditions on previous slide we can get

\[P(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{6} \\ p_{k-1} + 4p_k + p_{k+1} \\ p_k + 4p_{k+1} + p_{k+2} \\ 3p_{k+1} - 3p_{k-1} \\ 3p_{k+2} - 3p_k \end{bmatrix} \]

\[M_{\text{Hermite}} \]
Specific Example: Uniform Cubic B-Splines

We can express the boundary conditions as a matrix applied to the points p_{k-1}, p_k, p_{k+1}, and p_{k+2}:

\[
\begin{bmatrix}
 p_{k-1} + 4p_k + p_{k+1} \\
 p_k + 4p_{k+1} + p_{k+2} \\
 3p_{k+1} - 3p_{k-1} \\
 3p_{k+2} - 3p_k
\end{bmatrix}
= \begin{bmatrix}
 1 & 4 & 1 & 0 \\
 0 & 1 & 4 & 1 \\
 -3 & 0 & 3 & 0 \\
 0 & -3 & 0 & 3
\end{bmatrix}
\begin{bmatrix}
 p_{k-1} \\
 p_k \\
 p_{k+1} \\
 p_{k+2}
\end{bmatrix}
\]

to get

\[
P(u) = \frac{1}{6} \begin{bmatrix}
 2 & -2 & 1 & 1 \\
 -3 & 3 & -2 & -1 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 1 & 4 & 1 & 0 \\
 0 & 1 & 4 & 1 \\
 -3 & 0 & 3 & 0 \\
 0 & -3 & 0 & 3
\end{bmatrix}
\begin{bmatrix}
 p_{k-1} \\
 p_k \\
 p_{k+1} \\
 p_{k+2}
\end{bmatrix}
\]
Specific Example: Uniform Cubic B-Splines

Multiplying the interior matrices in:

\[
\begin{bmatrix}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 4 & 1 & 0 \\
0 & 1 & 4 & 1 \\
-3 & 0 & 3 & 0 \\
0 & -3 & 0 & 3
\end{bmatrix}
\begin{bmatrix}
p_{k-1} \\
p_k \\
p_{k+1} \\
p_{k+2}
\end{bmatrix}
\]

we get the cubic B-spline matrix representation
Specific Example: Uniform Cubic B-Splines

Combining the matrices in:

\[
P(u) = \frac{1}{6} \begin{bmatrix}
u^3 & u^2 & u & 1
\end{bmatrix} \begin{bmatrix}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
1 & 4 & 1 & 0 \\
0 & 1 & 4 & 1 \\
-3 & 0 & 3 & 0 \\
0 & -3 & 0 & 3
\end{bmatrix} \begin{bmatrix}
p_{k-1} \\
p_k \\
p_{k+1} \\
p_{k+2}
\end{bmatrix}
\]

we get the cubic B-spline matrix representation

\[
P(u) = \frac{1}{6} \begin{bmatrix}
u^3 & u^2 & u & 1
\end{bmatrix} \begin{bmatrix}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & 4 & 1 & 0
\end{bmatrix} \begin{bmatrix}
p_{k-1} \\
p_k \\
p_{k+1} \\
p_{k+2}
\end{bmatrix}
\]

\[
M_{\text{BSpline}}
\]
Specific Example: Uniform Cubic B-Splines

Setting:

- \(B_{0,3}(u) = 1/6(1-u)^3 \)
- \(B_{1,3}(u) = 1/6(3u^3-6u^2+4) \)
- \(B_{2,3}(u) = 1/6(-3u^3+3u^2+3u+1) \)
- \(B_{3,3}(u) = 1/6(u^3) \)

Blending Functions

\[
P(u) = B_{0,3}(u)p_{k-1} + B_{1,3}(u)p_k + B_{2,3}(u)p_{k+1} + B_{3,3}(u)p_{k+2}
\]
Specific Example: Uniform Cubic B-Splines

Setting:
- \(B_{0,3}(u) = \frac{1}{6}(1-u)^3 \)
- \(B_{1,3}(u) = \frac{1}{6}(3u^3 - 6u^2 + 4) \)
- \(B_{2,3}(u) = \frac{1}{6}(-3u^3 + 3u^2 + 3u + 1) \)
- \(B_{3,3}(u) = \frac{1}{6}(u^3) \)

Properties:
- \(B_{0,3}(u) + B_{1,3}(u) + B_{2,3}(u) + B_{3,3}(u) = 1 \)
- \(B_j(u) = B_{3-j}(1-u) \)
- \(B_{0,3}(1) = B_{3,3}(0) = 0 \)
- \(B_{j,3}(u) \geq 0 \)

\[
P(u) = B_{0,3}(u)p_{k-1} + B_{1,3}(u)p_k + B_{2,3}(u)p_{k+1} + B_{3,3}(u)p_{k+2}
\]
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents

At the first and last end-points, you can:
- Not draw the final segments
- Double up end points
- Loop the spline around
Overview

• What is a Spline?

• Specific Examples:
 o Hermite Splines
 o Cardinal Splines
 o Uniform Cubic B-Splines

• Comparing Cardinal Splines to Uniform Cubic B-Splines
Blending Functions

Blending functions provide a way for expressing the functions $P_k(u)$ as a weighted sum of the four control points p_{k-1}, p_k, p_{k+1}, and p_{k+2}:

$$P_k(u) = BF_0(u)p_{k-1} + BF_1(u)p_k + BF_2(u)p_{k+1} + BF_3(u)p_{k+2}$$
Blending Functions

Properties:

• Translation Commutativity:

 \[BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1, \text{ for all } 0 \leq u \leq 1. \]
Blending Functions

Properties:

• Translation Commutativity:
 \[BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1, \text{ for all } 0 \leq u \leq 1. \]
 If we translate all the control points by the same vector \(q \), the position of the new point at the value \(u \) will just be the position of the old value at \(u \), translated by \(q \):
Blending Functions

Properties:

• Translation Commutativity:
 \[BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1, \] for all \(0 \leq u \leq 1. \]
 If we translate all the control points by the same vector \(q \), the position of the new point at the value \(u \) will just be the position of the old value at \(u \), translated by \(q \):

\[
Q_k(u) = BF_0(u)(q + p_{k-1}) + BF_1(u)(q + p_k) + BF_2(u)(q + p_{k+1}) + BF_3(u)(q + p_{k+2})
\]
Blending Functions

Properties:

• Translation Commutativity:
 \[BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1, \text{ for all } 0 \leq u \leq 1. \]
 If we translate all the control points by the same vector \(q \), the position of the new point at the value \(u \) will just be the position of the old value at \(u \), translated by \(q \):
 \[
 Q_k(u) = BF_0(u)(q + p_{k-1}) + BF_1(u)(q + p_k) + BF_2(u)(q + p_{k+1}) + BF_3(u)(q + p_{k+2})
 = \left(BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) \right) q + P_k(u)
 \]
Blending Functions

Properties:

• Translation Commutativity:
 \[BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1, \text{ for all } 0 \leq u \leq 1. \]
 If we translate all the control points by the same vector \(q \), the position of the new point at the value \(u \) will just be the position of the old value at \(u \), translated by \(q \):

 \[
 Q_k(u) = BF_0(u)(q + p_{k-1}) + BF_1(u)(q + p_k) + BF_2(u)(q + p_{k+1}) + BF_3(u)(q + p_{k+2})

 = (BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u))q + P_k(u)

 = q + P_k(u)
 \]
Comparison: Cardinal vs. Cubic B

Cardinal Splines (t=0)

Cardinal basis functions:

\[
\begin{align*}
BF_0(u) &= -\frac{1}{2} u^3 + u^2 - \frac{1}{2} u \\
BF_1(u) &= \frac{3}{2} u^3 - \frac{5}{2} u^2 + 1 \\
BF_2(u) &= -\frac{3}{2} u^3 + 2u^2 + \frac{1}{2} u \\
BF_3(u) &= \frac{1}{2} u^3 - \frac{1}{2} u^2
\end{align*}
\]

Sum of basis functions:
\[BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1\]

Cubic B-Splines

Cubic B-spline basis functions:

\[
\begin{align*}
BF_0(u) &= -\frac{1}{6} u^3 + \frac{1}{2} u^2 - \frac{1}{2} u + \frac{1}{6} \\
BF_1(u) &= \frac{1}{2} u^3 - u^2 + \frac{2}{3} \\
BF_2(u) &= -\frac{1}{2} u^3 + \frac{1}{2} u^2 + \frac{1}{2} u + \frac{1}{6} \\
BF_3(u) &= \frac{1}{6} u^3
\end{align*}
\]

Sum of basis functions:
\[BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1\]

Partition of unity:
\[P_k(u) = BF_0(u)p_{k-1} + BF_1(u)p_k + BF_2(u)p_{k+1} + BF_3(u)p_{k+2}\]
Blending Functions

Properties:

• Translation Commutativity:
 \[BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1, \text{ for all } 0 \leq u \leq 1. \]

• Continuity:
 \[BF_0(1) = BF_3(0) = 0 \]
 \[BF_1(1) = BF_0(0) \]
 \[BF_2(1) = BF_1(0) \]
 \[BF_3(1) = BF_2(0) \]
Blending Functions

Properties:

• Translation Commutativity:
 \[BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1, \text{ for all } 0 \leq u \leq 1. \]

• Continuity:
 \[BF_0(1) = BF_3(0) = 0 \]
 \[BF_1(1) = BF_0(0) \]
 \[BF_2(1) = BF_1(0) \]
 \[BF_3(1) = BF_2(0) \]

We need to have the curve \(P_{k+1}(u) \) begin where the curve \(P_k(u) \) ended:

\[0 = P_{k+1}(0) - P_k(1) \]
Blending Functions

Properties:

• Translation Commutativity:
 \(BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1, \) for all \(0 \leq u \leq 1. \)

• Continuity:
 \(BF_0(1) = BF_3(0) = 0 \)
 \(BF_1(1) = BF_0(0) \)
 \(BF_2(1) = BF_1(0) \)
 \(BF_3(1) = BF_2(0) \)

Since this equation has to hold true regardless of the values of \(p_k \), the conditions on the left have to be true.

We need to have the curve \(P_{k+1}(u) \) begin where the curve \(P_k(u) \) ended:

\[
0 = P_{k+1}(0) - P_k(1)
\]

\[
0 = \left(-BF_0(1) \right) p_{k-1} + \left(BF_0(0) - BF_1(1) \right) p_k \\
+ \left(BF_1(0) - BF_2(1) \right) p_{k+1} \\
+ \left(BF_2(0) - BF_3(1) \right) p_{k+2} \\
+ \left(BF_3(0) \right) p_{k+3}
\]
Comparison: Cardinal vs. Cubic B

Cardinal Splines ($t=0$)

- $BF_0(u) = -\frac{1}{2}u^3 + u^2 - \frac{1}{2}u$
- $BF_1(u) = \frac{3}{2}u^3 - \frac{5}{2}u^2 + 1$
- $BF_2(u) = -\frac{3}{2}u^3 + 2u^2 + \frac{1}{2}u$
- $BF_3(u) = \frac{1}{2}u^3 - \frac{1}{2}u^2$

Cardinal B-Splines

- $BF_0(0) = 0$, $BF_0(1) = 0$
- $BF_1(0) = 1$, $BF_1(1) = 0$
- $BF_2(0) = 0$, $BF_2(1) = 1$
- $BF_3(0) = 0$, $BF_3(1) = 0$

Cubic B-Splines

- $BF_0(u) = -\frac{1}{6}u^3 + \frac{1}{2}u^2 - \frac{1}{2}u + \frac{1}{6}$
- $BF_1(u) = \frac{1}{2}u^3 - u^2 + \frac{2}{3}$
- $BF_2(u) = -\frac{1}{2}u^3 + \frac{1}{2}u^2 + \frac{1}{2}u + \frac{1}{6}$
- $BF_3(u) = \frac{1}{6}u^3$

Cubic B-Splines

- $BF_0(0) = \frac{1}{6}$, $BF_0(1) = 0$
- $BF_1(0) = \frac{2}{3}$, $BF_1(1) = \frac{1}{6}$
- $BF_2(0) = \frac{1}{6}$, $BF_2(1) = \frac{2}{3}$
- $BF_3(0) = 0$, $BF_3(1) = \frac{1}{6}$

$P_k(u) = BF_0(u)p_{k-1} + BF_1(u)p_k + BF_2(u)p_{k+1} + BF_3(u)p_{k+2}$
Comparison: Cardinal vs. Cubic B

Cardinal Splines (t=0)

\[BF_0(u) = -\frac{1}{2}u^3 + \frac{1}{2}u^2 - \frac{1}{2}u \]
\[BF_1(u) = \frac{3}{2}u^3 - \frac{5}{2}u^2 + 1 \]
\[BF_2(u) = -\frac{3}{2}u^3 + 2u^2 + \frac{1}{2}u \]
\[BF_3(u) = \frac{1}{2}u^3 - \frac{1}{2}u^2 \]

\[BF_0'(0) = -\frac{1}{2} \quad BF_0'(1) = 0 \]
\[BF_1'(0) = 0 \quad BF_1'(1) = -\frac{1}{2} \]
\[BF_2'(0) = \frac{1}{2} \quad BF_2'(1) = 0 \]
\[BF_3'(0) = 0 \quad BF_3'(1) = \frac{1}{2} \]

Cubic B-Splines

\[BF_0(u) = -\frac{1}{6}u^3 + \frac{1}{2}u^2 - \frac{1}{2}u + \frac{1}{6} \]
\[BF_1(u) = \frac{1}{2}u^3 - \frac{5}{2}u^2 + 1 \]
\[BF_2(u) = -\frac{3}{2}u^3 + \frac{1}{2}u^2 + \frac{1}{2}u + \frac{1}{6} \]
\[BF_3(u) = \frac{1}{2}u^3 \]

\[BF_0'(0) = -\frac{1}{2} \quad BF_0'(1) = 0 \]
\[BF_1'(0) = 0 \quad BF_1'(1) = -\frac{1}{2} \]
\[BF_2'(0) = \frac{1}{2} \quad BF_2'(1) = 0 \]
\[BF_3'(0) = 0 \quad BF_3'(1) = \frac{1}{2} \]

\[P_k(u) = BF_0(u)p_{k-1} + BF_1(u)p_k + BF_2(u)p_{k+1} + BF_3(u)p_{k+2} \]
Comparison: Cardinal vs. Cubic B

Cardinal Splines (t=0)

\[BF_0(u) = -\frac{1}{2} u^3 + u^2 - \frac{1}{2} u \]
\[BF_1(u) = \frac{3}{2} u^3 - \frac{5}{2} u^2 + 1 \]
\[BF_2(u) = -\frac{3}{2} u^3 + 2u^2 + \frac{1}{2} u \]
\[BF_3(u) = \frac{1}{2} u^3 - \frac{1}{2} u^2 \]

\[BF_0''(0) = 2 \quad BF_0''(1) = 5 \]
\[BF_1''(0) = -5 \quad BF_1''(1) = 4 \]
\[BF_2''(0) = 4 \quad BF_2''(1) = -5 \]
\[BF_3''(0) = -1 \quad BF_3''(1) = 2 \]

\[P_k(u) = BF_0(u)p_{k-1} + BF_1(u)p_k + BF_2(u)p_{k+1} + BF_3(u)p_{k+2} \]

Cubic B-Splines

\[BF_0(u) = -\frac{1}{6} u^3 + \frac{1}{2} u^2 - \frac{1}{2} u + \frac{1}{6} \]
\[BF_1(u) = \frac{1}{2} u^3 - u^2 + \frac{2}{3} \]
\[BF_2(u) = -\frac{1}{2} u^3 + \frac{1}{2} u^2 + \frac{1}{2} u + \frac{1}{6} \]
\[BF_3(u) = \frac{1}{6} u^3 \]

\[BF_0''(0) = 1 \quad BF_0''(1) = 0 \]
\[BF_1''(0) = -2 \quad BF_1''(1) = 1 \]
\[BF_2''(0) = 1 \quad BF_2''(1) = -2 \]
\[BF_3''(0) = 0 \quad BF_3''(1) = 1 \]
Blending Functions

Properties:

• Translation Commutativity:
 \[BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1, \text{ for all } 0 \leq u \leq 1. \]

• Continuity:
 \[BF_0(1) = BF_1(0) = BF_2(0) = BF_3(0) = 0 \]
 \[BF_1(1) = BF_0(0) \]
 \[BF_2(1) = BF_1(0) \]
 \[BF_3(1) = BF_2(0) \]
Blending Functions

Properties:

• Translation Commutativity:
 \(BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1, \) for all \(0 \leq u \leq 1. \)

• Continuity:
 \(BF_0(1) = BF_3(0) = 0 \)
 \(BF_1(1) = BF_0(0) \)
 \(BF_2(1) = BF_1(0) \)
 \(BF_3(1) = BF_2(0) \)

• Convex Hull Containment:
 \(BF_0(u), BF_1(u), BF_2(u), BF_3(u) \geq 0, \) for all \(0 \leq u \leq 1. \)

This is because a point is inside the convex hull of a collection of points if and only if it can be expressed as the weighted average of the points, where all the weights are non-negative.
Comparison: Cardinal vs. Cubic B

Cardinal Splines (t=0)

Cubic B-Splines

\[P_k(u) = BF_0(u)p_{k-1} + BF_1(u)p_k + BF_2(u)p_{k+1} + BF_3(u)p_{k+2} \]
Comparison: Cardinal vs. Cubic B

Cardinal Splines ($t=0$) | Cubic B-Splines

\[P_k(u) = BF_0(u)p_{k-1} + BF_1(u)p_k + BF_2(u)p_{k+1} + BF_3(u)p_{k+2} \]
Blending Functions

Properties:

• Translation Commutativity:
 - $BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1$, for all $0 \leq u \leq 1$.

• Continuity:
 - $BF_0(1) = BF_3(0) = 0$
 - $BF_1(1) = BF_0(0)$
 - $BF_2(1) = BF_1(0)$
 - $BF_3(1) = BF_2(0)$

• Convex Hull Containment:
 - $BF_0(u), BF_1(u), BF_2(u), BF_3(u) \geq 0$, for all $0 \leq u \leq 1$.

• Interpolation:
 - $BF_0(0) = BF_2(0) = BF_3(0) = 0$
 - $BF_0(1) = BF_1(1) = BF_3(1) = 0$
 - $BF_1(0) = 1$
 - $BF_2(1) = 1$
Blending Functions

Properties:

• Translation Commutativity:
 \(BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1 \), for all \(0 \leq u \leq 1 \).

• Continuity:
 \(BF_0(1) = BF_3(0) = 0 \)
 \(BF_1(1) = BF_0(0) \)
 \(BF_2(1) = BF_1(0) \)
 \(BF_3(1) = BF_2(0) \)

• Convex Hull Containment:
 \(BF_0(u), BF_1(u), BF_2(u), BF_3(u) \geq 0 \), for all \(0 \leq u \leq 1 \).

• Interpolation:
 \(BF_0(0) = BF_2(0) = BF_3(0) = 0 \)
 \(BF_0(1) = BF_1(1) = BF_3(1) = 0 \)
 \(BF_1(0) = 1 \)
 \(BF_2(1) = 1 \)

Because we want the spline segments to satisfy:

\(P_k(0) = p_{k+1} \)
\(P_k(1) = p_{k+2} \)
Comparison: Cardinal vs. Cubic B

Cardinal Splines (t=0)

- \(BF_0(u) = -\frac{1}{2} u^3 + \frac{1}{2} u^2 - \frac{1}{2} u \)
- \(BF_1(u) = \frac{3}{2} u^3 - \frac{5}{2} u^2 + 1 \)
- \(BF_2(u) = -\frac{3}{2} u^3 + 2u^2 + \frac{1}{2} u \)
- \(BF_3(u) = \frac{1}{2} u^3 - \frac{1}{2} u^2 \)

Cubic B-Splines

- \(BF_0(u) = -\frac{1}{6} u^3 + \frac{1}{2} u^2 - \frac{1}{2} u + \frac{1}{6} \)
- \(BF_1(u) = \frac{1}{2} u^3 - u^2 + 2 \)
- \(BF_2(u) = -\frac{1}{2} u^3 + \frac{1}{2} u^2 + 2u + \frac{1}{6} \)
- \(BF_3(u) = \frac{1}{6} u^3 \)

Boundary conditions:

- \(BF_0(0) = 0 \)
- \(BF_0(1) = 0 \)
- \(BF_1(0) = 1 \)
- \(BF_1(1) = 0 \)
- \(BF_2(0) = 0 \)
- \(BF_2(1) = 1 \)
- \(BF_3(0) = 0 \)
- \(BF_3(1) = 0 \)

Piecewise polynomial function:

\[P_k(u) = BF_0(u)p_{k-1} + BF_1(u)p_k + BF_2(u)p_{k+1} + BF_3(u)p_{k+2} \]
Summary

• A spline is a *piecewise polynomial function* whose derivatives satisfy some *continuity constraints* across curve junctions.

• Looked at specification for 3 splines:
 - Hermite
 - Cardinal
 - Uniform Cubic B-Spline

\[\begin{align*}
\text{Hermite} & \quad \text{Interpolating, cubic, } C^1 \\
\text{Cardinal} & \quad \text{Approximating, convex-hull containment, cubic, } C^2
\end{align*} \]