Direct Illumination

Jason Lawrence

CS 4810: Graphics

Acknowledgment: slides by Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin
Recall: Ray Casting

Image RayCast(Camera camera, Scene scene, int width, int height)
{
 Image image = new Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 Ray ray = ConstructRayThroughPixel(camera, i, j);
 Intersection hit = FindIntersection(ray, scene);
 image[i][j] = GetColor(scene, ray, hit);
 }
 }
 return image;
}
Recall: Ray Casting

```java
Image RayCast(Camera camera, Scene scene, int width, int height) {
    Image image = new Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            Ray ray = ConstructRayThroughPixel(camera, i, j);
            Intersection hit = FindIntersection(ray, scene);
            image[i][j] = GetColor(scene, ray, hit);
        }
    }
    return image;
}
```

With Illumination

Wednesday, September 21, 11
Illumination

- How do we compute radiance for a sample ray?

\[
image[i][j] = \text{GetColor}(\text{scene}, \text{ray}, \text{hit});
\]
Goal

• Must derive models for ...
 o Emission at light sources
 o Direct light on surface points
 o Scattering at surfaces
 o Reception at the camera

• Desirable features …
 o Concise
 o Efficient to compute
 o “Accurate”
Overview

- Direct Illumination
 - Emission at light sources
 - Direct light at surface points

- Global illumination
 - Shadows
 - Inter-object reflections
 - Transmissions
Overview

• Direct Illumination
 o Emission at light sources
 o Direct light at surface points

• Global illumination
 o Shadows
 o Inter-object reflections
 o Transmissions

Lambertian Shading
Overview

• Direct Illumination
 o Emission at light sources
 o Direct light at surface points

• Global illumination
 o Shadows
 o Inter-object reflections
 o Transmissions

Phong Shading
Overview

• Direct Illumination
 o Emission at light sources
 o Direct light at surface points

• Global illumination
 o Shadows
 o Inter-object reflections
 o Transmissions
Overview

• Direct Illumination
 - Emission at light sources
 - Direct light at surface points

• Global illumination
 - Shadows
 - Inter-object reflections
 - Transmissions
Overview

• Direct Illumination
 o Emission at light sources
 o Direct light at surface points

• Global illumination
 o Shadows
 o Inter-object reflections
 o Transmissions

Refractive Bouncing
Overview

- Direct Illumination
 - Emission at light sources
 - Direct light at surface points

- Global illumination
 - Shadows
 - Inter-object reflections
 - Transmissions
Modeling Light Sources

- $I_L(x,y,z,\theta,\phi,\lambda)$...
 - describes the intensity of energy,
 - leaving a light source, ...
 - arriving at location (x,y,z), ...
 - from direction (θ,ϕ), ...
 - with wavelength λ
Empirical Models

- Ideally measure irradiant energy for “all” situations
 - Too much storage
 - Difficult in practice
Simplified Light Source Models

- Simple mathematical models:
 - Point light
 - Directional light
 - Spot light
Point Light Source

- Models omni-directional point source
 - Intensity (I_0),
 - Position (px, py, pz),
 - Factors (k_c, k_l, k_q) for attenuation with distance (d)

$$I_L = \frac{I_0}{k_c + k_l d + k_q d^2}$$
Directional Light Source

- Models point light source at infinity
 - **Intensity** \(I_0 \),
 - **Direction** \((dx, dy, dz) \)

\[I_L = I_0 \]

No attenuation with distance
Spot Light Source

- Models point light source with direction
 - Intensity (I_0),
 - Position (px, py, pz),
 - Attenuation (k_c, k_l, k_q)
 - Direction (dx, dy, dz)
 - Cut-off and drop-off (γ, α)

How can we modify point light to decrease as γ increases?

$$I_L = \frac{I_0}{k_c + k_1d + k_qd^2}$$
Spot Light Source

- Models point light source with direction
 - Intensity \((I_0) \),
 - Position \((px, py, pz) \),
 - Attenuation \((k_c, k_l, k_q) \)
 - Direction \((dx, dy, dz) \)
 - Cut-off and drop-off \((\gamma, \alpha) \)

\[
I_L = \begin{cases}
 \frac{I_0 \langle D, L \rangle^\alpha}{k_c + k_l d + k_q d^2} & \text{if } \langle D, L \rangle < \cos(\gamma) \\
 0 & \text{otherwise}
\end{cases}
\]
Overview

• Direct Illumination
 - Emission at light sources
 - Direct light at surface points

• Global illumination
 - Shadows
 - Transmissions
 - Inter-object reflections
Modeling Surface Reflectance

- $R_s(\theta, \phi, \lambda, \gamma, \psi)$...
 - describes the fraction of incident energy,
 - arriving from direction (θ, ϕ), ...
 - with wavelength λ, ...
 - leaving in direction (γ, ψ), ...

\[\text{Surface} \]
Empirical Models

• Ideally measure radiant energy for “all” combinations of incident angles
 - Too much storage
 - Difficult in practice
Simple Reflectance Model

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - "ambient"

Based on model proposed by Phong
Simple Reflectance Model

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - "ambient"

Based on model proposed by Phong
Diffuse Reflection

- Assume surface reflects equally in all directions
 - Examples: chalk, clay
Diffuse Reflection

- How much light is reflected?
 - Depends on angle of incident light
 - aka “Lambertian”
Diffuse Reflection

• How much light is reflected?
 o Depends on angle of incident light

Think of a flashlight!
Diffuse Reflection

- How much light is reflected?
 - Depends on angle of incident light

\[dL = dA \cos \theta \]

Think of a flashlight!
Diffuse Reflection

- Lambertian model
 - Cosine law (dot product)
 - K_D is surface property
 - I_L is incoming light

\[I_D = K_D(N \cdot L)I_L \]
Diffuse Reflection

• Note that lights and surface properties have R, G, and B components!
 • So amount of red light reflected is not necessarily equal to amount of green light, etc.
 • You will need to run calculation below on EACH color channel
 • This holds true for all lighting calculations

\[I_{D_Red} = K_{D_RED} (N \cdot L) I_{L_RED} \]
Diffuse Reflection

- Assume surface reflects equally in all directions
 - Examples: chalk, clay
Simple Reflectance Model

• Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - “ambient”
Specular Reflection

- Reflection is strongest near mirror angle
 - Examples: non-metallic “shiny” surfaces
Specular Reflection

- Reflection is strongest near mirror angle
 - Examples: non-metallic shiny surfaces
Specular Reflection

How much light is seen?

Depends on:
- angle of incident light
- angle to viewer
Specular Reflection

• Phong Model

\[\omega \cos(\alpha)^n \]

This is a physically-motivated hack!

\[I_S = K_S (V \cdot R)^n I_L \]
Specular Reflection

• Reflection is strongest near mirror angle
 o Examples: non-metallic shiny surfaces
Simple Reflectance Model

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - “ambient”
Emission

Represents light emanating directly from a surface that cannot be described by the three light sources

\[\text{Emission} \neq 0 \]
Emission

\[I = I_E \]

Emission \(\neq 0 \)
Simple Reflectance Model

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - "ambient"
Ambient Term

• Represents reflection of all indirect illumination

This is a total hack (avoids complexity of global illumination)!
 Ambient Term

- Represents reflection of all indirect illumination

\[I_A = K_A I_{AL} \]
Simple Reflectance Model

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - “ambient”
Simple Reflectance Model

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - "ambient"
Surface Illumination Calculation

- Single light source:

\[
I = I_E + K_A I_{AL} + K_D (N \cdot L) I_L + K_S (V \cdot R)^n I_L
\]
Surface Illumination Calculation

- Multiple light sources:

\[I = I_E + K_A I_{AL} + \sum_i \left(K_D (N \cdot L_i) I_i + K_S (V \cdot R_i)^n I_i \right) \]
Next Lecture

• Direct Illumination
 - Emission at light sources
 - Direct light at surface points

• Global illumination
 - Shadows
 - Transmissions
 - Inter-object reflections