CS 4810
Introduction to Computer Graphics

Jason Lawrence
University of Virginia

Acknowledgement: slides by Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin
Introduction: What is CG?

- 2D image processing
- 3D object representation & manipulation
- Simulating physical processes & materials
- Animating any of the above
Introduction: What is CG?

- 2D image processing
- 3D object representation & manipulation
- Simulating physical processes & materials
- Animating any of the above
Introduction: What is CG?

- 2D image processing
- 3D object representation & manipulation
- Simulating physical processes & materials
- Animating any of the above

“Ratatouille” Pixar/Disney
Introduction: What is CG?

- 2D image processing
- 3D object representation & manipulation
- Simulating physical processes & materials
- Animating any of the above

Procedural Shader from Pixar Studios
Introduction: What is CG?

- 2D image processing
- 3D object representation & manipulation
- Simulating physical processes & materials
- Animating any of the above (4D)
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
- Commerce
- Art
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
- Commerce
- Art
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
- Commerce
- Art

Shorten the development period
Shorten the learning curve
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
- Commerce
- Art

Flow Visualization Roettger et al.

Aspirin in RasMol
Courtesy of Michael Friendly

The Visible Human
Courtesy of NLM
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
- Commerce
- Art

Microsoft Flight Simulator

Image courtesy of Agrawala et al.
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
- Commerce
- Art
Introduction: Applications

‣ Entertainment
‣ Computer Aided Design
‣ Scientific Visualization
‣ Training & Education
‣ Commerce
‣ Art

“Cyberflower Duet” by Roman Verostko

“Conflagration” by Diane Vetere
Introduction: More Videos!

https://www.youtube.com/watch?v=u3Z1hDwGEmM

https://www.youtube.com/watch?v=KF_a1c7zytw&feature=youtu.be

https://vimeo.com/94220982

https://www.youtube.com/watch?v=dgKjs8ZjQNg
Outline

- Introduction
- Syllabus
- Coursework
- Miscellaneous
Syllabus

- Image Processing (2D)
- Ray Tracing (3D)
- Polygon Scanline Rendering (3D)
- Modeling (3D)
- Animation (4D)
Syllabus

- Image Processing
 - Human Vision
 - Color Models
 - Quantization and Dithering
 - Sampling
 - Filters
 - Warping, Morphing, and Compositing
Syllabus

› Ray Tracing
 › Cameras
 › Primitives
 › Lights
 › Intersection Acceleration Data Structures
 › Reflection, Transparency and Refraction
› Scanline Rendering
 › Coordinate Systems and Modeling Transformations
 › Viewing transformations
 › Shading
 › Textures
 › Visibility
 › OpenGL
Syllabus

‣ Modeling
 ‣ Triangles
 ‣ Splines
 ‣ Subdivision Surfaces

‣ Animation
 ‣ Key-Framing
 ‣ Kinematics
 ‣ Dynamics
Outline

‣ Introduction
‣ Syllabus
‣ Coursework
‣ Miscellaneous
Coursework

› LOTS of work!
› Exams (30%)
› Programming assignments (60%)
› Class participation (10%)
Coursework

› LOTS of work!
› Exams (30%)
 › Two in-class midterms (no final)
 › 10/16 and 12/04
› Programming assignments (60%)
› Class participation (10%)
Coursework

› LOTS of work!
› Exams (30%)
› Programming assignments (60%)
 › Image Processing (20%)
 › Ray Tracing (20%)
 › OpenGL Rendering (20%)
› Class participation (10%)
Coursework

• LOTS of work!
• Exams (30%)
• Programming assignments (60%)
 • Knowledge of C/C++ assumed
 • Must be turned in by 11:55PM on due date
 • 5 (discrete) late days
• Class participation (10%)
Coursework: Collaboration Policy

‣ You must write your own code
‣ You must reference sources of ideas/code
‣ It’s okay to:
 › Discuss ideas with other students
 › Get ideas from books, web sites, etc.
 › But reference it!
‣ It is not okay to:
 › Share code with other students
 › Copy code from other students
 › Use ideas or code from other sources without attribution and first receiving permission from me
Coursework

‣ LOTS of work!
‣ Exams (30%)
‣ Programming assignments (60%)
‣ Class participation (10%)

Bottom line:
Expect to do a LOT of programming in this class!
Coursework

‣ Lots of work!
‣ Exams (30%)
‣ Programming assignments (60%)
‣ Class participation (10%)
Outline

- Introduction
- Syllabus
- Coursework
- Miscellaneous
Resources

‣ Course web page:
 › www.cs.virginia.edu/~gfx/Courses/2014/IntroGraphics

› Suggested text books (on reserve at Brown):
Support

• TA: Mustafizur Rahman
• Office hours:
 • Mine: TuTh 11a-1p Rice 505
 • Mustafizur: MW 1p-3p Rice 430 #10
• Keeping in touch:
 • cs4810-f14@collab.itc.virginia.edu
Miscellaneous

- UVA Collab:
 - http://collab.itc.virginia.edu
 - We will use collab for submitting work, managing grades, and posting announcements
 - Setup your workspace and find this course NOW!
Miscellaneous

- Another GFX course!
- 6501 Computational Photography
- Rice 340
- TuTh 12:30p