Human Vision, Color and Basic Image Processing

Jason Lawrence
CS4810
University of Virginia

Acknowledgement: slides by Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin
Outline

‣ Human Vision and Color
‣ Image Representation
‣ Reducing Color Quantization Artifacts
‣ Basic Image Processing
Human Vision

Sun

Objects in world

Human eye
Human Vision

Vision Components:
- Incoming Light
- The Human Eye
Typical Human Eye
Color

- Two types of photo-sensitive cells ("photo receptors")

Rods and cones

Cones in fovea
Rods and Cones

- Rods
 - More sensitive in low light: “scotopic” vision
 - More dense near periphery
- Cones
 - Only function with higher light levels: “photopic” vision
 - Densely packed at center of eye: fovea
 - Different types of cones → color vision
Electromagnetic Spectrum

- Visible light frequencies range between ...
 - Red = 4.3×10^{14} hertz (700nm)
 - Violet = 7.5×10^{14} hertz (400nm)

Figures 15.1 from H&B
Visible Light

- The human eye can “see” light in the frequency range 400nm – 700nm

“White” Light

Figure 15.3 from H&B
Visible Light

- The human eye can “see” light in the frequency range 400nm – 700nm

This does not mean that we can see the difference between the different spectral distributions.

“White” Light

Figure 15.3 from H&B
Visible Light

- Color may be characterized by …
 - Hue = dominant frequency (highest peak)
 - Saturation = excitation purity (ratio of highest to rest)
 - Lightness = luminance (area under curve)
Tristimulus Theory of Color

Spectral-response functions of each of the three types of cones.

This motivates encoding color as a combination of red, green, and blue (RGB).

Figure 13.18 from FvDFH
Tristimulus Color

- Any distribution of light can be summarized by its effect on 3 types of cones
- Therefore, human perception of color is a 3-dimensional space
- Metamerism: different spectra, same response
- Color blindness: fewer than 3 types of cones
 - Most commonly L cone = M cone
Color Models

- RGB
- XYZ
- CMYK
- HSV
- etc...

Different ways of parameterizing 3D space.

RGB most common and used in this class:
R=645.16nm, G=526.32nm, B=444.44nm
RGB Color Model

Colors are additive

Plate II.3 from FvDFH
RGB Color Cube

Figures 15.11 & 15.12 from H&B
CMY(K) Color Model

Colors are subtractive

<table>
<thead>
<tr>
<th>C</th>
<th>M</th>
<th>Y</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>White</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>Cyan</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>Magenta</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>Yellow</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>Blue</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>Green</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>Red</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>Black</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.5</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Plate II.7 from FvDFH
HSV Color Model

Table: HSV Color Model

<table>
<thead>
<tr>
<th>H</th>
<th>S</th>
<th>V</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
<td>Red</td>
</tr>
<tr>
<td>120</td>
<td>1.0</td>
<td>1.0</td>
<td>Green</td>
</tr>
<tr>
<td>240</td>
<td>1.0</td>
<td>1.0</td>
<td>Blue</td>
</tr>
<tr>
<td>*</td>
<td>0.0</td>
<td>1.0</td>
<td>White</td>
</tr>
<tr>
<td>*</td>
<td>0.0</td>
<td>0.5</td>
<td>Gray</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>0.0</td>
<td>Black</td>
</tr>
<tr>
<td>60</td>
<td>1.0</td>
<td>1.0</td>
<td>?</td>
</tr>
<tr>
<td>270</td>
<td>0.5</td>
<td>1.0</td>
<td>?</td>
</tr>
<tr>
<td>270</td>
<td>0.0</td>
<td>0.7</td>
<td>?</td>
</tr>
</tbody>
</table>

Figure 15.16&15.17 from H&B
Outline

- Human Vision and Color
- **Image Representation**
- Reducing Color Quantization Artifacts
- Basic Image Processing
Image Representation

- What is an image?
Image Representation

- An image is a 2D rectilinear array of pixels:
 - A width x height array where each entry of the array stores a single pixel.

Continuous image

Digital image
Image Representation

- What is a pixel?

Continuous image Digital image
Image Representation

‣ A pixel is something that captures the notion of “intensity” and possibly “color”
‣ Luminance pixels
 ▶ Grey-scale images (aka “Intensity images”)
 ▶ 0 – 1.0 or 0 – 255
‣ Red, Green, Blue pixels (RGB)
 ▶ Color images
 ▶ 0 – 1.0 or 0 – 255
Image Resolution

- Spatial resolution: width x height pixels
- Intensity/Color resolution: n bits per pixel
- Temporal resolution: n Hz (fps)

<table>
<thead>
<tr>
<th></th>
<th>Width x Height</th>
<th>Bit Depth</th>
<th>Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTSC</td>
<td>640 x 480</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>iPhone5</td>
<td>640 x 1136</td>
<td>24</td>
<td>60</td>
</tr>
<tr>
<td>Monitor</td>
<td>1920 x 1200</td>
<td>24</td>
<td>75</td>
</tr>
<tr>
<td>CCDs</td>
<td>3000 x 2000</td>
<td>36</td>
<td>-</td>
</tr>
<tr>
<td>Laser Printer</td>
<td>6600 x 5100</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
Image Quantization Artifacts

‣ With only a small number of bits associated to each color channel of a pixel there is a limit to intensity resolutions of an image
 ‣ A black and white image allocates a single bit to the luminance channel of a pixel.
 ‣ The number of different colors that can be represented by a pixel is 2.
 ‣ A 24 bit bitmap image allocates 8 bits to the red, green, and blue channels of a pixel.
 ‣ The number of different colors that can be represented by a pixel is 16,000,000.
Outline

- Human Vision
- Image Representation
- Reducing Color Quantization Artifacts
 - Halftoning and Dithering
- Basic Image Processing
Quantization

- Image with decreasing bits per pixel
 - Note contouring!

8 bits 4 bits 2 bits 1 bit
Quantization

- When you have a small number of bits per pixel, you can coarsely represent an image by quantizing the color values:

\[
P(x, y) = Q(I(x, y)) = \text{floor} \left(\frac{I(x, y)}{256} 2^b \right)
\]

Where

- \(P(x, y) \) is the quantized value
- \(I(x, y) \) is the original color value
- \(Q(x, y) \) is the quantized color value
- \(b \) is the number of bits per pixel
Reducing Effects of Quantization

• Trade spatial resolution for intensity resolution
• Halftoning
• Dithering
 • Random dither
 • Ordered dither
 • Error diffusion dither
Classical Halftoning

- Varying-size dots represent intensities
- Area of dots inversely proportional to intensity

$I(x, y)$

$P(x, y)$
Classical Halftoning

Newspaper Image

From New York Times, 9/21/99
Digital Halftoning

- Use cluster of pixels to represent intensity
- Trades spatial resolution for intensity resolution
- Note that halftoning pattern matters
 - Want to avoid vertical, horizontal lines

\[
\begin{align*}
0 \leq I &\leq 0.2 \\
0.2 < I &\leq 0.4 \\
0.4 < I &\leq 0.6 \\
0.6 < I &\leq 0.8 \\
0.8 < I &\leq 1.0
\end{align*}
\]
Digital Halftoning

- Use cluster of pixels to represent intensity
- Trades spatial resolution for intensity resolution
- Note that halftoning pattern matters

Original (8 bits) Quantized (1 bit) Halftoned (1 bit)
Dithering

- Distribute errors among pixels
 - Exploit spatial integration in our eye
 - Display greater range of perceptible intensities
Random Dither

- Randomize quantization errors
- Errors appear as noise

\[P(x, y) = Q(I(x, y) + \text{noise}(x, y)) \]
Random Dither

- Randomize quantization errors
- Errors appear as noise

If a pixel is black, then adding random noise to it, you are less likely to turn it into a white pixel than if the pixel were dark gray.

$P(x, y) = Q(I(x, y) + \text{noise}(x, y))$
Random Dither

- Randomize quantization errors
- Errors appear as noise

How much noise should we add?

If a pixel is black, then adding random noise to it, you are less likely to turn it into a white pixel then if the pixel were dark gray.

\[
P(x, y) = Q(I(x, y) + \text{noise}(x, y))
\]
Random Dither

- Randomize quantization errors
- Errors appear as noise

If a pixel is black, then adding random noise to it, you are less likely to turn it into a white pixel than if the pixel were dark gray.

How much noise should we add?

Enough so that we can effect rounding but not so much that we overshoot: $[-0.5, 0.5]$

$$P(x, y) = Q(I(x, y) + \text{noise}(x, y))$$
Random Dither

Original (8 bits)
Uniform Quantization (1 bit)
Random Dither (1 bit)
Ordered Dither

- Pseudo-random quantization errors
- Matrix stores pattern of thresholds

For Binary Displays

\[i = x \mod n \]
\[j = y \mod n \]
\[\text{if } \left(\frac{I(x,y)}{255} > \frac{D(i,j)}{(n^2+1)} \right) \]
\[P(x,y) = 1 \]
\[\text{else} \]
\[P(x,y) = 0 \]

\[D_2 = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix} \]
Ordered Dither

- Pseudo-random quantization errors
- Matrix stores pattern of thresholds

For b-Bit Displays

\[
i = x \mod n \\
j = y \mod n \\
c = \left(\frac{I(x,y)}{255}\right) \times (2^b - 1) \\
e = c - \text{floor}(c) \\
\text{if } (e > \frac{D(i,j)}{(n^2+1)}) \\
P(x,y) = \text{ceil}(c) \\
\text{else} \\
P(x,y) = \text{floor}(c)
\]

\[
D_2 = \begin{bmatrix}
1 & 3 \\
4 & 2
\end{bmatrix}
\]
Ordered Dither

Original (8 bits)

Random Dither (1 bit)

Ordered Dither (1 bit)
Error Diffusion Dither

- Spread quantization error over neighbor pixels
 - Error dispersed to pixels right and below
- Floyd-Steinberg Dither Method:

\[
\alpha + \beta + \gamma + \delta = 1.0
\]

Figure 14.42 from H&B
Floyd-Steinberg Dither

\[
\begin{align*}
\text{for } (i = 0; i < \text{width}; i++) \\
\text{for } (j = 0; j < \text{height}; j++) \\
\text{Dest}[i,j] &= \text{quantize}(\text{Source}[i,j]) \\
\text{error} &= \text{Source}[i,j] - \text{Dest}[i,j] \\
\text{Source}[i,j+1] &= \text{Source}[i,j+1] + \alpha \times \text{error} \\
\text{Source}[i+1,j-1] &= \text{Source}[i+1,j-1] + \beta \times \text{error} \\
\text{Source}[i+1,j] &= \text{Source}[i+1,j] + \gamma \times \text{error} \\
\text{Source}[i+1,j+1] &= \text{Source}[i+1,j+1] + \delta \times \text{error}
\end{align*}
\]

\[\begin{align*}
\alpha &= \frac{7}{16} \\
\beta &= \frac{3}{16} \\
\gamma &= \frac{5}{16} \\
\delta &= \frac{1}{16}
\end{align*}\]
Floyd-Steinberg Dither

Original (8 bits) Random Dither (1 bit) Ordered Dither (1 bit) Floyd-Steinberg Dither (1 bit)
Outline

› Human Vision
› Image Representation
› Reducing Color Quantization Artifacts
› **Basic Image Processing**
 › Single Pixel Operations
 › Multi-Pixel Operations
Computing Grayscale

- The human retina perceives red, green, and blue as having different levels of brightness.
- To compute the luminance (perceived brightness) of a pixel, we need to take the weighted average of the RGBs:
 \[L = 0.30\times r + 0.59\times g + 0.11\times b \]
Adjusting Brightness

- Simply scale pixel components
 - Must clamp to range (e.g., 0 to 255)
Adjusting Contrast

- Compute mean luminance L for all pixels
 - $L = 0.30 \times r + 0.59 \times g + 0.11 \times b$
- Scale deviation from L for each pixel component
 - Must clamp to range (e.g., 0 to 255)
Adjusting Saturation

- Compute luminance L_p for each pixel
 - $L = 0.30*r + 0.59*g + 0.11*b$
- Scale deviation from L_p for each pixel component
 - Must clamp to range (e.g., 0 to 255)
Image Processing by Interpolation

▶ Nice discussion of these operations:
 http://www.graficaobscura.com/interp/index.html
Image Processing by Interpolation

- Nice discussion of these operations: http://www.graficaobscura.com/interp/index.html

\[
\text{out} = (1-\text{alpha})\times\text{in0} + \text{alpha}\times\text{in1}
\]
Image Processing by Interpolation

- Nice discussion of these operations: http://www.graficaobscura.com/interp/index.html

\[\text{out} = (1-\text{alpha}) \times \text{in0} + \text{alpha} \times \text{in1} \]
Image Processing by Interpolation

- Nice discussion of these operations:
 http://www.graficaobscura.com/interp/index.html

\[\text{out} = (1-\alpha)*\text{in0} + \alpha*\text{in1} \]