Ray Casting

Jason Lawrence

CS 4810: Graphics

Acknowledgment: slides by Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin
Traditional Pinhole Camera

• The film sits behind the pinhole of the camera.
Traditional Pinhole Camera

- The film sits behind the pinhole of the camera.
- Rays come in from the outside, pass through the pinhole, and hit the film plane.
Traditional Pinhole Camera

• The film sits behind the pinhole of the camera.

• Rays come in from the outside, pass through the pinhole, and hit the film plane.

Photograph is upside down
Virtual Camera

- The film sits in front of the pinhole of the camera.
Virtual Camera

• The film sits in front of the pinhole of the camera.
• Rays come in from the outside, pass through the film plane, and hit the pinhole.
Virtual Camera

- The film sits in front of the pinhole of the camera.
- Rays come in from the outside, pass through the film plane, and hit the pinhole.
Overview

• Ray Casting
 o What do we see?
 o How does it look?
Ray Casting

• Rendering model

• Intersections with geometric primitives
 o Sphere
 o Triangle

• Acceleration techniques
 o Bounding volume hierarchies
 o Spatial partitions
 » Uniform grids
 » Octrees
 » BSP trees
Ray Casting

- We invert the process of image generation by sending rays **out** from the pinhole, and then we find the first intersection of the ray with the scene.
Ray Casting

- The color of each pixel on the view plane depends on the radiance emanating from visible surfaces.
Ray Casting

• For each sample …
 o Construct ray from eye position through view plane
 o Find first surface intersected by ray through pixel
 o Compute color sample based on surface radiance
Ray Casting

• Simple implementation:

```java
Image RayCast(Camera camera, Scene scene, int width, int height) {
    Image image = new Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            Ray ray = ConstructRayThroughPixel(camera, i, j);
            Intersection hit = FindIntersection(ray, scene);
            image[i][j] = GetColor(hit);
        }
    }
    return image;
}
```

• Where are we looking?
• What are we seeing?
• What does it look like?
Constructing a Ray Through a Pixel
Constructing a Ray Through a Pixel

The ray has to originate at P_0, the position of the camera. So the equation for the ray is of the form:

$$\text{Ray} = P_0 + tV$$
If the ray passes through the point \(P \), then the solution for \(V \) is:

\[
V = \frac{P - P_0}{\| P - P_0 \|}
\]
If P represents the (i,j)-th pixel of the image, what is the position of P?
Constructing Ray Through a Pixel

• 2D Example: Side view of camera at \(P_0 \)

 \(\theta \) = frustum half-angle (given), or field of view
 \(d \) = distance to view plane (arbitrary = you pick)

What is the position of the \(i \)-th pixel \(P[i] \)?
Constructing Ray Through a Pixel

- 2D Example: Side view of camera at P_0
 - What is the position of the i-th pixel $P[i]$?

$\theta = \text{frustum half-angle (given), or field of view}$

$d = \text{distance to view plane (arbitrary = you pick)}$

$$P_1 = P_0 + d \cdot \text{towards} - d \cdot \tan(\theta) \cdot \text{up}$$

$$P_2 = P_0 + d \cdot \text{towards} + d \cdot \tan(\theta) \cdot \text{up}$$
Constructing Ray Through a Pixel

• 2D Example: Side view of camera at P_0

 What is the position of the i-th pixel?

 $\theta = \text{frustum half-angle (given), or field of view}$
 $d = \text{distance to view plane (arbitrary = you pick)}$

 $P_1 = P_0 + d \cdot \text{towards} - d \cdot \tan(\theta) \cdot \text{up}$
 $P_2 = P_0 + d \cdot \text{towards} + d \cdot \tan(\theta) \cdot \text{up}$

 $P[i] = P_1 + ((i+0.5)/\text{height}) \cdot (P_2 - P_1)$
 $= P_1 + ((i+0.5)/\text{height}) \cdot 2 \cdot d \cdot \tan(\theta) \cdot \text{up}$
Constructing Ray Through a Pixel

• 2D Example:
 - The ray passing through the i-th pixel is defined by:
 \[\text{Ray} = P_0 + tV \]

• Where:
 - P_0 is the camera position
 - V is the direction to the i-th pixel:
 \[V = (P[i] - P_0)/||P[i] - P_0|| \]
 - $P[i]$ is the i-th pixel location:
 \[P[i] = P_1 + ((i+0.5)/\text{height})*(P_2 - P_1) \]
 - P_1 and P_2 are the endpoints of the view plane:
 \[P_1 = P_0 + d*\text{towards} - d*\tan(\theta)*\text{up} \]
 \[P_2 = P_0 + d*\text{towards} + d*\tan(\theta)*\text{up} \]
Ray Casting

- **2D implementation:**

```java
Image RayCast(Camera camera, Scene scene, int width, int height) {
    Image image = new Image(width, height);
    for (int i = 0; i < height; i++) {
        Ray ray = ConstructRayThroughPixel(camera, i, height);
        Intersection hit = FindIntersection(ray, scene);
        image[i][height] = GetColor(hit);
    }
    return image;
}
```
Constructing Ray Through a Pixel

• Figuring out how to do this in 3D is assignment 2
Ray Casting

- Simple implementation:

```java
Image RayCast(Camera camera, Scene scene, int width, int height) {
    Image image = new Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            Ray ray = ConstructRayThroughPixel(camera, i, j);
            Intersection hit = FindIntersection(ray, scene);
            image[i][j] = GetColor(hit);
        }
    }
    return image;
}
```
Ray Casting

• Simple implementation:

```java
Image RayCast(Camera camera, Scene scene, int width, int height) {
    Image image = new Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            Ray ray = ConstructRayThroughPixel(camera, i, j);
            Intersection hit = FindIntersection(ray, scene);
            image[i][j] = GetColor(hit);
        }
    }
    return image;
}
```
Ray-Scene Intersection

• Intersections with geometric primitives
 - Sphere
 - Triangle

• Acceleration techniques
 - Bounding volume hierarchies
 - Spatial partitions
 - Uniform (Voxel) grids
 - Octrees
 - BSP trees
Ray-Sphere Intersection

Ray: \(P = P_0 + tV \)
Sphere: \(|P - O|^2 - r^2 = 0 \)
Ray-Sphere Intersection I

Ray: $P = P_0 + tV$
Sphere: $|P - O|^2 - r^2 = 0$

Substituting for P, we get:

$|P_0 + tV - O|^2 - r^2 = 0$
Ray-Sphere Intersection I

Ray: \(P = P_0 + tV \)

Sphere: \(|P - O|^2 - r^2 = 0\)

Substituting for \(P \), we get:

\(|P_0 + tV - O|^2 - r^2 = 0\)

Solve quadratic equation:

\(at^2 + bt + c = 0 \)

where:

\(a = 1 \)
\(b = 2 \ V \cdot (P_0 - O) \)
\(c = |P_0 - O|^2 - r^2 = 0 \)
Ray-Sphere Intersection I

Ray: \(\mathbf{P} = \mathbf{P}_0 + t\mathbf{V} \)

Sphere: \(|\mathbf{P} - \mathbf{O}|^2 - r^2 = 0 \)

Substituting for \(\mathbf{P} \), we get:
\[
|\mathbf{P}_0 + t\mathbf{V} - \mathbf{O}|^2 - r^2 = 0
\]

Solve quadratic equation:
\[
 at^2 + bt + c = 0
\]

where:
\[
 a = 1 \\
 b = 2 \mathbf{V} \cdot (\mathbf{P}_0 - \mathbf{O}) \\
 c = |\mathbf{P}_0 - \mathbf{O}|^2 - r^2 = 0
\]

Generally, there are two solutions to the quadratic equation, giving rise to points \(\mathbf{P} \) and \(\mathbf{P}' \).

You want to return the first hit.
Ray-Sphere Intersection II

Ray: \(P = P_0 + tV \)
Sphere: \(|P - O|^2 - r^2 = 0 \)

\(L = O - P_0 \)
Ray-Sphere Intersection II

Ray: \(P = P_0 + tV \)
Sphere: \(|P - O|^2 = r^2 = 0\)

\(L = O - P_0 \)

\(t_{ca} = L \cdot V \) (assumes \(V \) is unit length)

Geometric Method
Ray-Sphere Intersection II

Ray: $P = P_0 + tV$
Sphere: $|P - O|^2 - r^2 = 0$

$L = O - P_0$

t_{ca} = L \cdot V \text{ (assumes } V \text{ is unit length)}$

$d^2 = L \cdot L - t_{ca}^2$
if $(d^2 > r^2)$ return 0

Geometric Method
Ray-Sphere Intersection II

Ray: \(\mathbf{P} = \mathbf{P}_0 + t \mathbf{V} \)

Sphere: \(|\mathbf{P} - \mathbf{O}|^2 - r^2 = 0 \)

\(\mathbf{L} = \mathbf{O} - \mathbf{P}_0 \)

\(t_{ca} = \mathbf{L} \cdot \mathbf{V} \) (assumes \(\mathbf{V} \) is unit length)

\(d^2 = \mathbf{L} \cdot \mathbf{L} - t_{ca}^2 \)

if \((d^2 > r^2) \) return 0

\(t_{hc} = \sqrt{r^2 - d^2} \)

\(t = t_{ca} - t_{hc} \) and \(t_{ca} + t_{hc} \)
Ray-Sphere Intersection

- Need normal vector at intersection for lighting calculations

\[N = \frac{P - O}{\|P - O\|} \]
Ray-Scene Intersection

• Intersections with geometric primitives
 o Sphere
 » Triangle

• Acceleration techniques
 o Bounding volume hierarchies
 o Spatial partitions
 » Uniform grids
 » Octrees
 » BSP trees
Ray-Triangle Intersection

- First, intersect ray with plane
- Then, check if point is inside triangle
Ray-Plane Intersection

Ray: \(P = P_0 + tV \)
Plane: \(P \cdot N + d = 0 \)

Substituting for \(P \), we get:
\[
(P_0 + tV) \cdot N + d = 0
\]

Solution:
\[
t = -\frac{(P_0 \cdot N + d)}{(V \cdot N)}
\]
Ray-Triangle Intersection I

• Check if point is inside triangle algebraically

For each side of triangle

\[V_1 = T_1 - P_0 \]
\[V_2 = T_2 - P_0 \]
\[N_1 = V_2 \times V_1 \]

if \(((P - P_0) \cdot N_1 < 0) \)

return FALSE;

end
Ray-Triangle Intersection II

- Check if point is inside triangle parametrically

Every point P inside the triangle can be expressed as:

$$P = T_1 + \alpha (T_2 - T_1) + \beta (T_3 - T_1)$$

where:

- $0 \leq \alpha \leq 1$ and $0 \leq \beta \leq 1$
- $\alpha + \beta \leq 1$
Ray-Triangle Intersection II

• Check if point is inside triangle parametrically

Solve for α, β such that:

$$P = T_1 + \alpha (T_2-T_1) + \beta (T_3-T_1)$$

Check if point inside triangle.

$0 \leq \alpha \leq 1$ and $0 \leq \beta \leq 1$

$\alpha + \beta \leq 1$
Other Ray-Primitive Intersections

- Cone, cylinder, ellipsoid:
 - Similar to sphere

- Box
 - Intersect 3 front-facing planes, return closest

- Convex polygon
 - Same as triangle (check point-in-polygon algebraically)

- Concave polygon
 - Same plane intersection
 - More complex point-in-polygon test
Ray-Scene Intersection

- Find intersection with front-most primitive in group

```cpp
Intersection FindIntersection(Ray ray, Scene scene)
{
    min_t = ∞
    min_shape = NULL
    For each primitive in scene {
        t = Intersect(ray, primitive);
        if (t > 0 and t < min_t) then
            min_shape = primitive
            min_t = t
    }
    return Intersection(min_t, min_shape)
}
```
Next Lecture

• Intersections with geometric primitives
 o Sphere
 o Triangle

» Acceleration techniques
 o Bounding volume hierarchies
 o Spatial partitions
 » Uniform grids
 » Octrees
 » BSP trees