Curved Surfaces

- Motivation
 - Exact boundary representation for some objects
 - More concise representation than polygonal mesh

Parametric Surfaces

- Boundary defined by parametric functions:
 - \(x = f_x(u,v) \)
 - \(y = f_y(u,v) \)
 - \(z = f_z(u,v) \)

- Example: ellipsoid

\[
\begin{align*}
 x &= r_x \cos \phi \cos \theta \\
 y &= r_y \cos \phi \sin \theta \\
 z &= r_z \sin \phi
\end{align*}
\]

Surface of revolution

- Idea: take a curve and rotate it about an axis

Swept surface

- Idea: sweep one curve along path of another curve
Parametric Surfaces
Advantage: easy to enumerate points on surface.

Disadvantage: need piecewise-parametric surface to describe complex shape.

Piecewise Parametric Surfaces
Surface is partitioned into parametric patches:

Same ideas as parametric splines!

Parametric Patches
• Each patch is defined by blending control points

Same ideas as parametric curves!

Let the Control Points Move
• Call the Bézier parameter \(v \), and let the \(N+1 \) control points depend on some other parameter \(u \):

\[
p(v, u) = \sum_{i=0}^{N} p_i(u) B_i^n(v)
\]

• Each “u-contour” is a normal Bézier curve, but at different \(u \) values, the control points are at different positions

• Think of the surface as a changing Bézier curve sweeping through space

• How do the control points change?

Bézier Patches
• Let’s allow the control points to move along their own Bézier curves:

\[
p_i(u) = \sum_{j} p_{ij} B_j^m(v)
\]

• Putting this together with our original definition of our surface, we get the tensor product form for the Bézier patch:

\[
p(u, v) = \sum_{j} p_{ij} B_j^m(u) B_i^n(v)
\]
Parametric Bicubic Patches

Point \(Q(u,v) \) on any patch is defined by combining control points with polynomial blending functions:

\[
Q(u,v) = U M \begin{bmatrix} P_{11} & P_{12} & P_{13} & P_{14} \\ P_{21} & P_{22} & P_{23} & P_{24} \\ P_{31} & P_{32} & P_{33} & P_{34} \\ P_{41} & P_{42} & P_{43} & P_{44} \end{bmatrix} M^t V^t
\]

\[
U = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \quad V = \begin{bmatrix} v^3 & v^2 & v & 1 \end{bmatrix}
\]

Where \(M \) is a matrix describing the blending functions for a parametric cubic curve (e.g., Bezier, B-spline, etc.)

Beziers Patches

\[
Q(u,v) = U M_B \begin{bmatrix} P_{11} & P_{12} & P_{13} & P_{14} \\ P_{21} & P_{22} & P_{23} & P_{24} \\ P_{31} & P_{32} & P_{33} & P_{34} \\ P_{41} & P_{42} & P_{43} & P_{44} \end{bmatrix} M_B^t V
\]

\[
M_B = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}
\]

B-Spline Patches

\[
Q(u,v) = U M_B \begin{bmatrix} P_{11} & P_{12} & P_{13} & P_{14} \\ P_{21} & P_{22} & P_{23} & P_{24} \\ P_{31} & P_{32} & P_{33} & P_{34} \\ P_{41} & P_{42} & P_{43} & P_{44} \end{bmatrix} M_B^t V
\]

\[
M_B = \begin{bmatrix} \frac{-1}{6} & \frac{1}{2} & \frac{-1}{2} & \frac{1}{6} \\ \frac{1}{2} & -1 & \frac{1}{2} & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{2} & \frac{1}{6} \end{bmatrix}
\]

Properties:
- Interpolates four corner points
- Convex hull
- Local control

Bezier Surfaces

- Continuity constraints are similar to the constraints for Bezier splines

Bezier Surfaces

- \(C^0 \) continuity requires aligning boundary curves
Bezier Surfaces

- **C₁ continuity** requires aligning boundary curves and derivatives (a reason to prefer subdiv. surf.)

Drawing Bezier Surfaces

- Simple approach is to loop through uniformly spaced increments of u and v

```c
void DrawSurface(void)
{
    for (int i = 0; i < imax; i++) {
        float u = umin + i * ustep;
        for (int j = 0; j < jmax; j++) {
            float v = vmin + j * vstep;
            DrawQuadrilateral(...);
        }
    }
}
```

Drawing Bezier Surfaces

- Better approach is to use adaptive subdivision:

```c
if (Flat(surface, epsilon)) {
    DrawQuadrilateral(surface);
} else {
    SubdivideSurface(surface,...);
    DrawSurface(surfaceLL);
    DrawSurface(surfaceLR);
    DrawSurface(surfaceRL);
    DrawSurface(surfaceRR);
}
```

Bézier Curves in OpenGL

- Use **evaluators**
 - `glMap` defines the set of control points
 - `glMapGrid` defines how finely to evaluate the surface
 - `glEvalCoord/glEvalMesh` cause the mesh to be drawn

Defining the Control Points

- `glMap2 [df](target, u1, u2, ustride, uorder, v1, v2, vstride, vorder, points)`
 - `target` specifies what OpenGL command will be executed when this mesh is evaluated, and what's in the control mesh. For drawing, usually use `GL_MAP2_VERTEX3`
 - `u1,u2,v1,v2` define a mapping from values passed to `glEvalCoord` to (0,1), the domain of the Bézier functions
 - `ustride, vstride` indicate how the data is packed in the array
 - `uorder, vorder` define the dimensions of the point array
 - `points` is the actual data

- `glMap2d(GL_MAP2_VERTEX_3, 0, 1, 3, 4, 0, 1, 12, 4, &ctrlpoints1[0][0][0]);`

Defining the Mesh Parameters

- `glMapGrid` specifies how the mesh will be evaluated based on the control points
 - `glMapGrid2[df](un, u1, u2, vn, v1, v2)`
 - `un, vn` define the number of partitions at which to evaluate the surface
 - `u1,u2, v1,v2` define the range of grid variables
 - `glMapGrid2 d(20, 0.0, 1.0, 20, 0.0, 1.0);`
Drawing the Mesh

- We can draw the whole mesh at once with `glEvalMesh`.
 - `glEvalMesh2(mode, i1, i2, j1, j2)`
 - `mode` specifies points, lines, or polygons.
 - `i1`, `i2`, `j1`, `j2` define the range over which to evaluate the mesh.
 - `glEvalMesh2(GL LINE, 0, 20, 0, 20);`

Drawing Bezier Surfaces

- One problem with adaptive subdivision is avoiding cracks at boundaries between patches at different subdivision levels.
 - Avoid these cracks by adding extra vertices and triangulating quadrilaterals whose neighbors are subdivided to a finer level.

Parametric Surfaces

- **Advantages:**
 - Easy to enumerate points on surface.
 - Possible to describe complex shapes.

- **Disadvantages:**
 - Control mesh must be quadrilaterals.
 - Continuity constraints difficult to maintain.
 - Hard to find intersections.

Next Time

- **Subdivision Surfaces**

Blender (www.blender.nl)

![Blender Interface](image)