UVA Graphics Paper Index

How GPUs Work

David Luebke
Greg Humphreys
IEEE Computer, 2007


In the early 1990s, ubiquitous interactive 3D graphics was still the stuff of science fiction. By the end of the decade, nearly every new computer contained a graphics processing unit (GPU) dedicated to providing a high-performance, visually rich, interactive 3D experience. This dramatic shift was the inevitable consequence of consumer demand for videogames, advances in manufacturing technology, and the exploitation of the inherent parallelism in the feed-forward graphics pipeline. Today, the raw computational power of a GPU dwarfs that of the most powerful CPU, and the gap is steadily widening. Furthermore, GPUs have moved away from the traditional fixed-function 3D graphics pipeline toward a flexible general-purpose computational engine. Today, GPUs can implement many parallel algorithms directly using graphics hardware. Well-suited algorithms that leverage all the underlying computational horsepower often achieve tremendous speedups. Truly, the GPU is the first widely deployed commodity desktop parallel computer.


pdf (138 KB)