
The LegionVision
of a Worldwide

Virtual
Computer

Long a vision of
science fiction writers

and distributed
systems researchers, the

notion of a
worldwide computer,

now taking shape
through the Legion
project, distributes

computation like the
World-Wide Web

distributes
multimedia, creating the

illusion for users of a
very, very powerful
desktop computer.

T
ODAY’S DRAMATIC INCREASE IN AVAILABLE NETWORK BANDWIDTH WILL

qualitatively change how the world computes, communicates, and
collaborates. The rapid expansion of the World-Wide Web and the
changes it has wrought are just the beginning. As high-bandwidth
connections become available, they shrink distances and change our
modes of computation, storage, and interaction. Inevitably, users will

operate in a wide-area environment transparently consisting of workstations, PCs,
graphics-rendering engines, supercomputers, and nontraditional computing
devices, such as televisions. The relative physical locations of users and their
resources is increasingly irrelevant.

Realization of such an environment, sometimes called a “metasystem,” is not
without problems. Today’s experimental high-speed networks, such as the Very

M
A

R
TI

N
 M

A
YO

Andrew S. Grimshaw, Wm. A. Wulf, and

the Legion team

COMMUNICATIONS OF THE ACM January 1997/Vol. 40, No. 1 39

High-speed Backbone Network
Service (vBNS) connecting the
NSF supercomputer centers and
other sites and the I-Way, a one-
time networking event, are a pre-
view of both the promise and
pitfalls of constructing a metasys-
tem. There are many difficulties:

• Few approaches scale to mil-
lions of machines.

• The tools for writing applica-
tions are primitive.

• Faults abound and mecha-
nisms to handle them are not
available.

• Issues of security are treated in
a patchwork manner.

• Site autonomy—the ability to
control one’s own resources
while playing in the global
infrastructure—is not addressed.

Software is the fundamental difficulty, arising from an
inadequate conceptual model. Confronted by a flood of new
hardware, the computer science community has tried to
stretch an existing paradigm—interacting autonomous
hosts—into a regime for which it was not designed. The
result is a collection of partial solutions, some quite good in
isolation but generally lacking coherence and scalability,
making development of even a single wide-area application
demanding at best.

Thus, the challenge to computer scientists is to provide
a solid, integrated conceptual foundation on which to build
applications that unleash the potential of so many diverse
resources. The foundation must do the following:

• Hide the underlying physical infrastructure from users
and from the vast majority of programmers.

• Support access, location, fault transparency, and con-
struction of larger integrated components using exist-
ing components.

• Enable interoperability of components.
• Provide a secure environment for resource owners and

users.
• Scale to millions of autonomous hosts.

The technology to meet these criteria largely exists in the
form of:

• Parallel compilers that support execution on distributed
memory machines.

• Distributed systems software that manages complex dis-

tributed environments.
• General acceptance of

the object-oriented par-
adigm because of its
encapsulation and reuse
properties.

• Cryptography and cryp-
tographic protocols.

Legion is a metasystem
software project at the
University of Virginia.
Begun in 1993, its goal is
a highly usable, efficient,
and scalable system based
on solid computing prin-
ciples. We have been
guided by our own work
in object-oriented parallel
processing, distributed
computing, and security,

as well as by decades of research in distributed computing
systems. When complete, Legion will provide a single,
coherent virtual machine that addresses such issues as scala-
bility, programming ease, fault tolerance, security, and site
autonomy. Legion is a conceptual base for the sort of meta-
system we seek.

Our vision of Legion is a system consisting of millions of
hosts and billions of objects co-existing in a loose confeder-
ation united through high-speed links (see Figure 1). Users
will have the illusion of a very powerful desktop computer
through which they can manipulate objects. When we refer
to a terminal, we use the term in its most liberal sense, so ter-
minal could mean anything from a workstation to an
immersive environment, such as a head-mounted display, a
Cave Automatic Virtual Environment (CAVE), or a
portable personal digital assistant. The objects being
manipulated will represent data resources (such as digital
libraries and video streams), applications (such as telecon-
ferencing and physical simulations), and physical devices
(such as cameras, telescopes, and linear accelerators). Natu-
rally, these objects may be shared with other users, allowing
construction of shared virtual workspaces.

Legion is responsible for supporting the abstraction pre-
sented to the user, transparently scheduling application
components on processors; managing data migration,
caching, transfer, and coercion; detecting and managing
faults; and ensuring that the users’ data and physical
resources are adequately protected.

Design Objectives
Realizing this vision is a daunting task. We have distilled
10 design objectives central to the success of the project:

40 January 1997/Vol. 40, No. 1 COMMUNICATIONS OF THE ACM

The Vision
Sharing Virtual Environment
Users Manipulate Objects

Figure 1. Legion vision

• Site autonomy. Not a monolithic system, Legion will be
composed of resources owned and controlled by an array
of organizations. These organizations, quite properly, will
insist on having control over their own resources (e.g.,
specifying how much of a resource can be used, when it
can be used, and who can and cannot use it).

• Extensible core. Because we cannot know the future
or all of the many and varied needs of users, mecha-
nism and policy must be realized via extensible,
replaceable components. An extensible core will per-
mit Legion to evolve over time and allow users to con-
struct their own mechanisms and policies to meet
specific needs.

• Scalable architecture. Because Legion will consist of
millions of hosts, it must be a scalable architecture.
There can be no centralized structures; the system
must be totally distributed.

• Easy-to-use, seamless computa-
tional environment. Legion must
mask the complexity of the hard-
ware environment and of the com-
munication and synchronization of
parallel processing (e.g., machine
boundaries should be invisible to
users). As much as possible, compil-
ers, acting in concert with run-time
facilities, must manage the environ-
ment for the user.

• High performance via paral-
lelism. Legion must support easy-
to-use parallel processing with large
degrees of parallelism, including
task and data parallelism and their
arbitrary combinations.

• Single, persistent name space. One of the most signifi-
cant obstacles to wide-area parallel processing is the lack
of a single name space for file and data access. The exist-
ing multitude of disjoint name spaces makes it
extremely difficult to write applications spanning
multiple sites.

• Security for users and resource owners. Because we
cannot replace existing host operating systems, we can-
not significantly strengthen existing operating system
protection and security mechanisms. However, we must
ensure that Legion does not weaken existing mechanisms.
Further, we must provide mechanisms for users to man-
age their own security needs; Legion should not define
the security policy or require a “trusted” Legion.

• Management and exploitation of resource hetero-
geneity. Clearly, Legion must support interoperability
between heterogeneous hardware and software compo-
nents. In addition, some architectures are better than oth-
ers at executing particular applications (e.g., vectorizable

codes). These affinities and the costs of exploiting them
must be factored into scheduling decisions and policies.

• Multiple language support and interoperability.
Legion applications will be written in a variety of lan-
guages. It must be possible to integrate heterogeneous
source language application components in much the
same manner as heterogeneous architectures. Interoper-
ability also means we must be able to support legacy
codes.

• Fault tolerance. In a system as large as Legion, it is
certain that at any given instant, several hosts, com-
munication links, and disks will have failed. Thus,
dealing with failure and dynamic reconfiguration is a
necessity for Legion itself and for its applications.

In addition to these goals, our design must deal
with several constraints,
including:

• It can’t replace host oper-
ating systems. Organiza-
tions will not permit their
machines to be used if their
operating systems must be
replaced. Operating system
replacement would require
them to rewrite many of
their applications and retrain
many of their users, and
would possibly make these
applications incompatible
with other systems in their
organizations. Our experi-

ence with Mentat [6], an ear-
lier system developed at the University of Virginia,
indicates that it is sufficient to layer a system on top of
an existing host operating system.

• It can’t legislate changes to the interconnection
network. We must initially assume that the network
resources and protocols in use are a given. Much as we
must accommodate operating system heterogeneity, we
must live with available network resources. However,
we can layer better protocols over existing ones, and we
can state that performance for a particular application
on a particular network will be poor unless the protocol
is changed.

• It can’t require Legion to run as “root” (or equiva-
lent). Indeed, to protect themselves, most Legion users
will want Legion to run with the least possible privilege.

Legion’s Object Foundation
The common framework enabling a coherent solution to
these problems is object orientation. In Legion, all compo-

COMMUNICATIONS OF THE ACM January 1997/Vol. 40, No. 1 41

Users will have the

illusion
of a very powerful
desktop computer
through which they can
manipulate objects.

nents of interest to the system are objects and all objects are
instances of defined classes. Thus, users, data, applications,
and even class definitions are objects. Use of an object-ori-
ented foundation, including the object-oriented paradigm’s
encapsulation and inheritance properties, makes accessible
a variety of benefits often associated with the paradigm,
including software reuse, fault containment, and complex-
ity reduction. The need for the paradigm is
particularly acute in a system as large and
complex as Legion.

Objects, written in either an object-ori-
ented language or such sequential and par-
allel languages as C, Fortran, and
High-Performance Fortran (HPF), will
encapsulate their implementation, data
structures, and parallelism and will interact
with other objects via well-defined inter-
faces. In addition, they may also have asso-
ciated inherited timing, fault, persistence,
priority, and protection characteristics. Nat-
urally, these characteristics may be replaced
to provide different functionality depending
on class. Similarly, a class may have multiple implementa-
tions with the same interface.

While we are committed to the object-oriented para-
digm, we recognize that Legion needs to support applica-
tions written in a variety of languages in order to support
existing legacy codes, permit organizations to use familiar
languages (e.g., Ada, C, and Fortran), and support a variety
of parallel processing languages and tools. We intend to
provide multilanguage support and interoperability among
user objects written in different languages in three ways:

• By generating object “wrappers” for code written in
such languages as Ada, C, and Fortran.

• By exporting the Legion run-time system interface and

retargeting existing
compilers and
tools.

• By using a combi-
nation of the first
two ways.

System
Philosophy
Complementing our
use of the object-ori-
ented paradigm is a
philosophical theme:
We cannot design a
system that satisfies
every user’s needs. We

must design Legion to allow users and class implementers
the greatest flexibility in the semantics of their applica-
tions. Therefore, we resist the temptation to provide “the
solution” to a wide range of system functions. Users should
be able, whenever possible, to select both kind and level of
functionality, making their own trade-offs between func-
tion and cost (see Figure 2).

Neither the kind nor the level of functionality is linearly
ordered; a simplistic model is a multi-
dimensional space. The needs of users
will dictate where users need to be or
can afford to be in this space; we—the
designers of the supporting conceptual
system—have no way of knowing what
those needs are or what they will evolve
into in the future. Indeed, if we were to
dictate a systemwide solution to almost
any of the issues on our list of objec-
tives, we would preclude large classes

of potential users and uses.
For example, consider security with

respect to both kind and level of func-
tionality. Some users are mostly con-

cerned with privacy; others, especially banks and hospitals,
with the integrity of their data. Some users are content
with password authentication, others might feel the need
for stronger user identification through signature analysis,
fingerprint verification, or other techniques. These exam-
ples illustrate the differences in security functionality. The
size of the cryptographic key, on the other hand, is an issue
of the level of security. Without changing the basic nature
of the security provided, users can get a greater degree of
security by paying the higher cost of using a longer key or
a stronger algorithm.

The Legion approach, rather than providing a fixed
security mechanism, with the result that no one is com-
pletely satisfied, lets users choose their own trade-offs by

42 January 1997/Vol. 40, No. 1 COMMUNICATIONS OF THE ACM

Writing parallel applications

Multiple separate file systems

Heterogeneous resources

Multiple resource owners

Debugging parallel programs difficult

Host/network failures

CWVC-aware PVM, parallel C++, Fortran wrappers

Federated file system for transparent file access

Automatic scheduling, binary selection and migration,
application specific scheduling tools

Owner control of resource consumption, detailed
resource consumption accounting

Post-mortem playback using off-the-shelf debuggers,
(e.g., dbx)

Automatic system reconfiguration and limited
application fault tolerance

Problem Tools Available

Table 1. Campus Wide Virtual Computer toolset

Cost

Le
ve

l o
f S

er
vic

e

Kind of Functionality

Figure 2. Calculating trade-offs
between Legion functions and their

system and financial costs

implementing their own policies or by using existing poli-
cies via inheritance. Some users may want a policy requir-
ing that every method invocation has all of its parameters
encrypted, that the caller be separately authenticated, and
that the user on whose behalf the call is being made be fully
authenticated as well. Such a policy is expensive (in CPU
power, network bandwidth, and time). Alternatively, an
application requiring low overhead cannot afford such a
policy and should not be forced to use it. Such an applica-
tion could instead choose a lightweight policy that simply
checks whether the caller is its parent (creator) without any
authentication or encryption or perhaps does not check
anything at all.

Next, consider consistency semantics in a distributed file
system. To achieve good performance, it is often desirable to
make copies of all or portions of a file. If updates to the file
are permitted, the different copies may begin to diverge.
There are many ways to attack this problem, including not
permitting replication of writable files, using a cache-inval-
idate protocol, using lazy updates to a master copy, and so
on. Each has an associated cost and semantics. Some appli-
cations don’t require all copies to be the same; others require
strict “reads deliver the last value written” semantics, and
others know that the file is read-only so that consistency
protocols are a waste of time; still others may need different
semantics for the file in different regions of the application.
Independent of the file semantics, some users may need fre-
quent automatic backups and archiving, others may not.
The point is that the system should not make such decisions
for users, who should be able to select the kind and level of
service they require.

This philosophy has been extended into the system
itself. The Legion object model specifies the composition
and functionality of Legion’s core objects—those objects
cooperating to create, locate, manage, and remove other
objects from the Legion system. Legion specifies the func-
tionality (not the implementation) of the system’s core
objects. Therefore, Legion’s core will consist of extensible,
replaceable components. The Legion project will provide
implementations of the objects the core comprises, but
users will not be obligated to use them. Instead, Legion
users will be encouraged to select or construct objects that
implement mechanisms and policies meeting the users’
specific requirements.

The object model provides a natural way to achieve such
flexibility. Files, for example, are not part of Legion itself.
Any programmer or developer may define a new class
whose general semantics we would recognize as those of a
file but whose specifics match the particular semantics
meeting the user’s needs. We (the Legion team) need to
provide an initial collection of file classes reflecting the
most common needs, but we do not have to anticipate all
possible future requirements.

Beyond Prototypes
In summer 1995, we released our first prototype Legion
implementation—the Campus Wide Virtual Computer
(CWVC)—based on the earlier object-oriented parallel
processing system Mentat [6]. Mentat was originally
designed to operate in homogenous, dedicated environ-
ments but has been extended to operate in an environ-
ment with heterogeneous hosts, disjoint file systems, local
resource autonomy, and host failure. We could have con-
tinued to stretch Mentat but felt that one can transform a
system only so far before it begins to show signs of the
stress; it is often better to design from the ground up so
the resulting system has a clean, coherent architecture
rather than a patchwork of modifications based on a solu-
tion for a different problem.

The CWVC is a direct extension of Mentat onto a larger
scale, is a prototype for the nationwide Legion system, and
reflects the idea that a university is a microcosm of the
world. The computational resources at a university are
operated by many different departments; there is no shared
name space, and sharing of resources is currently rare.

Even though the CWVC is much smaller and the com-
ponents much closer together than in the envisioned
worldwide Legion, it still presents many of the same chal-
lenges. The processors are heterogeneous; the intercon-
nection network is irregular, with orders-of-magnitude
differences in bandwidth and latency; and the machines
are currently in use for on-site applications that cannot be
incapacitated in any way. Further, each department at a
university operates essentially as an island of service, with
its own network file system mount structure and trusting
only machines on the island.

The CWVC, which is both a prototype and a demon-
stration project, aims to accomplish several goals:

• Demonstrate the usefulness of network-based, hetero-
geneous, parallel processing to university computa-
tional science problems;

• Provide a shared high-performance resource for univer-
sity researchers;

• Provide a given level of service (as measured by turn-
around time) at reduced cost; and

• Act as a testbed for the nationwide Legion.

The CWVC consists of more than 100 workstations and
an 18-processor IBM SP2 parallel-processing supercom-
puter in six buildings using two completely disjoint under-
lying file systems. We have developed a suite of tools to
address a number of common problems (see Table 1). In col-
laboration with domain scientists at the University of Vir-
ginia and elsewhere, we also developed a set of applications
that exploit the CWVC (see Table 2).

In addition to the local production environment, we have

COMMUNICATIONS OF THE ACM January 1997/Vol. 40, No. 1 43

demonstrated the CWVC on wide-area systems. For exam-
ple, during the Supercomputing‘95 conference in San
Diego, we ran the CWVC on the I-Way. The connections
were at DS-3 (45MB/sec) and OC-3 (155MB/sec) rates. The
CWVC was installed at three sites using seven hosts on
three different architectures. At the National Center for
Supercomputer Applications (NCSA) in Urbana, Ill., we
used four Silicon Graphics Power Challenge shared-memory
multiprocessors (8 to 16 processors each) and a Convex
Computer Exemplar shared-memory multiprocessor. At the
Cornell Theory Center (CTC) in Ithaca, N.Y., and at
Argonne National Laboratory (ANL) in Argonne, Ill., we
used IBM SP2s.

Once the IP routing tables were properly configured,
moving the CWVC to the wide-area environment was rela-
tively simple. We copied the CWVC to the platforms,
adjusted the tables to use IP names that routed through the

high-speed network, and tested the system. As expected,
files could be accessed in a location-transparent fashion, exe-
cutables were transparently copied from one location to
another as needed, the scheduler worked, and the system
automatically reconfigured on host failure. Utilities and
tools, such as the debugger, also migrated easily. The real
bonus was that user applications required no changes to run
in the new environment.

For our demonstration, we used our utilities and ran one
of our applications, called complib, on the I-Way. Complib
compares two DNA or protein sequence databases using
one of several selectable algorithms [5]. The first database
was located at ANL, the second at NCSA. The application
transparently accessed the databases using the Legion file
system, while the underlying system schedulers placed
application computation objects throughout the three-site
system (third site at CTC). Legion transparently handled all
communication, placement, synchronization, code, and data
migration.

Since Supercomputing’95, we have repeated the demon-
stration several times and are now constructing a more per-

manent prototype to span NCSA and the San Diego Super-
computer Center (SDSC) and will operate it as a part of the
DARPA-funded Distributed Object Computation Testbed
(see http://www.sdsc.edu/doct/).

Related Work
The vision of a seamless metacomputer is not novel; world-
wide computers have been the vision of science fiction writ-
ers and distributed systems researchers for decades.
However, to our knowledge, no other project has a scope
and goals as broad and ambitious as Legion. Fortunately, it
is not necessary to develop all of the required technology
from scratch. A large body of relevant research in distrib-
uted systems, parallel computing, fault tolerance, manage-
ment of groups of workstations, and pioneering wide-area
parallel processing projects provide a strong foundation on
which to build.

Related efforts, such as OSF DCE
[7] and CORBA [2], are rapidly
becoming industry standards.
Legion and DCE share many of the
same objectives, drawing on the
same heterogeneous distributed
computing literature for inspiration.
Consequently, both projects use
many of the same techniques (e.g.,
an object-based architecture and
model, interface description lan-
guages [IDLs] to describe object
behavior, and wrappers to support

legacy code). However, Legion and DCE differ in several
fundamental ways. First, DCE does not target high-perfor-
mance computing; its underlying computation model is
based on blocking remote procedure calls between objects.
Further, DCE does not support parallel computing, instead
emphasizing client/server-based distributed computing.
Legion, on the other hand, is based on a parallel computing
model, and one of our primary objectives is high perfor-
mance via parallel computation. Another important differ-
ence is that Legion specifies very little about
implementation. Users and resource owners are permit-
ted—even encouraged—to provide their own implementa-
tions of “system” services. Our core model is completely
extensible, providing choice at every opportunity—from
security to scheduling to fault tolerance. Similarly, CORBA
[2] defines an object-oriented model for accessing distrib-
uted objects. CORBA includes an IDL and a specification
for the functionality of run-time systems that enable access
to objects. But like DCE, CORBA is based on a client/server
model rather than a parallel computing model and places
less emphasis on such issues as object persistence, place-
ment, and migration.

Other projects share many of the objectives but not the

44 January 1997/Vol. 40, No. 1 COMMUNICATIONS OF THE ACM

Biology

Computer Science

Electrical Engineering

Engineering Physics

Physics

DNA and protein sequence comparison

Parallel databases and I/O, genetic algorithms

Automatic test pattern generation, VLSI routing,

Trajectory and range of ions in matter

2D electromagnetic finite element mesh

Discipline Application

Table 2. Sample Campus Wide Virtual Computer applications

scope of Legion. For example, Nexus [4] provides commu-
nication and resource management facilities for parallel-lan-
guage compilers; unlike Legion, Nexus does not address
fault tolerance, security, site autonomy, or extensibility. Cas-
tle [3] is a set of related projects that aims to support scien-
tific applications, parallel languages and libraries, and
low-level communication issues; unlike Legion, Castle does
not address heterogeneity, persistence, fault tolerance, secu-
rity, and autonomy. The Network of Workstations (NOW)
project [1] provides a somewhat more unified strategy for
managing networks of workstations but is intended to scale
only to hundreds of machines, not millions. And Globe [9]
is an architecture for supporting wide-area distributed sys-
tems but does not yet seem to address such important issues
as security and site autonomy.

In its intended application for distributed collaboration
and information systems, Legion might be compared to the
Web. In particular, the object-oriented, secure, platform-
independent remote execution model afforded by the Java
language [8] has added more Legion-like capabilities to the
Web. The most significant differences between Java and
Legion are Java’s lack of a remote method invocation facility,
lack of support for distributed memory parallelism, and
interpreted nature, which even in the presence of just-in-
time compilation leads to significantly lower performance
than can be achieved using compilation. Furthermore, the
security and object placement models provided by Java are
rigid and a poor fit for many applications.

The Future
Legion is an ambitious middleware project that will provide
a solid, integrated conceptual foundation on which to build
applications. One could argue that Legion is perhaps too
ambitious, that there are just too many different complex
issues to address. The number of different issues is certainly
a risk. On the other hand, Legion-like metasystem software
will be developed eventually; such software is a necessary
condition for a large-scale digital society. The real issue is
whether it will come about by design in an organized and
coherent fashion or by pasting together various solutions.
Legion’s strength is that its object model was designed from
project inception both for the intended environment and for
extensibility. We feel these attributes will permit Legion to
readily adapt to an ever-changing worldwide computing
infrastructure.

Legion—as defined by our objectives—is not yet a real-
ity. While we have a prototype, its purpose is to demonstrate
the feasibility of constructing a wide-area system and to per-
mit application and tool development to occur concurrently
with system implementation. The prototype is not designed
to evolve directly into a complete Legion implementation.
For more information, see http://www.cs.virginia.
edu/legion.

In March 1996, we began implementation of the core
Legion object model. Unlike the existing prototype, this
implementation incorporates mechanisms for security, fault
tolerance, application-directed scheduling, autonomy, scal-
able binding, and more. The complete implementation will
reuse many of the prototype’s components, including the
compiler and debuggers, although for the most part, it is
being written from the ground up. We expect to have a
usable, documented system available for public use in mid-
1997. The system and sources will be publicly available.

Acknowledgements
The Legion team at the University of Virginia includes
Steve Chapin, James C. French, Paul F. Reynolds, Jr.,
Charlie Viles, and Alfred C. Weaver, as well as research
scientist Mark Hyett and graduate students Adam Ferrari,
John Karpovich, Darrell Kienzle, Mike Lewis, Anh
Nguyen-Tuong, and Chenxi Wang.

References
1. Anderson, T.E., Culler, D.E., Patterson, D.A., and the NOW team. A

case for NOW (Networks of Workstations). IEEE Micro. 15, 1 (Feb.
1995) 54–64.

2. Ben-Naten, R. CORBA: A Guide to the Common Object Request Broker Archi-
tecture. McGraw-Hill, New York, 1995.

3. The Castle Project. University of California, Berkeley (see
http://http.cs.berkeley.edu/projects/parallel/castle/castle.html).

4. Foster, I., Kesselman, C., and Tuecke, S. Nexus: Runtime Support for
Task-Parallel Programming Languages. Argonne National Laboratories
(see http://www.mcs.anl.gov/nexus/paper/).

5. Grimshaw, A.S., West, E.A., and Pearson, W.R. No pain and gain!
Experiences with Mentat on biological applications. Concurrency: Prac. &
Expe. 5, 4 (June 1993), 309–328.

6. Grimshaw, A.S., Ferrari, A.J., and West, E.A. Mentat in Parallel Pro-
gramming Using C++. G. Wilson, Ed. MIT Press, Cambridge, Mass.,
1996, pp. 383–427.

7. Lockhart, H.W., Jr. OSF DCE Guide to Developing Distributed Applications.
McGraw-Hill, New York, 1994.

8. Sun Microsystems. The Java Language Specification, Version 1.0, Beta, Oct.
30, 1995.

9. Van Steen, M., Homburg, P., Van Doorn, L., Tanenbaum, A.S., and
deJonge, W. Towards object-based wide area distributed systems. In
Proceedings of the International Workshop on Object Orientation in Operating
Systems, L.F. Carbrera and M. Theimer, Eds. (Lund, Sweden, Aug. 1995).

Andrew Grimshaw (grimshaw@virginia.edu) is an associate profes-
sor of computer science and director of the Institute for Parallel Computation
at the University of Virginia.
WM. A. Wulf (wulf@mail.cs.virginia) is the AT&T Professor of
Computer Science at the University of Virginia. He is on leave for the
1996-97 academic year serving as President of the National Academy of
Engineering

This work is partly supported by DOE grant DE-FG02-96ER25290, DOE
contract Sandia #LD-9391, and NSF grant ASC-9201822.

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title
of the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists requires prior specific permission and/or a fee.

© ACM 0002-0782/97/0100

C

COMMUNICATIONS OF THE ACM January 1997/Vol. 40, No. 1 45

