
TECHNICAL WHITEPAPER

Open source metascheduling for
Virtual Organizations with the
Community Scheduler Framework (CSF)

2

The Structure of a Virtual Organization

Grid computing is becoming a common approach for enabling applications to run in large-scale
distributed computing environments. As stated by Ian Foster et al in The Anatomy of the Grid
[Anatomy] “The real and specific problem that underlies the Grid concept is coordinated
resource sharing and problem solving in dynamic, multi-institutional virtual organizations.”
Furthermore, “This sharing is, necessarily, highly controlled, with resource providers and
consumers defining clearly and carefully just what is shared, who is allowed to share, and the
conditions under which sharing occurs. A set of individuals and/or institutions defined by such
sharing rules form what we call a virtual organization (VO)”

A VO is composed of different physical resources (e.g. compute, storage, network, and software
resources) that reside in separate administrative domains, within different organizations.
Organizations will often have different policies governing the use of their resources, with
different resource management interfaces.

A VO provides a single interface for end users to gain access to underlying resources,
regardless of the interface being used by the actual physical resources.

The VO represents a higher level of structure on top of heterogeneous lower-level resources,
therefore the purpose of grid middleware is to present resources as uniformly accessible. End-
users are not concerned with the individual usage policies of the physical resources, and are
able to interact with a VO from a single interface.

Grid Services and OGSI-Agreement

Interoperability is the key to a grid infrastructure. For a higher-level community scheduler to
function with lower-level resource managers, there must be agreement on how these entities will
interact with each other, since the functions and interfaces of the many lower-level resource
managers are quite different from each other. Standards are required to meet interoperability
requirements and resource manager services must use standard semantics, to ensure that the
behaviour of a resource manager is predictable to a community scheduler. The Global Grid
Forum (GGF) is an organization that works on defining the standards and best practices, which
guide the technology development for building a grid infrastructure.

More recently, there has been a convergence of the grid standards defined by GGF, with the
protocols and mechanisms defined by the Web services community. The Open Grid Services
Architecture (OGSA) [OGSA] has been proposed as an enabling infrastructure for applications
and services on a grid. The OGSA defines Grid services as common activities of a distributed
computing system within a Web services model for defining interfaces and functions. The
OGSA model represents all entities on a grid (resources, applications, jobs, agreements, data,
etc) as Grid services.

Open source metascheduling for Virtual Organizations
with the Community Scheduler Framework (CSF)

3

While OGSA activities remain focused on the architecture of grid systems, the Open Grid
Services Infrastructure (OGSI) [OGSI] is a specification that defines mechanisms for managing
services on the grid. The specification defines the base level interfaces and behaviors for
managing Grid services and the way that they interact with each other. In addition, a number
of “core” interfaces are defined which correspond to some of the most common low-level
constructs found in distributed computing systems. For example, OGSI defines a type of core
Grid service that is used to manage the lifetime of the services and provide access to their
service state. Other interfaces include the mechanism for name resolution, event notification,
and service aggregation. Multiple low-level interfaces are composed together to build higher-
level Grid services.

OGSI defines a necessary set of Grid services needed to deploy a production grid infrastructure.
Higher-level services built on top of the OGSI services are required to map between a VO and
underlying resource managers. OGSI defines the vocabulary, and higher-level specifications will
define the grammar needed for a meaningful discussion. Working groups within the GGF are
working to define higher-level Grid service interfaces required to build a grid infrastructure. The
OGSA documentation defines a roadmap that helps guide which services are considered
essential for computing on a grid. These include services for security, messaging, data access,
resource management and scheduling.

Grid environments based on OGSA are composed of many different, interacting Grid services.
Each of these services has different policies to manage underlying resources. In order to deal
with the complexities of large collections of these services, there need to be mechanisms for Grid
service management and the allocation of resources for applications. A Grid service interface
called OGSI-Agreement is being proposed at the GGF as a protocol and interface for managing
Grid services. The OGSI-Agreement [AGSM] describes the Agreement-based Grid Service
Management model as “…the ability to create Grid services and adjust their policies and
behaviors based on organizational goals and application requirements.” This model is
composed of a set of OGSI-compliant portTypes that allow clients to negotiate with management
services to manage Grid services or other legacy applications. In other words, if a user wants
to submit a compute job to run on a cluster, the Grid service client contacts a job management
service, and negotiates an agreement which ensures that the user’s job has access to cpus,
memory and storage space.

The OGSI-Agreement is based on Agreement services, which represent an ongoing relationship
between an agreement provider and an agreement initiator and defines the behavior of a
delivered service to a consumer.

Agreements are negotiated with new Agreement services through a Grid service that implements
the AgreementFactory interface. A client invokes the AgreementFactory service using creation
parameters that contain the requested terms. Some CreationParameters are required while
others are subject to counter offers. If the agreement terms are not acceptable to the service
provider, the creation operation returns a fault. Otherwise, a new Agreement service instance
is created, which encapsulates the negotiated terms in its service state, or an AgreementOffer
service instance is created, which represents a number of alternative offers for clients to choose.
The instantiation of an Agreement service indicates that the agreement has been accepted.

Consider the example of job submission to a resource manager. A client contacts a job
management service, which implements the AgreementFactory interface with creation
parameters that state, “this job requires a software license for application X, and requires 8
cpus, and 4G of RAM”. If the job management service couldn’t provide the necessary software
license the agreement terms are rejected. If all of the terms are met, an Agreement service
instance representing the job resources is created. If the terms of the original creation
parameters can’t be met, however the job management service could supply either 4 cpus and
4G of RAM, or 8 cpus and 2G of RAM, an AgreementOffer with the two alternatives would be
offered. The client then chooses the best alternative because cpus and memory were terms
subject to the counter offers.

Open source metascheduling for Virtual Organizations
with the Community Scheduler Framework (CSF)

4

Defining terms to represent different types of resources available within a VO, community
schedulers are written to negotiate with resource managers for resources on behalf of the user
community. An example set of terms for making advanced reservations are listed in
Appendix 1.

Community Schedulers

Grid middleware provides coordinated access to the underlying resources of a VO, regardless
of their physical location or access mechanisms. When an application utilizing a grid makes use
of more than one physical resource during its execution, a grid middleware system maps the
resource requirements to the multiple physical resources that are available to run that
application. Metaschedulers or community schedulers are key to making the VO’s resources
easily accessible to end-users, by automatically matching the requirements of a grid application
with the available resources while staying within the conditions that the VO has specified with
the underlying resource managers.

A community scheduler serves each VO. End-users submit their grid applications to the
community scheduler, which in turn matches the resource requirements of the jobs with the
underlying physical resources through interaction with local resource managers. The resources
provided by the local resource managers can be part of multiple VO’s, with local policies
reflecting the nature of the agreements negotiated by the different user communities for access
to the physical resources. The local resource manager becomes a service provider, and a
community scheduler consumes services based on Service Level Agreements (SLA’s).

Figure 1 illustrates two VO’s making use of three different resource managers that are shared
between one another. VO “A” has access to physical organization 1 and physical organization
2. VO “B” has access to physical organization 3 and only part of physical organization 2.

Open source metascheduling for Virtual Organizations
with the Community Scheduler Framework (CSF)

Organization 1

VO “A”
Figure 1: Mapping of VO's to physical organizations

VO “B”

Organization 2 Organization 3

Community Scheduler
for VO “A”

Community Scheduler
for VO “B”

This is an example of the role of a community scheduler. An end-user wants to reserve time to
use resources from two different organizations: a compute resource for data analysis and a
visualization “cave” for rendering the results of the computing in real time. If resources are
geographically separated, and under the control of different resource managers, end-users need
to make various reservations including cpus for computation, the visualization cave, bandwidth
between the two sites, and storage at both sites for temporary staging results. Currently, this is
done manually. Some resource managers provide an interface for reserving resources, but more
often this is done on the phone with administrators located at various sites.

With grid middleware and community schedulers an end-user could submit a request for
resources to the community scheduler, which describes the resources needed in a standard
description language. Using the knowledge of resource managers a community scheduler
automatically interacts with the various organizations available to meet the requirements of the
job. This process is much easier for an end-user since they only have to deal with one scheduler,
and less prone to accidental conflict, because local resource managers control the allocation of
resources. If a community scheduler couldn’t meet the needs of the VO with the current resources
available, an agreement with an “on-demand” computing center could be reached in order to
meet the time requirements of the end-user.

Introducing the Community Scheduler Framework
(CSF)

The Community Scheduler Framework (CSF) is an open-source implementation of a number of
Grid services, which together perform the functions of a grid metascheduler or community
scheduler. CSF provides basic capabilities for scheduling and can be used as a development
toolkit for implementing community schedulers.

Platform Computing, in consultation with the Globus Project, has contributed the open source
metascheduler called CSF to the Globus Toolkit Version 3.0 (GT3) OGSI container architecture.
The CSF classes can be extended to provide more domain specific community schedulers and
support many different kinds of grid deployment models. Examples of grid level scheduling
algorithms include scheduling across multiple clusters within a VO, co-scheduling across multiple
resource managers, scheduling based on SLA’s, and economic scheduling models.

By making use of the open source CSF, grid scheduling implementations ensure that they interact
with resource managers using standard interfaces such as the OGSI-Agreement, without needing
to know all of the underlying details of the specification or having to implement the protocol
themselves.

Figure 2 illustrates the components of CSF.

The Metascheduler
The services implemented as part of CSF provide a metascheduler infrastructure. The purpose of
the metascheduler is to allow end-users to interact with underlying resource managers in a
system independent fashion, by defining the protocols that interact with resource managers. In
addition, the metascheduler is a high-level abstraction for some of the concepts that are key to
resource management including a “job”, a “resource reservation”, and a “scheduler”.

5Open source metascheduling for Virtual Organizations
with the Community Scheduler Framework (CSF)

6

The higher-level Grid service interfaces are described below:

• Job service – creates, monitors and controls compute jobs

• Reservation service – guarantees resources are available for running a job

• Global Information Service – allows for the propagation of information between resource
managers and the metascheduler

• Queuing service – provides a service where administrators can customize and define
scheduling policies at the VO level, and/or at the different resource manager levels

• Resource Manager Adapter Service (RM Adapter) – provides a Grid service interface which
bridges the Grid service protocol and resource managers (e.g. Platform LSF or Altair PBS)

Open source metascheduling for Virtual Organizations
with the Community Scheduler Framework (CSF)

Grid Service Hosting Environment

Global
Information

Service

RM
Adapter

Existing GT3 Services

User Requests

Gram
PBS

Gram
SGE

LSFPBSSGE

Index Service Provider Index Service Provider Index Service Provider

Queuing
Service

MetaScheduler

Job
Service

Reservation
Service

Figure 2: CSF architecture

7

JOB SERVICE

A Job Service provides an interface for placing jobs on a resource manager and interacting with
the job once it has been dispatched to the resource manager. The Job Service provides basic
matchmaking capabilities between the requirements of the job and the underlying resource
manager for running the job. More advanced Job Services take into account more advanced
job characteristics such as interactive execution, parallel jobs across resource managers, and
jobs with requirements based on SLAs.

The interfaces provided by the Job Service include:

• jobSubmit – user job submission requests. A job is submitted with resource requirements in
RSL (Resource Specification Language) syntax, with a reservation id in order to bind the job
to a specific resource reservation. Otherwise a job is submitted with the name of a specific
resource manager on which to run the job.

• jobCtrl – controls a job after it has been instantiated. This would include the ability to
suspend/resume, checkpoint, and kill a job.

• jobQuery – query the status of a job. This includes information such as the status of a job,
job runtime, and resource usage.

The Job Service uses information such as policies, which are defined at the metascheduler level,
and resource information about available resource managers, queues, host, and job statuses as
provided by the Global Information Service. The Job Service uses the Resource Manager
Adapter (RM Adapter) to submit jobs to the underlying resource manager to control running
jobs.

The Job Service also makes use of the Global Information Service to store it’s own state
information. The information stored includes job submission information, job status, and a list of
jobs that a particular Job Service instance can manage, which provides the ability for the Job
Service to recover from any faults.

In the current version of the CSF, the Job Service accepts client requests in the form of the Globus
RSL (Resource Specification Language). In the future, job resource requirements and descriptions
will be defined in a job definition language currently being defined by the GGF.

A given Job Service instance can actually manage multiple user jobs. If this model is in use, there
is a Job Service Dispatcher component that is responsible for matching user job submission
requests to running Job Service instances. The Job Service Dispatcher creates a Job Service
instance on behalf of the user if there is no applicable Job Service available for the user.

Open source metascheduling for Virtual Organizations
with the Community Scheduler Framework (CSF)

Job Service

jobSubmit

jobCtrl

jobQuery

RM_jobSubmit

RM_jobCtrl

MS Policy RsrcAvail

8

RESERVATION SERVICE

The Reservation service allows end-users or a Job Service to reserve resources under the control
of a resource manager to guarantee their availability to run a job. This service allows
reservations for any type of resource (e.g. hosts, software licenses, or network bandwidth).
Reservations can be specific (e.g. provide access to host “A” from noon to 5pm), or more
general (e.g. provide access to 16 Linux cpus on Sunday). Once a reservation is made, a Job
Service sends a job to a resource manager that is associated to a provided reservation. Some
of the policy decisions made by the Reservation Service for Platform LSF include the
identification of who can make reservations (e.g. Platform LSF administrators), how many hosts
a particular user or user group can reserve at a time, when reservations can be made (e.g.
blackout periods), and what types of hosts can be reserved.

The Reservation service provides the following interfaces:

• addRsv – request a new reservation with a particular resource requirement, starting at a
specific time for a given duration

• deleteRsv – remove a reservation

• queryRsv – retreive the details of a particular reservation

The Reservation Service makes use of information about the existing resource managers and
policies that are defined at the metascheduler level and will make use of a logging service to
log reservations. The Reservation Service uses the RM Adapter interface to make and delete
existing reservations.

Open source metascheduling for Virtual Organizations
with the Community Scheduler Framework (CSF)

Reservation
Service

addRsv

deleteRsv

queryRsv

Rs
rc

 In
fo

Rs
v

Po
lic

ie
s

Rs
v

Lo
gg

in
g

RM_addRsv

RM_deleteRsv

9

The Reservation service implements the AgreementFactoryType as defined in the OGSI-
Agreement specification so that a client can make reservations based on agreement terms
supplied. Reservations can also be specified using RSL.

GLOBAL INFORMATION SERVICE
The Global Information Service provides a repository for information required to operate the
metascheduler. It is built upon GT3’s Index Service, with some extensions. The GT3 Index
Service aggregates various lower-level Grid services in order to replicate service data between
Grid services and to create a dynamic data-generating and indexing node. The components
used in the Global Information Service include:

• Registry components - provides static information about installed services such as service
name, location and service ACLs. Each Platform LSF-based cluster (through the RM Adapter)
registers itself in the ClusterRegistry, enabling Job and Reservation services to find available
resource managers.

• ServiceDataProviderManager - manages the acquisition of dynamic data into the Global
Information Service via external programs. GT3 uses the Resource Information Provider
Service (RIPS) to collect job and resource information from each cluster in the system. This
includes aggregate information about the individual resource managers (e.g. how many
jobs in the system, average job turnaround time, what host types are available, etc). In
addition, it aggregates more detailed information about individual jobs, queues,
reservations and hosts.

• ServiceDataAggregator - aggregates the service data of other services and provides
notification mechanisms. This is used in the Global Information Service to aggregate
information about Job Service instances (e.g. submission, job status, execution, Job Service
instance, etc), and about Reservation Service instances (e.g. requests and individual
reservation details).

The Global Information Service provides a consistent interface for persisting state information
for other services implemented as part of CSF.

Open source metascheduling for Virtual Organizations
with the Community Scheduler Framework (CSF)

Global Information Service

data
storage

Index Service

Registry
SD

Aggregator

rsrc, job
rsv
info

ISP ISP

SDProvider
Manager

DB

cl
us

te
r

re
gi

st
er Data store

load
Rsv
Info

Job
Info

Data
Store
Req

Data
load
Req

Rsrc
Info
Req

Cluster
Info
Req

10

QUEUING SERVICE
The Queuing Service provides scheduling capabilities to the metascheduler. With a set of
policies defined at the VO level, a Queuing service maps jobs to resource managers based on
defined policies. For example, a Queuing Service implementing a Fairshare policy ensures that
all users within the VO receive reasonable turnaround time on their jobs, as opposed to being
starved by other users’ jobs ahead of them in the queue.

The CSF implementation of the Queuing Service implements a plug-in scheduling framework.
Schedulers are java classes that implement the schedPlugin interface, which is composed of four
methods. The two main methods used during the scheduling cycle are schedOrder and
schedMatch. A list of jobs queued in the system are passed to schedOrder, which order the list
depending on which jobs have precedence based on the implemented scheduling algorithm.
The schedMatch method matches jobs with the resource managers (either RM Adapter resource
managers or GRAM job factories) that are available to the scheduler. The job-to-RM mappings
is called a “job decision”.

If there are multiple scheduling policies in the Queuing Service, the different schedulers will be
called in order based on the job list and on the job decisions, allowing the effects of one
scheduling plug-in to be combined with the effects of another. For example, two scheduling plug-
ins are provided as part of the CSF Queuing service including a FCFS queue and a job throttle.

The FCFS scheduler orders the list of jobs based on their submission time to the Queuing service.
During the matching phase, jobs are either mapped to an RM, based on a provided cluster
name or reservation id, otherwise the FCFS scheduler finds an RM, based on a round-robin
choice from the available RMs.

The job throttling scheduler doesn’t reorder the list of jobs from the FCFS scheduler. It’s match
phase ensures that too many jobs are not sent to the same RM at the same time, so that:

a) an RM is not overwhelmed, and

b) a job is not queued at an RM which may not run the job for awhile, when another RM may
be available sooner to run the job.

The architecture of the Queuing service easily allows 3rd party developers to add new grid
schedulers into the CSF, to support the needs of their VO.

RM ADAPTER
The RM Adapter is an interface for communicating with underlying resource managers. The
primary purpose of the RM Adapter is to provide a bridge between the OGSI-compliant grid
clients (such as the metascheduler) and legacy resource managers that do not have a native Grid
service interface. Translations at the RM Adapter level include mapping from the grid to the
resource manager’s security model, mapping the RSL to the resource manager’s resource
requirement syntax, and translating between SOAP/XML request/response to the resource
manager’s request/response protocol.

The current implementation of CSF supports the GRAM protocol (from Globus Toolkit Version 2.x
and earlier) to access the services of the resource managers, which do not support the RM
Adapter interface. GRAM does not support any reservation interfaces, so this limits the
metascheduler to only use the Job service when communicating using this interface. GRAM only
serves one resource manager, whereas the RM Adapter can be configured to service multiple
resource managers at the same time.

Open source metascheduling for Virtual Organizations
with the Community Scheduler Framework (CSF)

11

CSF and Platform Products

Platform’s products (including Platform LSF and Platform Multiculster), leverage the CSF to ensure
OGSA compliance, and a framework for implementing metascheduling.

Platform LSF
CSF, through the RM Adapter, provides an alternate interface method to Platform LSF in addition
to the regular Platform LSF commands and protocols. CSF exposes the RM services using OGSA
compliant services, and therefore Platform LSF is OGSA-compliant via the metascheduler
interfaces, and directly through the RM Adapter.

Since the OGSI specification is based on Web services, this allows organizations to access the
services of Platform LSF via standard Web services interfaces that doesn’t require an OGSA-
compliant client.

The Grid services interface to Platform LSF enables organizations to use more generic interfaces
for Platform LSF, without needing to write to proprietary API’s and protocols. This is useful for
portal writers, and ISVs who are developing applications to run on a grid, because it is simpler
to integrate with standard interfaces than with many different proprietary ones.

The integration between Platform LSF and CSF is a new interface called the Grid Gateway. The
Grid Gateway acts as a bridge between Platform LSF’s proprietary protocols and CSF’s Grid
service interface. A new scheduling plug-in for Platform LSF scheduler (the metascheduler plug-
in) makes the decision regarding which particular Platform LSF jobs should be forwarded to the
metascheduler. This decision is based on information from the Global Information Service,
provided by the Grid Gateway. When a job is sent to the metascheduler, the mbatchd will
dispatch the job through the Grid Gateway, and receive the job status information from the Grid
Gateway. The Grid Gateway uses the Job and Reservation services from the CSF.

There are four use cases supported by this new architecture, which illustrate how users use
Platform LSF interfaces including, bsub, brsvadd, and bkill, or use CSF directly.

1. Job Forwarding by a user – a user identifies a resource manager to send a job to, by
querying the GIS using commands such as grminfo and ghostinfo. The user submits a job
with the directive in the bsub command that the metascheduler plug-in will forward this job
to the requested RM. This does not guarantee the resources will be available to run the job
when it reaches the RM.

2. Job Forwarding by Platform LSF – a user submits a job without specifying a resource
manager. Platform LSF through the metascheduler plug-in makes the decision whether a job
should be forwarded to another RM, based on the job’s resource requirements. This does
not guarantee that the resources will be available when the job is forwarded.

3. Forwarding with user created advance reservation – a user finds an RM to run their job,
and makes a reservation with the RM using the Platform LSF reservation mechanism. If the
reservation is successful, the user submits a job to Platform LSF with the reservation id. The
metascheduler plug-in then forwards the job to the target RM with the reservation id.

4. Forwarding with LSF created advance reservation – a user submits the job without
specifying a resource manager. The metascheduler plug-in chooses a remote RM based on
the job resource requirements, and makes a reservation on behalf of the user. The job is
then forwarded to the target RM using the created reservation.

Open source metascheduling for Virtual Organizations
with the Community Scheduler Framework (CSF)

12

Platform MultiCluster
Platform MultiCluster allows multiple clusters using Platform LSF to communicate by forwarding
work between clusters transparently to end-users. Platform MultiCluster has superior
performance in terms of scalability and fault tolerance.

CSF enhances Platform MultiCluster by providing a framework for scheduling amongst multiple
resource managers, :

1) Enables Platform MultiCluster to communicate with non-Platform LSF-based resource
managers through the use of the CSF for job forwarding

2) Ensures Platform MultiCluster installations are OGSA-compliant when accessed through CSF

3) Platform MultiCluster enables Platform LSF users to take advantage of hierarchical
scheduling by forwarding jobs to CSF

The next generation of Platform MultiCluster will make use of CSF and the scheduling policies
and algorithms that plug into it along with other custom and 3rd party scheduling algorithms
developed by ISVs and end-users. Moreover, jobs submitted through CSF take advantage of the
additional functionality in Platform MultiCluster, for example - resource leasing, which allows
hosts in one cluster to be loaned to another cluster.

A migration strategy for current Platform MultiCluster customers to CSF-enabled Platform
MultiCluster installations, has been developed based on the architecture shown in Figure 3.

Open source metascheduling for Virtual Organizations
with the Community Scheduler Framework (CSF)

MetaScheduler Registry GIS

Grid
Gateway

M
S

M
C

mbatchd

. . .

Job
Service

Reservation
Service

LSF Scheduler

bsub, brsvadd, bkill

grminfo, ghostinfo

Grid Service
Hosting Environment

Figure 3: CSF-enable Platform MultiCluster

13

Summary

The Community Scheduler Framework (CSF) is an open source add-on to the Globus Toolkit
Version 3.0 for the development of community schedulers. Community schedulers are commonly
referred to as metaschedulers and accept user requests to run jobs, and map them to the
resources, which have been made available within the user’s Virtual Organization (VO).

CSF implements a number of Grid services, which together provide the functionality of a
metascheduler, including services such as a “job”, “advance reservation” and “queue”. These
services make use of the OGSI-Agreement specification as a negotiation protocol for negotiating
the use of resources through a resource manager. CSF allows users and ISV’s to plug into grid
scheduling algorithms developed, enabling VOs to write schedulers to implement policies.

CSF will be leveraged in the next generation of Platform Computing’s products, providing OGSA
compliance, and a framework for implementing metascheduling. Platform MultiCluster will
provide metascheduing functionality to communicate with both Platform LSF and non-Platform
LSF-based resource managers.

Open source metascheduling for Virtual Organizations
with the Community Scheduler Framework (CSF)

14

Appendix 1

<?xml version="1.0" encoding="UTF-8"?>
<rsl:rsl xmlns:rsl="http://www.globus.org/namespaces/2003/04/rsl"

xmlns:metascheduler="http://com.platform.metascheduler/2003/05/rsl/metasched-
uler"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ogsi="http://www.gridforum.org/namespaces/2003/03/OGSI"

xsi:schemaLocation="
http://www.globus.org/namespaces/2003/04/rsl
/usr/local/gt3/schema/base/gram/rsl.xsd
http://com.platform.metascheduler/2003/05/rsl/metascheduler
/usr/local/gt3/schema/metascheduler/metascheduler.xsd

http://www.gridforum.org/namespaces/2003/03/OGSI
/usr/local/gt3/schema/ogsi/ogsi.xsd"
>

<!--
You need to modify to absolute path for schema locations, such as:

o rsl.xsd
o metascheduler.xsd

-->

<metascheduler:request>
<metascheduler:reservation>

<!-- Resource Requirment in LSF RES_REQ format -->
<metascheduler:rsrc>
<rsl:string>

<rsl:stringElement value="type==LINUX86"/>
</rsl:string>
</metascheduler:rsrc>

<!-- Hosts delimited by space -->
<metascheduler:hosts>
<rsl:string>

<rsl:stringElement value="plato"/>
</rsl:string>
</metascheduler:hosts>

<!-- Name of user using this reservation -->
<metascheduler:user>
<rsl:string>

<rsl:stringElement value="csmith"/>
</rsl:string>
</metascheduler:user>

<!-- Number of CPU request for this reservation -->
<metascheduler:number>
<rsl:long value="1"/>
</metascheduler:number>

<!-- Start time -->
<metascheduler:beginTime>

<ogsi:ExtendedDateTimeType value="2003-07-23T20:00:00.000Z"/>
</metascheduler:beginTime>

<!-- End time -->
<metascheduler:endTime>

<ogsi:ExtendedDateTimeType value="2003-07-23T24:00:00.000Z"/>
</metascheduler:endTime>

</metascheduler:reservation>
</metascheduler:request>

</rsl:rsl>

Open source metascheduling for Virtual Organizations
with the Community Scheduler Framework (CSF)

This is an example set of agreement terms
for making an advanced reservation with
Platform LSF.

15

References

[Anatomy] The Anatomy of the Grid: Enabling Scalable Virtual Organizations, I. Foster, C.
Kesselman, S. Tuecke, Authors. International Journal of High Performance Computing
Applications, 15 (3). 200-222. 2001. Available at
http://www.globus.org/research/papers/anatomy.pdf

[OGSA] The Open Grid Services Architecture Platform, I. Foster, D. Gannon, Editors. Global
Grid Forum. draft-ggf-ogsa-platform-2

[OGSI] Open Grid Services Infrastructure (OGSI) Version 1.0, S. Tuecke, K. Czajkowski, I.
Foster, J. Frey, S. Graham, C. Kesselman, T. Maquire, T. Sandholm, D. Snelling, P.
Vanderbilt, Editors. Global Grid Forum. draft-ggf-ogsi-gridservice-29

[AGSM] Agreement-based Grid Service Management (OGSI-Agreement), Version 0, K.
Czajkowski, A. Dan, J. Rofrano, S. Tuecke, Editors. Global Grid Forum. draft-ggf-
czajkowski-agreement-00

Open source metascheduling for Virtual Organizations
with the Community Scheduler Framework (CSF)

About Platform Computing

Platform Computing delivers intelligent, practical enterprise grid software
and services that allow organizations to plan, build, run and manage grids
by optimizing IT resources. Through our proven process and methodology,
we link IT to core business objectives, and help our customers enhance
service capabilities, reduce costs and improve business performance. With
industry-leading partnerships and a strong commitment to standards, we
are at the forefront of grid software development, propelling over 1,600
clients around the world toward powerful insights that create real, tangible
business value. For more information www.platform.com.

Copyright © 2003 Platform Computing Corporation. ®™ Trademarks of Platform Computing Corporation. All other logo and product names are the trademarks of their respective owners,
errors and omissions excepted. Printed in Canada. Platform and Platform Computing refer to Platform Computing Inc. and each of its subsidiaries.

World Headquarters

Platform Computing Inc.
3760 14th Avenue
Markham, Ontario
L3R 3T7 Canada
Tel: 905.948.8448
Fax: 905.948.9975
Toll-free tel: 877.528.3676
info@platform.com

US

Boston: 781.685.4966
Detroit: 248.359.7820
Maryland: 410.290.0105
Newport Beach: 949.798.5654
New York: 212.672.1770
San Jose: 408.392.4900

For more information, visit www.platform.com/contactus/index.asp

Europe

London: +44 (0) 1256.370.500
Dusseldorf: +49 (0) 2102 61039.0
Paris: +33 (0) 1 34 65 51 60

Asia

Beijing: +86 1062 381125
Hong Kong: 852.2869.5687
Tokyo: +813 5326-3105
Osaka: +81 6 6225 1163
Seoul: +82 2 5811410

AUGUST 2003

