
Legion: Lessons Learned Building a Grid
Operating System

ANDREW S. GRIMSHAW AND ANAND NATRAJAN

Invited Paper

Legion was the first integrated grid middleware architected from
first principles to address the complexity of grid environments. Just
as a traditional operating system provides an abstract interface to
the underlying physical resources of a machine, Legion was de-
signed to provide a powerful virtual machine interface layered over
the distributed, heterogeneous, autonomous, and fault-prone phys-
ical and logical resources that constitute a grid. We believe that
without a solid, integrated, operating system-like grid middleware,
grids will fail to cross the chasm from bleeding-edge supercom-
puting users to more mainstream computing. This paper provides
an overview of the architectural principles that drove Legion, a
high-level description of the system with complete references to
more detailed explanations, and the history of Legion from first
inception in August 1993 through commercialization. We present
a number of important lessons, both technical and sociological,
learned during the course of developing and deploying Legion.

Keywords—Distributed object system, grid, grid architecture,
grid design philosophy, large-scale distributed system, metaoper-
ating systems, metasystems.

I. INTRODUCTION

Grids (once called metasystems [20]–[23]) are collections
of interconnected resources harnessed together in order
to satisfy various needs of users [24], [25]. The resources
may be administered by different organizations and may
be distributed, heterogeneous, and fault-prone. The manner
in which users interact with these resources as well as the

Manuscript received March 1, 2004; revised June 1, 2004. This work
was supported in part by the Defense Advanced Research Projects Agency
(DARPA) under (Navy) Contract N66001-96-C-8527, in part by the De-
partment of Energy (DOE) under Grant DE-FG02-96ER25290, in part by
DOE under Contract Sandia LD-9391, in part by Logicon (for the DoD
HPCMOD/PET program) under Contract DAHC 94-96-C-0008, in part by
the DOE under Contract D459000-16-3C, in part by DARPA (GA) under
Contract SC H607305A, in part by the National Science Foundation (NSF)-
Next Generation Systems (NGS) under Grant EIA-9974968, in part by NSF-
National Partnership for Advanced Computational Infrastructure (NPACI)
under Grant ASC-96-10920, and in part by a grant from NASA-IPG.

The authors are with the Department of Computer Science, University
of Virginia, Charlottesville, VA 22904–4740 USA (e-mail: grimshaw@vir-
ginia.edu).

Digital Object Identifier 10.1109/JPROC.2004.842764

usage policies for the resources may vary widely. A grid
infrastructure must manage this complexity so that users can
interact with resources as easily and smoothly as possible.

Our definition, and indeed a popular definition, is: A grid
system, also called a grid, gathers resources—desktop and
handheld hosts, devices with embedded processing resources
such as digital cameras and phones or terascale supercom-
puters—and makes them accessible to users and applications
in order to reduce overhead and accelerate projects. A grid
application can be defined as an application that operates in
a grid environment or is “on” a grid system. Grid system soft-
ware (or middleware), is software that facilitates writing grid
applications and manages the underlying grid infrastructure.
The resources in a grid typically share at least some of the
following characteristics.

• They are numerous.
• They are owned and managed by different, potentially

mutually distrustful organizations and individuals.
• They are potentially faulty.
• They have different security requirements and policies.
• They are heterogeneous, e.g., they have different CPU

architectures, are running different operating systems,
and have different amounts of memory and disk.

• They are connected by heterogeneous, multilevel net-
works.

• They have different resource management policies.
• They are likely to be geographically separated (on a

campus, in an enterprise, on a continent).

The above definitions of a grid and a grid infrastructure are
necessarily general. What constitutes a “resource” is a deep
question, and the actions performed by a user on a resource
can vary widely. For example, a traditional definition of a
resource has been “machine,” or more specifically “CPU
cycles on a machine.” The actions users perform on such a
resource can be “running a job,” “checking availability in
terms of load,” and so on. These definitions and actions are
legitimate, but limiting. Today, resources can be as diverse as

0018-9219/$20.00 © 2005 IEEE

PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005 589

“biotechnology application,” “stock market database,” and
“wide-angle telescope,” with actions being “run if license is
available,” “join with user profiles,” and “procure data from
specified sector,” respectively. A grid can encompass all such
resources and user actions. Therefore, a grid infrastructure
must be designed to accommodate these varieties of resources
and actions without compromising on some basic principles
such as ease of use, security, autonomy, etc.

A grid enables users to collaborate securely by sharing
processing, applications, and data across systems with the
above characteristics in order to facilitate collaboration,
faster application execution, and easier access to data. More
concretely, this means being able to do the following.

• Find and share data. Access to remote data should be as
simple as access to local data. Incidental system bound-
aries should be invisible to users who have been granted
legitimate access.

• Find and share applications. Many development, en-
gineering and research efforts consist of custom ap-
plications—permanent or experimental, new or legacy,
public domain or proprietary—each with its own re-
quirements. Users should be able to share applications
with their own data sets.

• Find and share computing resources. Providers should
be able to grant access to their computing cycles to
users who need them without compromising the rest of
the network.

This paper describes one of the major grid projects of the
last decade—Legion—from its roots as an academic grid
project to its current status as the only commercial com-
plete grid offering [3]–[7], [9], [10], [14], [16], [18], [19],
[21]–[23], [26]–[29], [31]–[47].

Legion is built on the decades of research in distributed
and object-oriented systems, and borrows many, if not most,
of its concepts from the literature [48]–[82]. Rather than
reinvent the wheel, the Legion team sought to combine
solutions and ideas from a variety of different projects such
as Eden/Emerald [48], [53], [55], [83], Clouds [67], AFS
[72], Coda [84], CHOICES [85], PLITS [63], Locus [76],
[81], and many others. What differentiates Legion from its
progenitors is the scope and scale of its vision. While most
previous projects focus on a particular aspect of distributed
systems such as distributed file systems, fault tolerance,
or heterogeneity management, the Legion team strove to
build a complete system that addressed all of the significant
challenges presented by a grid environment. To do less would
mean that the end user and applications developer would need
to deal with the problem. In a sense, Legion was modeled
after the power grid system—the underlying infrastructure
manages all the complexity of power generation, distribution,
transmission, and fault-management so that end users can
focus on issues more relevant to them, such as which
appliance to plug in and how long to use it. Similarly, Legion
was designed to operate on a massive scale, across WANs,
and between mutually distrustful administrative domains,
while most earlier distributed systems focused on the local
area, typically a single administrative domain.

Beyond merely expanding the scale and scope of the vision
for distributed systems, Legion contributed technically in a
range of areas as diverse as resource scheduling and high-per-
formance I/O. Three of the more significant technical contri-
butions were: 1) the extension of the traditional event model
to ExoEvents [13]; 2) the naming and binding scheme that
supports both flexible semantics and lazy cache coherence
[9]; and 3) a novel security model [17] that started with the
premise that there is no trusted third party.

What differentiates Legion first and foremost from its con-
temporary grid projects such as Globus1 [86]–[93] is that Le-
gion was designed and engineered from first principles to
meet a set of articulated requirements, and that Legion fo-
cused from the beginning on ease of use and extensibility.
The Legion architecture and implementation was the result of
a software engineering process that followed the usual form
of the following.

1) Develop and document requirements.
2) Design and document solution.
3) Test design on paper against all requirements and in-

teractions of requirements.
4) Repeat 1–3 until there exists a mapping from all re-

quirements onto the architecture and design.
5) Build and document 1.0 version of the implementation.
6) Test against application use cases.
7) Modify design and implementation based on test re-

sults and new user requirements.
8) Repeat steps 6–7.

This is in contrast to the approach used in other projects
of starting with some basic functionality, seeing how it
works, adding/removing functionality, and iterating toward
a solution.

Second, Legion focused from the very beginning on the
end-user experience via the provisioning of a transparent,
reflective, abstract virtual machine that could be readily ex-
tended to support different application requirements. In con-
trast, the Globus approach was to provide a basic set of tools
to enable the user to write grid applications and manage the
underlying tools explicitly.

The remainder of this paper is organized as follows. We
begin with a discussion of the fundamental requirements for
any complete grid architecture. These fundamental require-
ments continue to guide the evolution of our grid software.
We then present some of the principles and philosophy un-
derlying the design of Legion. We then introduce some of the
architectural features of Legion and delve slightly deeper into
implementation in order to give an understanding of grids
and Legion. Detailed technical descriptions exit elsewhere
in the literature and are cited. We then present a brief his-
tory of Legion and its transformation into a commercial grid
product, Avaki 2.5. We then present the major lessons, not
all technical, learned during the course of the project. We
then summarize with a few observations on trends in grid
computing.

Keep in mind that the objective here is not to provide a
detailed description of Legion, but to provide a perspective

1See [45] for a more complete comparison.

590 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

with complete references to papers that provide much more
detail.

II. REQUIREMENTS

Clearly, the minimum capability needed to develop grid
applications is the ability to transmit bits from one machine
to another—all else can be built from that. However, several
challenges frequently confront a developer constructing ap-
plications for a grid. These challenges lead us to a number
of requirements that any complete grid system must address.
The designers of Legion believed and continue to believe that
all of these requirements must be addressed by the grid in-
frastructure in order to reduce the burden on the application
developer. If the system does not address these issues, then
the programmer must—forcing programmers to spend valu-
able time on basic grid functions, thus needlessly increasing
development time and costs. The requirements are as follows.

• Security. Security covers a gamut of issues, including
authentication, data integrity, authorization (access
control) and auditing. If grids are to be accepted by
corporate and government IT departments, a wide
range of security concerns must be addressed. Secu-
rity mechanisms must be integral to applications and
capable of supporting diverse policies. Furthermore,
we believe that security must be built in firmly from
the beginning. Trying to patch security in as an af-
terthought (as some systems are attempting today)
is a fundamentally flawed approach. We also believe
that no single security policy is perfect for all users
and organizations. Therefore, a grid system must have
mechanisms that allow users and resource owners to
select policies that fit particular security and perfor-
mance needs, as well as meet local administrative
requirements.

• Global name space. The lack of a global name space
for accessing data and resources is one of the most
significant obstacles to wide-area distributed and par-
allel processing. The current multitude of disjoint
name spaces greatly impedes developing applications
that span sites. All grid objects must be able to access
(subject to security constraints) any other grid object
transparently without regard to location or replication.

• Fault tolerance. Failure in large-scale grid systems is
and will be a fact of life. Machines, networks, disks and
applications frequently fail, restart, disappear, and be-
have otherwise unexpectedly. Forcing the programmer
to predict and handle all of these failures significantly
increases the difficulty of writing reliable applications.
Fault-tolerant computing is known to be a very diffi-
cult problem. Nonetheless, it must be addressed, or else
businesses and researchers will not entrust their data to
grid computing.

• Accommodating heterogeneity. A grid system must
support interoperability between heterogeneous
hardware and software platforms. Ideally, a running
application should be able to migrate from platform

to platform if necessary. At a bare minimum, compo-
nents running on different platforms must be able to
communicate transparently.

• Binary management and application provisioning.
The underlying system should keep track of executa-
bles and libraries, knowing which ones are current,
which ones are used with which persistent states,
where they have been installed and where upgrades
should be installed. These tasks reduce the burden on
the programmer.

• Multilanguage support. Diverse languages will always
be used, and legacy applications will need support.

• Scalability. There are over 500 million computers in
the world today and over 100 million network-attached
devices (including computers). Scalability is clearly
a critical necessity. Any architecture relying on cen-
tralized resources is doomed to failure. A successful
grid architecture must adhere strictly to the distributed
systems principle: the service demanded of any given
component must be independent of the number of
components in the system. In other words, the service
load on any given component must not increase as the
number of components increases.

• Persistence. I/O and the ability to read and write
persistent data are critical in order to communicate
between applications and to save data. However, the
current files/file libraries paradigm should be sup-
ported, since it is familiar to programmers.

• Extensibility. Grid systems must be flexible enough
to satisfy current user demands and unanticipated
future needs. Therefore, we feel that mechanism and
policy must be realized by replaceable and extensible
components, including (and especially) core system
components. This model facilitates development of
improved implementations that provide value-added
services or site-specific policies while enabling the
system to adapt over time to a changing hardware and
user environment.

• Site autonomy. Grid systems will be composed of re-
sources owned by many organizations, each of which
desires to retain control over its own resources. The
owner of a resource must be able to limit or deny use
by particular users, specify when it can be used, etc.
Sites must also be able to choose or rewrite an imple-
mentation of each Legion component as best suits their
needs. If a given site trusts the security mechanisms of a
particular implementation, it should be able to use that
implementation.

• Complexity management. Finally, but importantly,
complexity management is one of the biggest chal-
lenges in large-scale grid systems. In the absence of
system support, the application programmer is faced
with a confusing array of decisions. Complexity exists
in multiple dimensions: heterogeneity in policies for
resource usage and security, a range of different failure
modes and different availability requirements, disjoint
namespaces and identity spaces, and the sheer number
of components. For example, professionals who are

GRIMSHAW AND NATRAJAN: LEGION: LESSONS LEARNED BUILDING A GRID OPERATING SYSTEM 591

not IT experts should not have to remember the de-
tails of five or six different file systems and directory
hierarchies (not to mention multiple user names and
passwords) in order to access the files they use on a
regular basis. Thus, providing the programmer and
system administrator with clean abstractions is critical
to reducing their cognitive burden.

III. PHILOSOPHY

To address these basic grid requirements, we developed
the Legion architecture and implemented an instance of that
architecture, the Legion runtime system [11], [94]. The ar-
chitecture and implementation were guided by the following
design principles that were applied at every level throughout
the system.

• Provide a single-system view. With today’s operating
systems and tools such as Load Sharing Facility (LSF),
Sun Grid Engine (SGE), and Portable Batch System
(PBS), we can maintain the illusion that our LAN
is a single computing resource. But once we move
beyond the local network or cluster to a geographically
dispersed group of sites, perhaps consisting of several
different types of platforms, the illusion breaks down.
Researchers, engineers, and product development
specialists (most of whom do not want to be experts
in computer technology) are forced to request access
through the appropriate gatekeepers, manage multiple
passwords, remember multiple protocols for interac-
tion, keep track of where everything is located, and
be aware of specific platform-dependent limitations
(e.g., this file is too big to copy or to transfer to that
system; that application runs only on a certain type
of computer, etc.). Re-creating the illusion of a single
computing resource for heterogeneous distributed re-
sources reduces the complexity of the overall system
and provides a single namespace.

• Provide transparency as a means of hiding detail.
Grid systems should support the traditional distributed
system transparencies: access, location, heterogeneity,
failure, migration, replication, scaling, concurrency,
and behavior. For example, users and programmers
should not have to know where an object is located
in order to use it (access, location, and migration
transparency), nor should they need to know that a
component across the country failed—they want the
system to recover automatically and complete the
desired task (failure transparency). This behavior is
the traditional way to mask details of the underlying
system.

• Provide flexible semantics. Our overall objective
was a grid architecture that is suitable to as many
users and purposes as possible. A rigid system design
in which policies are limited, tradeoff decisions are
preselected, or all semantics are predetermined and
hard-coded would not achieve this goal. Indeed, if
we dictated a single system-wide solution to almost

any of the technical objectives outlined above, we
would preclude large classes of potential users and
uses. Therefore, Legion allows users and programmers
as much flexibility as possible in their applications’
semantics, resisting the temptation to dictate solutions.
Whenever possible, users can select both the kind
and the level of functionality and choose their own
tradeoffs between function and cost. This philosophy
is manifested in the system architecture. The Legion
object model specifies the functionality but not the
implementation of the system’s core objects; the core
system, therefore, consists of extensible, replaceable
components. Legion provides default implementations
of the core objects, although users are not obligated
to use them. Instead, we encourage users to select or
construct object implementations that answer their
specific needs.

• Reduce user effort. In general, there are four classes of
grid users who are trying to accomplish some mission
with the available resources: end users of applications,
applications developers, system administrators, and
managers. We believe that users want to focus on their
jobs, e.g., their applications, and not on the underlying
grid plumbing and infrastructure. Thus, for example,
to run an application a user may type legion run
my application my data at the command shell. The
grid should then take care of all of the messy details
such as finding an appropriate host on which to execute
the application, moving data and executables around,
etc. Of course, the user may optionally be aware and
specify or override certain behaviors, for example,
specify an architecture on which to run the job, or
name a specific machine or set of machines, or even
replace the default scheduler.

• Reduce “activation energy.” One of the typical prob-
lems in technology adoption is getting users to use it.
If it is difficult to shift to a new technology, then users
will tend not to take the effort to try it unless their
need is immediate and extremely compelling. This is
not a problem unique to grids—it is human nature.
Therefore, one of our most important goals was to
make using the technology easy. Using an analogy
from chemistry, we kept the activation energy of adop-
tion as low as possible. Thus, users can easily and
readily realize the benefit of using grids—and get the
reaction going—creating a self-sustaining spread of
grid usage throughout the organization. This principle
manifests itself in features such as “no recompilation”
for applications to be ported to a grid and support for
mapping a grid to a local operating system file system.
Another variant of this concept is the motto “no play,
no pay.” The basic idea is that if you do not need a
feature, e.g., encrypted data streams, fault resilient
files, or strong access control, you should not have to
pay the overhead of using it.

• Do no harm. To protect their objects and resources,
grid users and sites will require grid software to run
with the lowest possible privileges.

592 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

• Do not change host operating systems. Organizations
will not permit their machines to be used if their op-
erating systems must be replaced. Our experience with
Mentat [95] indicates, though, that building a grid on
top of host operating systems is a viable approach. Fur-
thermore, Legion must be able to run as a user level
process and not require root access.

Overall, the application of these design principles at every
level provides a unique, consistent, and extensible framework
upon which to create grid applications.

IV. LEGION—THE GRID OPERATING SYSTEM

The traditional way in computer science to deal with
complexity and diversity is to build an abstraction layer
that masks most, if not all, of the underlying complexity.
This approach led to the development of modern operating
systems, which were developed to provide higher level
abstractions—both from a programming and management
perspective—to end users and administrators. In the early
days, one had to program on the naked machine, write
one’s own loaders, device drivers, etc. These tasks were
inconvenient and forced all programmers to perform them
repetitively. Thus, operating systems were born. Blocks on
disk become files, CPUs and memory were virtualized by
CPU multiplexing and virtual memory systems, security
for both user processes and the system was enforced by the
kernel, and so on.

Viewed in this context, grid software is a logical exten-
sion of operating systems from single machines to large
collections of machines—from supercomputers to handheld
devices. Just as, in the early days of computing, one had
to write one’s own device drivers and loaders, in the early
days of grid computing users managed moving binaries and
data files around the network, dealing directly with resource
discovery, etc. Thus, grid systems are an extension of tra-
ditional operating systems applied to distributed resources.
And as we can see from the above requirements, many of
the same management issues apply: process management,
interprocess communication, scheduling, security, persistent
data management, directory maintenance, accounting, and
so on.

Legion started out with the “top-down” premise that a
solid architecture is necessary to build an infrastructure of
this scope. Consequently, much of the initial design time
spent in Legion was in determining the underlying infrastruc-
ture and the set of core services over which grid services
could be built.

In Fig. 1, we show a layered view of the Legion architec-
ture. Below we briefly expand on each layer, starting with the
bottom layer.

The bottom layer is the local operating system—or execu-
tion environment layer. This layer corresponds to true op-
erating systems such as Linux, AIX, Windows 2000, etc.,
as well hosting environments such as J2EE. We depend on
process management services, local file system support, and
interprocess communication services delivered by this layer,
e.g., UDP, TCP, or shared memory.

A. Naming and Binding

Above the local operating services layer, we built the Le-
gion ExoEvent system and the Legion communications layer.
The communication layer is responsible for object naming
and binding as well as delivering sequenced arbitrarily long
messages from one object to another. Delivery is accom-
plished regardless of the location of the two objects, object
migration, or object failure. For example, object A can com-
municate with object B even while object B is migrating from
Charlottesville, VA, to San Diego, CA, or even if object B
fails and subsequently restarts. This transparency is possible
because of Legion’s three-level naming and binding scheme,
in particular the lower two levels.

The lower two levels of the naming scheme consist of
location-independent abstract names called Legion Object
IDentifiers (LOIDs) and object addresses (OAs) specific
to communication protocols, e.g., an IP address and a port
number. The binding between a LOID and an OA can, and
does, change over time. Indeed it is possible for there to
be no binding for a particular LOID at some times if, for
example, the object is not running currently. Maintaining
the bindings at runtime in a scalable way is one of the most
important aspects of the Legion implementation.

The basic problem is to allow the LOID OA binding
to change arbitrarily while providing high performance.
Clearly, one could bind a LOID to an OA on every method
call on an object. The performance, though, would be poor,
and the result nonscalable. If the bindings are cached for
performance and scalability reasons, we run the risk of an
incoherent binding if, for example, an object migrates. To
address that problem, one could have, for example, callback
lists to notify objects and caches that their bindings are
stale, as is done in some shared-memory parallel proces-
sors. The problem with callbacks in a distributed system is
scale—thousands of clients may need notification—and the
fact that many of the clients themselves may have migrated,
failed, or become disconnected from the grid, making no-
tification unreliable. Furthermore, it is quite possible that
the bindings will never be used by many of the caches
again—with the result that significant network bandwidth
may be wasted.

At the other extreme, one could bind at object cre-
ation—and never allow the binding to change, providing ex-
cellent scalability, as the binding could be cached throughout
the grid without an coherence concerns.

The Legion implementation combines all of the perfor-
mance and scalability advantages of caching, while elimi-
nating the need to keep the caches strictly coherent. We call
the technique lazy coherence. The basic idea is simple. A
client uses a binding that it has acquired by some means, usu-
ally from a cache. We exploit the fact that the Legion message
layer can detect if a binding is stale, e.g., the OA endpoint is
not responding or the object (LOID) at the other end is not
the one the client expects because an address is being reused
or masqueraded. If the binding is stale, the client requests a
new binding from the cache while informing the cache not
to return the same bad binding. The cache then looks up the

GRIMSHAW AND NATRAJAN: LEGION: LESSONS LEARNED BUILDING A GRID OPERATING SYSTEM 593

Fig. 1. Legion architecture viewed as a series of layers with references to relevant papers.

LOID. If it has a different binding than the one the client
tried, the cache returns the new binding. If the binding is
the same, the cache requests an updated binding either from
another cache (perhaps organized in a tree similar to a soft-
ware combining tree [96]), or goes to the object manager. The
net result of this on-demand, lazy coherence strategy is that
only those caches where the new binding is actually used are
updated.

B. Core Object Management and Security

The next layers in the Legion architecture are the security
layer and the core object layers. The security layer imple-
ments the Legion security model [6], [17] for authentication,
access control, and data integrity (e.g., mutual authentica-
tion and encryption on the wire). The security environment
in grids presents some unusual challenges. Unlike single
enterprise systems, where one can often assume that the

administrative domains “trust” one another,2 in a multior-
ganizational grid there is neither mutual trust nor a single
trusted third party. Thus, a grid system must permit flexible
access control, site autonomy, local decisions on authentica-
tion, and delegation of credentials and permissions [97].

The core object layer [9]–[11] addresses method invoca-
tion, event processing (including ExoEvents [13]), interface
discovery and the management of metadata. Objects can have
arbitrary metadata, such as the load on a machine or the pa-
rameters that were used to generate a particular data file.

Above the core object layer are the core services that
implement object instance management (class managers),
abstract processing resources (hosts), and storage resources
(vaults). These are represented by base classes that can be
extended to provide different or enhanced implementations.
For example, a host represents processing resources. It has

2In our experience though, the units within a larger organization rarely
truly trust one another.

594 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

methods to start an object given a LOID, a persistent storage
address, and the LOID of an implementation to use; stop
an object given a LOID; kill an object; provide accounting
information; and so on. The UNIX and Windows versions
of the host class, called UnixHost and NTHost, use UNIX
processes and Windows spawn, respectively, to start objects.
Other versions of hosts interact with backend third-party
queuing systems (BatchQueueHost) or require the user to
have a local account and run as that user (PCDHost [2]).

The object instance managers are themselves instances of
classes called metaclasses. These metaclasses can also be
overloaded to provide a variety of object metabehaviors. For
example, replicated objects for fault tolerance, or stateless
objects for performance and fault tolerance [13], [14], [16].
This ability to change the basic metaimplementation of how
names are bound and how state is managed is a key aspect of
Legion that supports extensibilty.

Above these basic object management services is a whole
collection of higher level system service types and enhance-
ments to the base service classes. These include classes
for object replication for availability [14], message log-
ging classes for accounting [2], or postmortem debugging
[12], firewall proxy servers for securely transiting firewalls,
enhanced schedulers [3], [4], databases called collections
that maintain information on the attributes associated with
objects (these are used extensively in scheduling), job proxy
managers that “wrap” legacy codes for remote execution
[7], [26]–[29], and so on.

C. Application-Layer Support, or “Compute” and
“Data” Grids

An application support layer built over the layers dis-
cussed above contains user-centric tools for parallel and
high-throughput computing, data access and sharing, and
system management. See [42] for a more detailed look at
the user-level view.

The high-performance toolset includes tools [1] to wrap
legacy applications (legion register program) and execute
them remotely (legion run) both singly and in large sets
as in a parameter-space study (legion run multi). Legion
Message Passing Interface (MPI) tools support cross-plat-
form, cross-site execution of MPI programs [31], and Basic
Fortran Support (BFS) [30] tools wrap Fortran programs for
running on a grid.

Legion’s data grid support is focused on extensibility, per-
formance, and reducing the burden on the programmer [5],
[45]. In terms of extensibility, there is a basic file type (ba-
sicfile) that supports the usual functions—read, write, stat,
seek, etc. All other file types are derived from this type. Thus,
all files can be treated as basic files and be piped into tools
that expect sequential files. However, versions of basic files
such as two-dimensional (2-D) files support read/write op-
erations on columns, rows, and rectangular patches of data
(both primitive types as well as “structs”). There are file types
to support unstructured sparse data, as well as parallel files

where the file has been broken up and decomposed across
several different storage systems.

Data can be copied into the grid, in which case Legion
manages the data, deciding where to place it, how many
copies to generate for higer availability, and where to
place those copies. Alternatively, data can be “exported”
into the grid. When a local directory structure is exported
into the grid it is mapped to a chosen path name in the
global name space (directory structure). For example,
a user can map data/sequences in his local Unix/Win-
dows file system into/home/grimshaw/sequences using
the legion export dir command, legion export dir data/se-
quences/home/grimshaw/sequences. Subsequent access
from anywhere in the grid (whether read or write) are for-
warded to the files in the user’s Unix file system, subject to
access control.

To simplify ease of use, the data grid can be accessed via
a daemon that implements the NFS protocol. Therefore, the
entire Legion namespace, including files, hosts, etc., can be
mapped into local operating system file systems. Thus, shell
scripts, Perl scripts, and user applications can run unmodified
on the Legion data grid. Futhermore, the usual Unix com-
mands such as “ls” work, as does the Windows browser.

Finally, there are the user portal and system management
tools to add and remove users, add and remove hosts, and
join two separate Legion grids together to create a grid of
grids, etc. There is a Web-based portal interface for access
to Legion [8], as well as a system status display tool that
gathers information from system-wide metadata collections
and makes it available via a browser (see Fig. 2 below for
a screen shot). The Web-based portal (Figs. 3–6) allows an
alternative, graphical interface to Legion. Using this inter-
face, a user could submit an Amber job (a three-dimensional
(3-D) molecular modeling code) to National Partnership for
Advanced Computational Infrastructure (NPACI)-Net (see
Section V) and not care where it executes at all. In Fig. 4,
we show the portal view of the intermediate output, where
the user can copy files out of the running simulation, and in
which a Chime plug-in is being used to display the interme-
diate results.

In Fig. 5, we demonstrate the Legion job status tools.
Using these tools the user can determine the status of all of
the jobs that they have started from the Legion portal—and
access their results as needed.

In Fig. 6, we show the portal interface to the underlying
Legion accounting system. We believed from very early on
that grids must have strong accounting or they will be subject
to the classic tragedy of the commons, in which everyone is
willing to use grid resources, yet no one is willing to pro-
vide them. Legion keeps track of who used which resource
(CPU, application, etc.), starting when, ending when, with
what exit status, and with how much resource consumption.
The data is loaded into a relational DBMS and various reports
can be generated. (An LMU is a “Legion Monetary Unit,”
typically, one CPU second normalized by the clock speed of
the machine.)

GRIMSHAW AND NATRAJAN: LEGION: LESSONS LEARNED BUILDING A GRID OPERATING SYSTEM 595

Fig. 2. Legion system monitor running on NPACI-Net in 2000 with the “USA” site selected.
Clicking on a site opens a window for that site, with the individual resources listed. Sites can be
composed hierarchically. Those resources in turn can be selected, and then individual objects are
listed. “POWER” is a function of individual CPU clock rates and the number and type of CPUs.
“AVAIL” is a function of CPU power and current load; it is what is available for use.

Fig. 3. Job submission window for Amber using the Legion Web
portal.

V. LEGION TO AVAKI—THE PATH OF COMMERCIALIZATION

Legion was born in late 1993 with the observation that
dramatic changes in WAN bandwidth were on the horizon.
In addition to the expected vast increases in bandwidth, other
changes such as faster processors, more available memory,
more disk space, etc. were expected to follow in the usual
way as predicted by Moore’s Law. Given the dramatic
changes in bandwidth expected, the natural question was,
how will this bandwidth be used? Since not just bandwidth
will change, we generalized the question to, “Given the
expected changes in the physical infrastructure—what sorts
of applications will people want, and given that, what is the
system software infrastructure that will be needed to support
those applications?” The Legion project was born with the

Fig. 4. Chime plugin displays updated molecule and application
status.

determination to build, test, deploy, and ultimately transfer
to industry, a robust, scalable grid computing software infra-
structure. We followed the classic design paradigm of first
determining requirements, then completely designing the
system architecture on paper after numerous design meet-
ings, and finally, after a year of design work, coding. We
made a decision to write from scratch rather than extend and
modify an existing system, Mentat, that we had been using
as a prototype. We felt that only by starting from scratch
could we ensure adherence to our architectural principles.
First funding was obtained in early 1996, and the first line
of Legion code was written in June 1996.

By November 1997, we were ready for our first de-
ployment. We deployed Legion at the University of

596 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

Fig. 5. Legion job status tools accessible via the Web portal.

Fig. 6. Legion accounting tool. Units are normalized CPU seconds. Displays can be organized by
user, machine, site, or application.

Virginia, Charlottesville; the San Diego Supercomputer
Center (SDSC), San Diego; the National Center for Su-
percomputing Applications (NCSA); and the University of
California, Berkeley, for our first large-scale test and demon-
stration at Supercomputing 1997. In the early months,
keeping the mean time between failures (MTBF) over 20 h
under continuous use was a challenge. This is when we
learned several valuable lessons. For example, we learned

that the world is not “fail-stop.” While we intellectually
knew this, it was really brought home by the unusual failure
modes of the various hosts in the system.

By November 1998, we had solved the failure problems
and our MTBF was in excess of one month, and heading
toward three months. We again demonstrated Legion—now
on what we called NPACI-Net. NPACI-Net consisted of
hosts at the University of Virginia; SDSC; the California

GRIMSHAW AND NATRAJAN: LEGION: LESSONS LEARNED BUILDING A GRID OPERATING SYSTEM 597

Institute of Technology, Pasadena; the University of Cali-
fornia, Berkeley; Indiana University, Bloomington; NCSA;
the University of Michigan, Ann Arbor; Georgia Tech,
Atlanta; Tokyo Institute of Technology, Tokyo, Japan; and
Vrije Universiteit, Amsterdam, The Netherlands. By that
time, dozens of applications had been ported to Legion
from areas as diverse as materials science, ocean modeling,
sequence comparison, molecular modeling, and astronomy.
NPACI-Net grew through 2003 with additional sites such
as the University of Minnesota, Duluth; the University of
Texas, Austin; the State University of New York, Bing-
hamton; and the Pittsburgh Supercomputing Center (PSC).
Supported platforms included Windows 2000, the Compaq
iPaq, the T3E and T90, IBM SP-3, Solaris, Irix, HPUX,
Linux, True 64 Unix, and others.

From the beginning of the project, a “technology transfer”
phase had been envisioned in which the technology would
be moved from academia to industry. We felt strongly that
grid software would move into mainstream business com-
puting only with commercially supported software, help
lines, customer support, services, and deployment teams. In
1999, Applied MetaComputing was founded to carry out
the technology transition. In 2001, Applied MetaComputing
raised $16 million in venture capital and changed its name to
AVAKI [32]. The company acquired legal rights to Legion
from the University of Virginia and renamed Legion to
“Avaki.” Avaki was released commercially in September
2001.

VI. LESSONS LEARNED

Traveling the path from an academic project to a com-
mercial product taught us many lessons. Very quickly we
discovered that requirements in the commercial sector are re-
markably different from those in academic and government
sectors. These differences are significant even when consid-
ering research arms of companies involved in bioinformatics
or pharmaceuticals (drug discovery). Whereas academic
projects focus on issues like originality, performance, secu-
rity, and fault tolerance, commercial products must address
reliability, customer service, risk-aversion, and return on
investment [98]. In some cases, these requirements dovetail
nicely—for example, addressing the academic requirement
of fault tolerance often addresses the commercial require-
ment of reliability. However, in many cases, the requirements
are so different as to be conflicting—for example, the aca-
demic desire to be original conflicts with the commercial
tendency to be risk-averse. Importantly for technologists,
the commercial sector does not share academia’s interest
in solving exciting or “cool” problems. Several examples
illustrate the last point:

• MPI and parallel computing in general are very rare.
When encountered, they are employed almost ex-
clusively in the context of low-degree parallelism
problems, e.g., four-way codes. Occasionally paral-
lelism is buried away in some purchased application,
but even then it is rare because parallel hardware,
excepting high-throughput clusters, is rare.

• Interest in cross-platform or cross-site applications,
MPI or otherwise, is low. The philosophy is, if the
machine is not big enough to solve the problem, just
buy a bigger machine instead of cobbling together
machines.

• Hardware expense (and, thus, hardware savings) is less
important than people expense.

• Remote visualization is of no interest. If it is a matter of
hardware, more can be bought to perform visualization
locally.

• Parallel schedulers and metaschedulers are of no in-
terest. All that is desired when doing anything in the
multisite compute sense is a load sharing facility. The
politics of CPU sharing can become overwhelming be-
cause of “server-hugging.”

• Nobody wants to write new applications to “exploit”
the grid. They want their existing applications to run
on the grid, preferably with no changes.

• Data is the resource that must be shared between sites
and research groups. Whether the data is protein data,
computer-aided design (CAD) data, or financial data,
large companies have groups around the world that
need each other’s data in a timely, coherent fashion.

• Bandwidth is not nearly as prevalent as imagined.
Typical commercial customer sites have connections
ranging from T1 to 10 Mb/s. The only real exception is
in the financial services sector, where we encountered
very high bandwidth in the OC-12 range.

As a result, the commercial version of Legion, Avaki, was a
grid product that was trimmed down significantly. Many of
the features on which we had labored so hard (for example,
extensible files, flexible schedulers, cross-site MPI) were dis-
carded from the product to reduce the maintenance load and
clarify the message to the customer.

Building, and more importantly running, large-scale
Legion networks, taught us a number of important lessons,
some relearned, some pointing to broad themes, some tech-
nological. We have divided these into three broad areas:
technological lessons pertain to what features of Legion
worked well and what worked poorly, grid lessons pertain to
what the grid community as a whole can learn from our ex-
perience, and sociological lessons pertain to the differences
in perspective between academia and industry.

A. Technological Lessons

• Name transparency is essential. Legion’s three-layer
name scheme repeatedly produced architectural ben-
efits and was well received. One of the frequent con-
cerns expressed about a multilevel naming scheme is
that the performance can be poor. However, the lower
two layers—abstract names (LOIDs) to OAs—did not
suffer from poor performance because we employed
aggressive caching and lazy invalidation. The top layer,
which consisted of human-readable names for direc-
tory structures and metadata greatly eased access and
improved the user experience. Users could name ap-
plications, data, and resources in a manner that made

598 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

sense for their application instead of using obtuse, ab-
stract, or location-specific names.

• Trade off flexibility for lower resource consumption.
Building on the operating systems container model,
early implementations of Legion created a process for
every active Legion object. Active objects were asso-
ciated with a process as well as state on disk, whereas
inactive objects had only disk state. As a result, object
creation and activation were expensive operations,
often involving overheads of several seconds. These
overheads detracted from the performance of applica-
tions having many components or opening many files.
In later versions of Legion, we expanded the container
model to include processes that each managed many,
perhaps thousands, of objects within a single address
space. Consequently, activation and creation became
much cheaper, since only a thread and some data
structures had to be constructed. Hence, multiplexing
objects to address spaces is necessary for all but the
coarsest grain applications (e.g., applications that
take over 1 min to execute) even though multiplexing
results in some loss of flexibility. In general, lower
flexibility is acceptable if it reduces the footprint of the
product on the existing IT infrastructure.

• Trade off bandwidth for improved latency and better
performance. We have alluded earlier that in the
commercial sector bandwidth is not as prevalent as
imagined. However, judiciously increasing bandwidth
consumption can result in savings in latency and per-
formance as well as later savings in bandwidth. Con-
sider our experience with determining the managers
of objects. In Legion, a frequent pattern is the need to
determine the manager of an object. For example, if
the LOID-to-OA binding of an object became stale, the
manager of the object would be contacted to determine
the authoritative binding. One problem with our design
was that the syntax we chose for the abstract names
did not include the manager name. Instead, manager
names were stored in a logically global single database.
This database represents a glowing hotspot. Although
manager lookups tend to be relatively static and can
be cached extensively, when large, systemic failures
occur, large caches get invalidated all at once. When
the system revives, the single database is bombarded
with requests for manager lookups, becoming a drag
on performance. Our design of storing manager infor-
mation in a single database was predicated on there
being a hierarchy of such managers—sets of managers
would have their own metamanagers, sets of those
would have meta-metamanagers, and so on. In prac-
tice, the hierarchy rarely went beyond three levels, i.e.,
objects, managers and metamanagers. In hindsight,
we should have encoded manager information within
a LOID itself. This way, if an object’s LOID-to-OA
binding was stale, the manager of the class could be
looked up within the LOID itself. Encoding manager
information would have increased LOID size by a
few bytes, thus increasing bandwidth consumption

every time a LOID went on the wire, but the savings
in latency and performance would have been worth
it. Moreover, when manager lookups were needed,
we would have saved the bandwidth of contacting the
database by looking up the same information locally.

• Trade off consistency for continued access. In some
cases, users prefer accessing data known to be stale
rather than waiting for access to current data. One ex-
ample is the support for disconnected operations, which
are those that are performed when a client and server
are disconnected. For example, if the contents of a file
are cached on a client, and the client does not care
whether or not the contents are perfectly up to date,
then serving cached contents even when the cache is
unable to contact the server to determine consistency
is a disconnected operation. For the most part, Legion
did not perform disconnected operations. We were ini-
tially targeting machines that tended to be connected
all of the time, or if they became disconnected, recon-
nected quickly with the same or a different address.3

As a result, if an object is unreachable, we made the
Legion libraries time out and throw an exception. Our
rationale (grounded in academia) was that if the con-
tents are not perfectly consistent, they are useless. In
contrast, our experience (from industry) showed us that
there are many cases where the client can indicate dis-
interest in perfect consistency, thus permitting discon-
nected operations.

B. General Grid Lessons

• Fault tolerance is hard but essential. By fault tolerance
we mean both fault-detection and failure recovery. L.
Lamport is said to have once quipped that “a distributed
system is a system where a machine I’ve never heard
of fails and I can’t get any work done.” As the number
of machines in a grid grows from a few, to dozens, to
hundreds at dozens of sites, the probability that there is
a failed machine or network connection increases dra-
matically. It follows that when a service is delivered by
composing several other services, possibly on several
different machines, the probability that it will complete
decreases as the number of machines increases. Many
of the existing fault-tolerance algorithms assume com-
ponents, e.g., machines, operate in a “fail-stop” mode
wherein it either performs correctly or does nothing.
Unfortunately, real systems are not fail-stop. We found
that to make Legion highly reliable required constant
attention and care to handling both failure and time-out
cases.

• A powerful event/exception management system is nec-
essary. Related to the fault-tolerance discussion above
is the need for a powerful event notification system.

3Legion does handle devices that are disconnected and reconnected, per-
haps resulting in a changed IP address. An object periodically checks its
IP address using methods in its IP communication libraries. If the address
changes, the object raises an event that is caught higher up in the protocol
stack, causing the object to reregister its address with its class. Thus, laptops
that export services or data can be moved around.

GRIMSHAW AND NATRAJAN: LEGION: LESSONS LEARNED BUILDING A GRID OPERATING SYSTEM 599

Without such a system the result is a series of ad
hoc decisions and choices, and an incredibly complex
problem of determining exactly what went wrong and
how to recover. We found that traditional publish/sub-
scribe did not suffice because it presumes you know
the set of services or components that might raise an
event you need to know about. Consider a service that
invokes a deep call chain of services on your behalf
and an event of interest that occurs somewhere down
the call chain. An object must register or subscribe to
an event not just in one component, but in the transitive
closure of all components it interacts with, that too for
the duration of one call only. In other words, beyond
the usual publish/subscribe, a throw-catch mechanism
that works across service boundaries is needed.

• Keep the number of “moving parts” down. This lesson
is a variant of the “Keep It Simple, Stupid” (KISS) prin-
ciple. The larger the number of services involved in the
realization of a service the slower it will be (because
of the higher cost of interservice communication, in-
cluding retries and timeouts). Also, the service is more
likely to fail in the absence of aggressive fault-detection
and recovery code. Obvious as this lesson may seem,
we relearned it several times over.

• Debugging wide-area programs is difficult, but simple
tools help a lot. If there are dozens to hundreds of ser-
vices used in the execution of an application, keeping
track of all of the moving parts can be difficult, particu-
larly when an application error occurs. Two Legion fea-
tures greatly simplified debugging. First, shared global
console or “TTY” objects could be associated with a
shell in Unix or Windows, and a Legion implicit pa-
rameter4 set to name the TTY object. All Legion appli-
cations that used the Legion libraries checked for this
parameter, and if set, redirected stdout and stderr to the
legion tty. In other words, all output from all compo-
nents wherever they executed would be displayed in the
window to which the TTY object was attached. Second,
a log object, also named by an implicit parameter, could
be set, enabling copies of all message traffic to be di-
rected to the log object. The log could then be examined
and replayed against Legion objects inside a traditional
debugger [12].

C. Sociological Lessons

• Technology must be augmented with service. Solving
the technical issues of data transport, security, etc., is
not enough to deploy a large-scale system across orga-
nizations. The more challenging problem is to win the
hearts and minds of the IT staff, e.g., system adminis-
trators and firewall managers. We found that even if se-
nior management at an organization mandated joining
a grid, administrators, who rightly or wrongly possess
a sense of proprietorship over resources, can, and will,
do a “slow roll” in which nothing ever quite gets done.

4Implicit parameters are hname; valuei pairs that are propagated in the
calling context, and are the grid analogue to Unix environment variables.

Thus, you must work with them and get them to think it
is their idea, because once they buy in, progress is rapid.
In order to work with them, a services staff comprising
technically competent personnel who also have strong
people skills is valuable. Services personnel sometimes
get a “poor cousin” treatment from technologists; we
feel such an attitude is unfair, especially if the services
staff brings strong engineering skills in addition to re-
quired human skills.

• Marketing matters. It is insufficient merely to have
more usable and robust software. One must also
“market” one’s ideas and technology to potential
users, as well as engage in “business development” ac-
tivities to forge alliances with opinion leaders. Without
such activities, uptake will be slow, and more impor-
tantly, users will commit to other solutions even if
they are more difficult to use. That marketing matters
is well known in industry and the commercial sector.
What came as a surprise to us is how much it matters
in the academic “market” as well.

• End users are heterogeneous. Many people talk about
“end users” as if they are alike. We found four classes
of end users: applications users who do not write code
but use applications to get some job done; applications
developers who write the applications; systems admin-
istrators who keep the machines running; and IT man-
agement whose mission it is to provide IT services in
support of the enterprise. These four groups have very
different objectives and views on what are the right
tradeoffs. Do not confuse the groups.

• Changing status quo is difficult. Applications devel-
opers do not want to change anything—their code or
yours. We found that most applications developers do
not want to change their code to exploit some exciting
feature or library that the grid provides. They want
one code base for both their grid and nongrid versions.
Furthermore, even “#ifdefs” are frowned upon. From
their perspective, modifications to support grids are
very risky; they have enough trouble just adding new
application-specific features to their code.

• Reflection is a nice computer science concept, but of
little interest to application developers. Legion is a re-
flective system, meaning that the internal workings are
visible to developers if they wish to change the be-
havior of the system. Most aspects of Legion can be re-
placed with application-specific implementations. For
example, the default scheduler can be replaced with a
scheduler that exploits application properties, or the se-
curity module (MayI) can be replaced with a different
access control policy. We found that nobody outside
the Legion group wanted to write their own implemen-
tations of these replaceable components. Instead, we
found that reflection is primarily of use to system devel-
opers to customize features for different communities
(e.g., Kerberos-based authentication for DoD MSRCs).

• Good defaults are critical. If nobody wants to change
the implementation of a service—then the default be-
havior of the service needs to be both efficient and do

600 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

a “good” job. For example, the default scheduler must
not be too simple. You cannot count on people over-
riding defaults. Instead, they will just think that it is
slow or that it makes poor choices.

VII. SUMMARY

The challenges encountered in grid computing are enor-
mous. To expose most programmers to the full complexity
of writing a robust, secure grid application is to invite either
failure or delays. Further, when using low-level tools, the du-
plication of effort incurred as each application team tackles
the same basic issues is prohibitive.

Much like the complexity and duplication of effort en-
countered in early single CPU systems was overcome by the
development of operating systems, so to can grid computing
be vastly simplified via a grid operating system or virtual
machine that abstracts the underlying physical infrastructure
from the user and programmer.

The Legion project was begun in 1993 to provide just such
a grid operating system. The result was a complete, exten-
sible, fully integrated grid operating system by November
2000. NPACI-Net, the largest deployed Legion system in
terms of number of hosts, had its peak at over a dozen sites
on three continents with hundreds of independent hosts, and
over four thousand processors. Legion provided a high level
of abstraction to end users and developers alike, allowing
them to focus on their applications and science—and not on
the complex details. The result was over 20 different applica-
tions running on Legion—most of which required no changes
to execute in Legion.5

ACKNOWLEDGMENT

Any project of Legion’s scope is the result of a strong
team working together. The authors were fortunate enough to
have a tremendous group of people working on Legion over
the last decade. The authors’ thanks go out to all of them:
N. Beekwilder, S. Chapin, L. Cohen, A. Ferrari, J. French,
K. Holcomb, M. Humphrey, M. Hyatt, L. -J. Jin, J. Kar-
povich, D. Katramatos, D. Kienzle, J. Kingsley, F. Knabe,
M. Lewis, G. Lindahl, M. Morgan, A. Nguyen-Tuong, S. Par-
sons-Wells, B. Spangler, T. Spraggins, E. Stackpole, C. Viles,
M. Walker, C. Wang, E. West, B. White, and B. Wulf.

REFERENCES

[1] S. Wells, Legion 1.8 Basic User Manual. Charlottesville, VA:
Dept. Comput. Sci., Univ. Virginia, 2003.

[2] , Legion 1.8 System Administrator Manual. Charlottesville,
VA: Dept. Comput. Sci., Univ. Virginia, 2003.

[3] A. Natrajan, M. A. Humphrey, and A. S. Grimshaw, “Grid resource
management in Legion,” in Grid Resource Management: State of the
Art and Future Trends, J. Nabrzyski and J. M. Schopf, Eds. Nor-
well, MA: Kluwer, 2003.

[4] S. J. Chapin et al., “Resource management in Legion,” J. Future
Gener. Comput. Syst., vol. 15, pp. 583–594, 1999.

5Globus, Globus Toolkit, GGF, Legion, Global Grid Forum, PBS, LSF,
Avaki, Avaki Data Grid, ADG, LoadLeveler, Codine, SGE, IBM, Sun,
DCE, MPI, CORBA, OMG, SSL, OpenSSL, GSS-API, MDS, SOAP, XML,
WSDL, Windows (NT, 2000, XP), DCE, J2EE, NFS, AIX, and Kerberos
are all trademarks or service marks of their respective holders.

[5] B. White et al., “LegionFS: A secure and scalable file system sup-
porting cross-domain high-performance applications,” presented at
the Supercomputing Conf. ’01, Denver, CO.

[6] S. J. Chapin et al., “A new model of security for metasystems,” J.
Future Gener. Comput. Syst., vol. 15, pp. 713–722, 1999.

[7] D. Katramatos et al., “JobQueue: A computational grid-wide
queuing system,” in Lecture Notes in Computer Science, Grid
Computing—GRID 2001. Heidelberg, Germany: Springer-Verlag,
2001, vol. 2242, pp. 99–110.

[8] A. Natrajan et al., “The Legion grid portal,” Concurrency Comput.
Pract. Exper. (Special Issue on Grid Computing Environments), vol.
14, no. 13–15, pp. 1365–1394, 2002.

[9] M. J. Lewis et al., “Support for extensibility and site autonomy in
the Legion grid system object model,” J. Parallel Distrib. Comput.,
vol. 63, pp. 525–538, 2003.

[10] M. J. Lewis and A. S. Grimshaw, “The core Legion object model,”
presented at the Symp. High Performance Distributed Computing
(HPDC-5), Syracuse, NY, 1996.

[11] C. L. Viles et al., “Enabling flexibility in the Legion run-time li-
brary,” presented at the Int. Conf. Parallel and Distributed Processing
Techniques and Applications (PDPTA’97), Las Vegas, NV.

[12] M. Morgan, “Post mortem debugger for Legion,” M.S. thesis, Univ.
Virginia, Charlottesville, 1999.

[13] A. Nguyen-Tuong and A. S. Grimshaw, “Using reflection for in-
corporating fault-tolerance techniques into distributed applications,”
Parallel Process. Lett., vol. 9, no. 2, pp. 291–301, 1999.

[14] A. Nguyen-Tuong, “Integrating fault-tolerance techniques into grid
applications,” Ph.D. dissertation, Dept. Comput. Sci., Univ. Virginia,
Charlottesville, 2000.

[15] J. F. Karpovich, A. S. Grimshaw, and J. C. French, “Extensible file
systems (ELFS): An object-oriented approach to high performance
file I/O,” presented at the ACM Conf. Object-Oriented Program-
ming, Systems, Languages, and Applications ’94, Portland, OR.

[16] A. Nguyen-Tuong, A. S. Grimshaw, and M. Hyett, “Exploiting
data-flow for fault-tolerance in a wide-area parallel system,” in
Proc. 15th Int. Symp. Reliable and Distributed Systems, 1996, pp.
1–11.

[17] W. Wulf, C. Wang, and D. Kienzle, “A new model of security for
distributed systems,” Dept. Comput. Sci., Univ. Virginia, Char-
lottesville, Tech. Rep. CS-95-34, 1995.

[18] A. J. Ferrari et al., “A flexible security system for metacomputing
environments,” presented at the 7th Int. Conf. High-Performance
Computing and Networking Europe (HPCN’99), Amsterdam, The
Netherlands, 1999.

[19] M. Humphrey et al., “Accountability and control of process creation
in metasystems,” presented at the 2000 Network and Distributed Sys-
tems Security Conf. (NDSS’00), San Diego, CA.

[20] L. Smarr and C. E. Catlett, “Metacomputing,” Commun. ACM, vol.
35, no. 6, pp. 44–52, 1992.

[21] A. S. Grimshaw et al., “Metasystems,” Commun. ACM, vol. 41, no.
11, pp. 46–55, 1998.

[22] A. S. Grimshaw et al., “Metasystems: An approach combining
parallel processing and heterogeneous distributed computing sys-
tems,” J. Parallel Distrib. Comput., vol. 21, no. 3, pp. 257–270,
1994.

[23] A. S. Grimshaw, “Enterprise-wide computing,” Science, vol. 256,
pp. 892–894, 1994.

[24] I. Foster and C. Kesselman, The Grid: Blueprint for a New Com-
puting Infrastructure. San Francisco, CA: Morgan Kaufmann,
1999.

[25] F. Berman, G. C. Fox, and A. J. G. Hey, Grid Computing: Making the
Global Infrastructure a Reality, ser. Wiley Series in Communication
Networking and Distributed Systems. New York: Wiley, 2003.

[26] A. Natrajan et al., “Studying protein folding on the grid: Experiences
using CHARMM on NPACI resources under Legion,” Concurrency
Comput. Pract. Exper. (Special Issue on Grid Computing Environ-
ments 2003), vol. 16, no. 4, pp. 385–397, 2004.

[27] A. Natrajan, M. Humphrey, and A. Grimshaw, “Capacity and ca-
pability computing using Legion,” presented at the 2001 Int. Conf.
Computational Science, San Francisco, CA, 2001.

[28] A. Natrajan, M. Humphrey, and A. S. Grimshaw, “The Legion sup-
port for advanced parameter-space studies on a grid,” Future Gener.
Comput. Syst., vol. 18, pp. 1033–1052, 2002.

[29] , “Grids: Harnessing geographically-separated resources in a
multi-organizational context,” presented at the 15th Annu. Symp.
High Performance Computing Systems and Applications, Windsor,
ON, Canada, 2001.

GRIMSHAW AND NATRAJAN: LEGION: LESSONS LEARNED BUILDING A GRID OPERATING SYSTEM 601

[30] A. Ferrari and A. Grimshaw, “Basic Fortran support in Legion,”
Dept. Comput. Sci., Univ. Virginia, Charlottesville, Tech. Rep.
CS-98-11, 1998.

[31] M. Humphrey et al., “Legion MPI: High performance in secure,
cross-MSRC, cross-architecture MPI applications,” presented at the
2001 DoD HPC Users Group Conf., Biloxi, Mississippi, 2001.

[32] Avaki Corp. [Online]. Available: http://www.avaki.com/
[33] S. J. Chapin, D. Katramatos, J. F. Karpovich, and A. S. Grimshaw

et al., “The Legion resource management system ,” in Lecture Notes
in Computer Science, Job Scheduling Strategies for Parallel Pro-
cessing. Heidelberg, Germany: Springer-Verlag, 1999, vol. 1659,
pp. 162–178.

[34] A. J. Ferrari, S. J. Chapin, and A. S. Grimshaw, “Heterogeneous
process state capture and recovery through process introspection,”
Cluster Comput., vol. 3, no. 2, pp. 63–73, 2000.

[35] A. Grimshaw, “Meta-systems: An approach combining parallel
processing and heterogeneous distributed computing systems,”
presented at the 6th Int. Parallel Processing Symp. Workshop
Heterogeneous Processing, Beverly Hills, CA, 1992.

[36] A. S. Grimshaw and W. A. Wulf, “Legion—A view from 50 000
feet,” in Proc. 5th IEEE Int. Symp. High Performance Distributed
Computing, 1996, p. 89.

[37] , “Legion flexible support for wide-area computing,” presented
at the 7th ACM SIGOPS Eur. Workshop, Connemara, Ireland, 1996.

[38] , “The Legion vision of a worldwide virtual computer,”
Commun. ACM, vol. 40, no. 1, pp. 39–45, 1997.

[39] A. S. Grimshaw et al., “Campus-wide computing: Early results using
Legion at the university of Virginia,” Int. J. Supercomput. Appl., vol.
11, no. 2, pp. 129–143, 1997.

[40] A. S. Grimshaw et al., “Wide-area computing: Resource sharing on
a large scale,” IEEE Computer, vol. 32, no. 5, pp. 29–37, May 1999.

[41] A. S. Grimshaw et al., “Architectural support for extensibility and
autonomy in wide-area distributed object systems,” presented at the
2000 Network and Distributed Systems Security Conf. (NDSS’00),
San Diego, CA.

[42] A. S. Grimshaw et al., “From Legion to Avaki: The persistence
of vision,” in Grid Computing: Making the Global Infrastructure
a Reality. ser. Wiley Series in Communication Networking and
Distributed Systems, F. Berman, G. Fox, and T. Hey, Eds. New
York: Wiley, 2003.

[43] A. Grimshaw, “Avaki data grid—Secure transparent access to
data,” in Grid Computing: A Practical Guide to Technology And
Applications, A. Abbas, Ed. Hingham, MA: Charles River
Media, 2003.

[44] A. S. Grimshaw, M. A. Humphrey, and A. Natrajan, “A philosoph-
ical and technical comparison of Legion and globus,” IBM J. Res.
Develop., vol. 48, no. 2, pp. 233–254, 2004.

[45] B. White, A. Grimshaw, and A. Nguyen-Tuong, “Grid based file
access: The Legion I/O model,” presented at the Symp. High
Performance Distributed Computing (HPDC-9), Pittsburgh, PA,
2000.

[46] B. Clarke and M. Humphrey, “Beyond the “Device as portal”:
Meeting the requirements of wireless and mobile devices in the
Legion grid computing system,” presented at the 2nd Int. Workshop
Parallel and Distributed Computing Issues in Wireless Networks and
Mobile Computing (associated with IPDPS 2002), Ft. Lauderdale,
FL, 2002.

[47] H. Dail et al., “Application-aware scheduling of a magnetohydro-
dynamics application in the Legion metasystems,” presented at the
Int. Parallel Processing Symp. Workshop Heterogeneous Processing,
Cancun, Mexico, 2000.

[48] E. D. Lazowska et al., “The architecture of the Eden system,” in
Proc. 8th Symp. Operating System Principles, 1981, pp. 148–159.

[49] G. R. Andrews and F. B. Schneider, “Concepts and notions for con-
current programming,” ACM Comput. Surv., vol. 15, no. 1, pp. 3–44,
1983.

[50] W. F. Applebe and K. Hansen, “A survey of systems programming
languages: Concepts and facilities,” Softw. Pract. Exper., vol. 15, no.
2, pp. 169–190, 1985.

[51] H. Bal, J. Steiner, and A. Tanenbaum, “Programming languages for
distributed computing systems,” ACM Comput. Surv., vol. 21, no. 3,
pp. 261–322, 1989.

[52] R. Ben-Naten, CORBA: A Guide to the Common Object Request
Broker Architecture. New York: McGraw-Hill, 1995.

[53] B. N. Bershad and H. M. Levy, “Remote computation in a heteroge-
neous environment,” Dept. Comput. Sci., Univ. Washington, Seattle,
Tech. Rep. 87-06-04, 1987.

[54] B. N. Bershad, E. D. Lazowska, and H. M. Levy, “Presto: A system
for object-oriented parallel programming,” Softw. Pract. Exper., vol.
18, no. 8, pp. 713–732, 1988.

[55] A. Black et al., “Distribution and abstract types in Emerald,” Univ.
Washington, Seattle, Tech. Rep. 85-08-05, 1985.

[56] T. L. Casavant and J. G. Kuhl, “A taxonomy of scheduling in general-
purpose distributed computing systems,” IEEE Trans. Softw. Eng.,
vol. 14, no. 2, pp. 141–154, Feb. 1988.

[57] R. Chin and S. Chanson, “Distributed object-based programming
systems,” ACM Comput. Surv., vol. 23, no. 1, pp. 91–127, 1991.

[58] Object Management Group, “The common object request broker:
Architecture and specification,”, Needham, MA, OMG Doc. No.
93.xx.yy, Revision 1.2, Draft 29, 1993.

[59] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “A comparison of re-
ceiver-initiated and sender-initiated adaptive load sharing,” Perform.
Eval. Rev., vol. 6, pp. 53–68, 1986.

[60] , “Adaptive load sharing in homogeneous distributed systems,”
IEEE Trans. Softw. Eng., vol. SE-12, no. 5, pp. 662–675, May
1986.

[61] , “The limited performance benefits of migrating active pro-
cesses for load sharing,” Perform. Eval. Rev., vol. 16, pp. 63–72,
1986.

[62] , “Speedup versus efficiency in parallel systems,” IEEE Trans.
Comput., vol. 38, no. 3, pp. 408–423, Mar. 1989.

[63] J. A. Feldman, “High level programming for distributed computing,”
Commun. ACM, vol. 22, no. 6, pp. 353–368, 1979.

[64] P. B. Gibbond, “A stub generator for multi-language RPC in hetero-
geneous environments,” IEEE Trans. Softw. Eng. , vol. SE-13, no. 1,
pp. 77–87, Jan. 1987.

[65] A. Hac, “Load balancing in distributed systems: A summary,” Per-
form. Eval. Rev., vol. 16, pp. 17–25, 1989.

[66] C. A. R. Hoare, “Monitors: An operating system structing concept,”
Commun. ACM, vol. 17, no. 10, pp. 549–557, 1974.

[67] R. H. LeBlanc and C. T. Wilkes, “Systems programming with objects
and actions,” in Proc. 7th Int. Conf. Distributed Computer Systems,
1985, pp. 132–138.

[68] E. Levy and A. Silberschatz, “Distributed file systems: Concepts
and examples,” ACM Comput. Surv., vol. 22, no. 4, pp. 321–374,
1990.

[69] B. Liskov and R. Scheifler, “Guardians and actions: Linguistic sup-
port for robust, distributed programs,” ACM Trans. Program. Lang.
Syst., vol. 5, no. 3, pp. 381–414, 1983.

[70] B. Liskov and L. Shrira, “Promises: Linguistic support for efficient
asynchronous procedure calls in distributed systems,” presented at
the SIGPLAN’88 Conf. Programming Language Design and Imple-
mentation, Atlanta, GA.

[71] F. Manola et al., “Distributed object management,” Int. J. Intell.
Coop. Inf. Syst., vol. 1, no. 1, 1992.

[72] J. H. E. A. Morris, “Andrew: A distributed personal computing en-
vironment,” Commun. ACM, vol. 29, no. 3, 1986.

[73] R. Mirchandaney, D. Towsley, and J. Stankovic, “Adaptive load
sharing in heterogeneous distributed systems,” J. Parallel Distrib.
Comput., vol. 9, pp. 331–346, 1990.

[74] O. M. Nierstrasz, “Hybrid: A unified object-oriented system,” IEEE
Database Eng. Bull., vol. 8, no. 4, pp. 49–57, Dec. 1985.

[75] D. E. A. Notkin, “Interconnecting heterogeneous computer sys-
tems,” Commun. ACM, vol. 31, no. 3, pp. 258–273, 1988.

[76] G. E. A. Popek, “LOCUS: A network transparent, high reliability
distributed system,” in Proc. 8th Symp. Operating System Principles,
1981, pp. 169–177.

[77] M. L. Powell and B. P. Miller, “Process migration in DEMOS/MP,”
in Proc. 9th ACM Symp. Operating System Prinicples, 1983, pp.
110–119.

[78] A. S. Tanenbaum and R. V. Renesse, “Distributed operating sys-
tems,” ACM Comput. Surv., vol. 17, no. 4, pp. 419–470, 1985.

[79] R. N. E. A. Taylor, “Foundations for the Arcadia environment ar-
chitecture,” in Proc. 3rd ACM SIGSOFT/SIGPLAN Symp. Practical
Software Development, 1989, pp. 1–13.

[80] M. M. Theimer and B. Hayes, “Heterogeneous process migration
by recompilation,” presented at the 11th Int. Conf. Distributed Com-
puting Systems, Arlington, TX, 1991.

[81] B. E. A. Walker, “The LOCUS distributed operating system,” pre-
sented at the 9th ACM Symp. Operating Systems Principles, Bretton
Woods, NH, 1983.

[82] S. A. E. A. Yemini, “Concert: A heterogeneous high-level-language
approach to heterogeneous distributed systems,” in IEEE Int. Conf.
Distributed Computing Systems, Newport, CA.

602 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

[83] B. N. E. A. Bershad, “A remote procedure call facility for intercon-
necting heterogeneous computer systems,” IEEE Trans. Software.
Eng., vol. SE-13, no. 8, pp. 880–894, Aug. 1987.

[84] M. Satyanarayanan, “Scalable, secure, and highly available dis-
tributed file access,” IEEE Computer, vol. 23, no. 5, pp. 9–21, May
1990.

[85] R. H. Campbell et al., “Principles of object oriented operating system
design,” Dept. Comput. Sci., Univ. Illinois, Urbana, Tech. Rep. R89-
1510, 1989.

[86] A. Chervenak et al., “The data grid: Toward an architecture for the
distributed management and analysis of large scientific datasets,” J.
Netw. Comput. Appl., vol. 23, pp. 187–200, 2001.

[87] I. Foster et al., “Software infrastructure for the I-WAY high perfor-
mance distributed computing experiment,” in 5th IEEE Symp. High
Performance Distributed Computing, 1997, pp. 562–571.

[88] Globus Project. Globus.
[89] K. Czajkowski, “A resource management architecture for metacom-

puting systems,” in Proc. IPPS/SPDP’98 Workshop Job Scheduling
Strategies for Parallel Processing, pp. 62–82.

[90] K. Czajkowski, I. Foster, and C. Kesselman, “Co-allocation services
for computational grids,” presented at the 8th IEEE Symp. High Per-
formance Distributed Computing, Redondo Beach, CA, 1999.

[91] K. Czajkowski et al., “SNAP: A protocol for negotiating ser-
vice level agreements and coordinating resource management in
distributed systems,” in Lecture Notes in Computer Science, Job
Scheduling Strategies for Parallel Processing, 2002, vol. 2537, pp.
153–183.

[92] K. Czajkowski et al., “Agreement-based service management
(WS-agreement),” Global Grid Forum, draft-ggf-graap-agree-
ment-1, 2004.

[93] I. Foster and C. Kesselman, “Globus: A metacomputing infrastruc-
ture toolkit,” Int. J. Supercomput. Appl., vol. 11, no. 2, pp. 115–128,
1997.

[94] Legion Web pages (1997). [Online]. Available: http://www.legion.
virginia.edu

[95] A. S. Grimshaw, J. B. Weissman, and W. T. Strayer, “Portable run-
time support for dynamic object-oriented parallel processing,” ACM
Trans. Comput. Syst., vol. 14, no. 2, pp. 139–170, 1996.

[96] P.-C. Yew, N.-F. Tzeng, and D. H. Lawrie, “Distributing hot-spot ad-
dressing in large-scale multiprocessors,” IEEE Trans. Comput., vol.
C-36, no. 4, pp. 388–395, Apr. 1987.

[97] G. Stoker et al., “Toward realizable restricted delegation in compu-
tational grids,” presented at the Int. Conf. High Performance Com-
puting and Networking Europe (HPCN Eur. 2001), Amsterdam, The
Netherlands, 2001.

[98] A. S. Grimshaw, “The ROI case for grids,” Grid Today, vol. 1, no.
27, 2002.

Andrew S. Grimshaw received the M.S. and
Ph.D. degrees from the University of Illi-
nois, Urbana-Champaign, in 1986 and 1988,
respectively.

He is Professor of Computer Science at the
University of Virginia, Charlottesville, and
Founder and CTO of Avaki Corp., Burlington,
MA. He is the Chief Designer and Architect of
Mentat and Legion. Legion is one of the earliest
and largest grid computing projects in the world
and was the genesis for Avaki—the realization of

production grids in a commercial setting. He has published extensively on
both parallel computing and grid computing and regularly speaks on grid
computing around the world. His research interests include grid computing,
high-performance parallel computing, heterogeneous parallel computing,
operating systems, and the use of grid computing in the life sciences.

Dr. Grimshaw is currently a member of the Global Grid Forum (GGR)
Steering Committee and the Architecture Area Director in the GGF.
Grimshaw has served on the National Partnership for Advanced Compu-
tational Infrastructure (NPACI) Executive Committee, the DoD MSRC
Programming Environments and Training (PET) Executive Committee,
the CESDIS Science Council, the NRC Review Panel for Information
Technology, Board on Assessment of NIST Programs, and others.

Anand Natrajan received the Ph.D. degree from
the University of Virginia, Charlottesville, in
2000.

He continued at the University of Virginia as
a Research Scientist with the Legion project for
another two years. Currently, he is a Senior Soft-
ware Engineer and Consultant on grid systems
for Avaki Corp., Burlington, MA. He has written
tools for scheduling, running and monitoring
large numbers of legacy parameter-space jobs
on a grid, and for browsing the resources of

a grid. He has published several related papers as well as participated
in several fora related to grids. His previous research interests included
multirepresentation modeling for distributed interactive simulation. His
doctoral thesis addressed the problem of maintaining consistency among
multiple concurrent representations of entities being modeled. His current
research focuses on harnessing the power of distributed systems for user
applications. In addition to distributed systems, he is interested in computer
architecture and information retrieval.

GRIMSHAW AND NATRAJAN: LEGION: LESSONS LEARNED BUILDING A GRID OPERATING SYSTEM 603

	toc
	Legion: Lessons Learned Building a Grid Operating System
	ANDREW S. GRIMSHAW and ANAND NATRAJAN
	I. I NTRODUCTION
	II. R EQUIREMENTS
	III. P HILOSOPHY
	IV. L EGION T HE G RID O PERATING S YSTEM
	A. Naming and Binding

	Fig.€1. Legion architecture viewed as a series of layers with re
	B. Core Object Management and Security
	C. Application-Layer Support, or Compute and Data Grids

	Fig.€2. Legion system monitor running on NPACI-Net in 2000 with
	Fig.€3. Job submission window for Amber using the Legion Web por
	V. L EGION TO A VAKI T HE P ATH OF C OMMERCIALIZATION

	Fig.€4. Chime plugin displays updated molecule and application s
	Fig.€5. Legion job status tools accessible via the Web portal.
	Fig.€6. Legion accounting tool. Units are normalized CPU seconds
	VI. L ESSONS L EARNED
	A. Technological Lessons
	B. General Grid Lessons
	C. Sociological Lessons

	VII. S UMMARY
	S. Wells, Legion 1.8 Basic User Manual . Charlottesville, VA: De
	A. Natrajan, M. A. Humphrey, and A. S. Grimshaw, Grid resource m
	S. J. Chapin et al., Resource management in Legion, J. Future Ge
	B. White et al., LegionFS: A secure and scalable file system sup
	S. J. Chapin et al., A new model of security for metasystems, J.
	D. Katramatos et al., JobQueue: A computational grid-wide queuin
	A. Natrajan et al., The Legion grid portal, Concurrency Comput.
	M. J. Lewis et al., Support for extensibility and site autonomy
	M. J. Lewis and A. S. Grimshaw, The core Legion object model, pr
	C. L. Viles et al., Enabling flexibility in the Legion run-time
	M. Morgan, Post mortem debugger for Legion, M.S. thesis, Univ. V
	A. Nguyen-Tuong and A. S. Grimshaw, Using reflection for incorpo
	A. Nguyen-Tuong, Integrating fault-tolerance techniques into gri
	J. F. Karpovich, A. S. Grimshaw, and J. C. French, Extensible fi
	A. Nguyen-Tuong, A. S. Grimshaw, and M. Hyett, Exploiting data-f
	W. Wulf, C. Wang, and D. Kienzle, A new model of security for di
	A. J. Ferrari et al., A flexible security system for metacomputi
	M. Humphrey et al., Accountability and control of process creati
	L. Smarr and C. E. Catlett, Metacomputing, Commun. ACM, vol. 35
	A. S. Grimshaw et al., Metasystems, Commun. ACM, vol. 41, no. 1
	A. S. Grimshaw et al., Metasystems: An approach combining parall
	A. S. Grimshaw, Enterprise-wide computing, Science, vol. 256, p
	I. Foster and C. Kesselman, The Grid: Blueprint for a New Comput
	F. Berman, G. C. Fox, and A. J. G. Hey, Grid Computing: Making t
	A. Natrajan et al., Studying protein folding on the grid: Experi
	A. Natrajan, M. Humphrey, and A. Grimshaw, Capacity and capabili
	A. Natrajan, M. Humphrey, and A. S. Grimshaw, The Legion support
	A. Ferrari and A. Grimshaw, Basic Fortran support in Legion, Dep
	M. Humphrey et al., Legion MPI: High performance in secure, cros

	Avaki Corp. [Online] . Available: http://www.avaki.com/
	S. J. Chapin, D. Katramatos, J. F. Karpovich, and A. S. Grimshaw
	A. J. Ferrari, S. J. Chapin, and A. S. Grimshaw, Heterogeneous p
	A. Grimshaw, Meta-systems: An approach combining parallel proces
	A. S. Grimshaw and W. A. Wulf, Legion A view from 50 000 feet, i
	A. S. Grimshaw et al., Campus-wide computing: Early results usin
	A. S. Grimshaw et al., Wide-area computing: Resource sharing on
	A. S. Grimshaw et al., Architectural support for extensibility a
	A. S. Grimshaw et al., From Legion to Avaki: The persistence of
	A. Grimshaw, Avaki data grid Secure transparent access to data,
	A. S. Grimshaw, M. A. Humphrey, and A. Natrajan, A philosophical
	B. White, A. Grimshaw, and A. Nguyen-Tuong, Grid based file acce
	B. Clarke and M. Humphrey, Beyond the Device as portal: Meeting
	H. Dail et al., Application-aware scheduling of a magnetohydrody
	E. D. Lazowska et al., The architecture of the Eden system, in P
	G. R. Andrews and F. B. Schneider, Concepts and notions for conc
	W. F. Applebe and K. Hansen, A survey of systems programming lan
	H. Bal, J. Steiner, and A. Tanenbaum, Programming languages for
	R. Ben-Naten, CORBA: A Guide to the Common Object Request Broker
	B. N. Bershad and H. M. Levy, Remote computation in a heterogene
	B. N. Bershad, E. D. Lazowska, and H. M. Levy, Presto: A system
	A. Black et al., Distribution and abstract types in Emerald, Uni
	T. L. Casavant and J. G. Kuhl, A taxonomy of scheduling in gener
	R. Chin and S. Chanson, Distributed object-based programming sys
	Object Management Group, The common object request broker: Archi
	D. L. Eager, E. D. Lazowska, and J. Zahorjan, A comparison of re
	J. A. Feldman, High level programming for distributed computing,
	P. B. Gibbond, A stub generator for multi-language RPC in hetero
	A. Hac, Load balancing in distributed systems: A summary, Perfor
	C. A. R. Hoare, Monitors: An operating system structing concept,
	R. H. LeBlanc and C. T. Wilkes, Systems programming with objects
	E. Levy and A. Silberschatz, Distributed file systems: Concepts
	B. Liskov and R. Scheifler, Guardians and actions: Linguistic su
	B. Liskov and L. Shrira, Promises: Linguistic support for effici
	F. Manola et al., Distributed object management, Int. J. Intell.
	J. H. E. A. Morris, Andrew: A distributed personal computing env
	R. Mirchandaney, D. Towsley, and J. Stankovic, Adaptive load sha
	O. M. Nierstrasz, Hybrid: A unified object-oriented system, IEEE
	D. E. A. Notkin, Interconnecting heterogeneous computer systems,
	G. E. A. Popek, LOCUS: A network transparent, high reliability d
	M. L. Powell and B. P. Miller, Process migration in DEMOS/MP, in
	A. S. Tanenbaum and R. V. Renesse, Distributed operating systems
	R. N. E. A. Taylor, Foundations for the Arcadia environment arch
	M. M. Theimer and B. Hayes, Heterogeneous process migration by r
	B. E. A. Walker, The LOCUS distributed operating system, present
	S. A. E. A. Yemini, Concert: A heterogeneous high-level-language
	B. N. E. A. Bershad, A remote procedure call facility for interc
	M. Satyanarayanan, Scalable, secure, and highly available distri
	R. H. Campbell et al., Principles of object oriented operating s
	A. Chervenak et al., The data grid: Toward an architecture for t
	I. Foster et al., Software infrastructure for the I-WAY high per

	Globus Project . Globus.
	K. Czajkowski, A resource management architecture for metacomput
	K. Czajkowski, I. Foster, and C. Kesselman, Co-allocation servic
	K. Czajkowski et al., SNAP: A protocol for negotiating service l
	K. Czajkowski et al., Agreement-based service management (WS-agr
	I. Foster and C. Kesselman, Globus: A metacomputing infrastructu

	Legion Web pages (1997). [Online] . Available: http://www.legion
	A. S. Grimshaw, J. B. Weissman, and W. T. Strayer, Portable run-
	P.-C. Yew, N.-F. Tzeng, and D. H. Lawrie, Distributing hot-spot
	G. Stoker et al., Toward realizable restricted delegation in com
	A. S. Grimshaw, The ROI case for grids, Grid Today, vol. 1, no.

