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Abstract

The conventional wisdom in the scientific computing community is that the best way to solve large-
scale numericdly-intensive scientific problemsontoday’s paralel MIMD computersisto use Fortran or C
programmed in a data-parall el style using low-level message-passing primitives. This approacd inevitably
leads to non-portable codes and extensive development time, and restricts parallel programming to the
domain of the expert programmer. We believe that these problems are not inherent to parallel computing
but are the result of the programming tools used. We will show that comparable performance can be
achieved with little effort if better tools that present higher level abstradions are used. The vehicle for our
demonstration is a 2D electromagnetic finite dement scatering code we have implemented in Mentat, an
object-oriented parallel processing system. We briefly describe the application, Mentat, the implementa-
tion, and present performance results for both aMentat and a hand-coded perallel Fortran version.!

1.0 Introduction

Developing scientific gpplications on current parallel computers is difficult due to the absence of suit-
able programming tools and models to manage the complex details of parallel programming. The vast
majority of today’s systems are programmed in an architecture-specific way using low-level message-
passing primitives that are hard to use and lead to nan-portable wdes. These systems are typically pro-
grammed in Fortran o C in a data-paralld SAMID style. We believe that the problem lies not with the
architectures, but with the tods that have been used to program them. We will show in this paper that one
can parallelize area scientific application and oliain good performance with little efort if the right tools
are used.

Thetod that we have used is Mentat [4], an object-oriented parallel processing system developed at the
University of Virginia. Using Mentat, the user isresponsible for identifying ohed boundaries and specify-
ing those object classes that have sufficient computational complexity to warrant parallel execution. The
Mentat compiler and run-time system are responsible for managing all aspects of communicétion, synchro-
nization, and scheduling for the user. Mentat performs tasks that humans perform poorly, while the pro-

1. Thiswork has been partialy funded by grants NSF ASC-9201822, JPL-959303 and NASA NGT-50970.



grammer performs tasks (data and program decomposition) that compilers perform poarly. Thus, Mentat
exploits the apabilities of both compil ers and humans. Mentat is currently available on a range of plat-
forms from networks of heterogeneous workstations to tightly couged machines such as the Intel iPSC/
860. An important benefit of the Mentat approach is that applications developed on ore platform are
source mde-portable from one platform to ancther. This eliminates another problem common to writing
software for parall el architectures, that applications are not portable across platforms.

The vehicle for our demonstration is a 2D eledromagnetic finite element scattering code (EM). The
application was chosen for three reasons: 1) it isareal, nontrivial, scientific code; 2) the sequential For-
tran code was readily available; and 3) the application had previously been hand parallelized for anumber
of MIMD computers (Caltech/JPL Mark 111fp Hypercube, Intel iPSC/860, and Intel Delta) using explicit
message-passng rimitives, providing us with the opportunity to compare the performance of hand gener-
ated parallelism against our compiled Mentat version. The code computes the electric or magnetic field on
an urstructured finite dement mesh which defines the scattering objects as well as the space surrounding
it.

Our work onthe Mentat implementation d this code focuses on two isales: what isthe overhead penalty
which must be paid in order to use Mentat for this application, and how easy isit to apply Mentat to a sci-
entific gpplication like the finite dement scattering code. What we have found is that the gplication
domain mapped well to the objed-oriented paradigm, and that the performance of the Mentat version is
comparable to the hand-coded version. For the initial version of the Mentat implementation, described
here, the latter claim is only true for small numbers of processors. An optimized version o the Mentat
implementation is also discussed. This version addresses the shortcomings in the initial version and has
much better scding properties. The results of the initial and gotimized Mentat versions are presented.

This paper is organized as follows. Section 2 dscusses the EM application and finite dement method.
Section 3 povides an overview of Mentat. Section 4 dscusses the object-oriented redesign o the EM
applicaion. Sedion 5describes the parallel EM implementation via Mentat. Section 6 presents ome pre-
liminary results obtained with the Mentat version, and Section 7 provides a summary and future work.

2.0 The EM Problem

The finite element method (FEM) has been in use for many yeas in structural mechanics [9] and has
become popular in recent years as a technique for use on eledromagnetic problems [12]. FEM has the
advantage of being able to deal with the specific geometry of objects by using wnstructured gridding which
follows an olject’s shape. This can be of particular importance in EM scattering problems, where the cor-
rect representation o a scatterer’'s surfaceis necessary for accurate computation. Finite elements are used
in2 and 3 dmensional electromagnetic scattering problems to mode objects of complex composition. The
“hand-coded” FEM code has been implemented onseveral MIMD computers, using explicit message pass-
ing. A complete description d this code, dlongwith parallel implementation description and performance,
isfoundin [2]. For this work, we have concentrated ona 2D FEM problem.



The general scatering problem solved by the 2D EM code is illustrated in Fig. 1. The code solves a
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Figure 1. The General 2D EM Scattering Problem

Helmholtz equation for the eledric or magnetic fieldsin the vicinity of a set of scéterers:

[HEQ,
° + . =
l O O eE 0 (1)
Here E isthe dectric field, and 1 and € are materials constants. An absorbing bourdary condition on the
boundary I uniquely specifies the problem. The finite element method solves the eguivalent “weak form”
integral equation:
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The bourdary conditionis mcorporated into the surface mtegral onl.

The 2D integral equation is transformed into a set of linear equations by decomposing the problem
domain into a set of finite e ements. The problem domain Q is meshed with nadal points at which the solu-
tionisto be found, matching the geometry of the objects. These nodes are then tiled with a set of finite ele-
ments as in Fig. 2. In 2D, the elements might be triangles or quadrilaterals. A set of basis functions are
defined at each nock in the mesh, which have nonzero value only within the dements of which it is a part.
These basis functions are generally some polynomial function which is 1 at the node defining it, O at all
other nodesin the dement, and 0along the edges of the dement oppasite the defining node. An exampl e of
alinear basis function at anode in a section d finite dement mesh is given in Fig. 3. The function is cor+
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Figure 2. A Simple Finite Element Mesh Figure 3. Node-based Linea Basis Function

tinuous inside and aaoss elements, dropping to zero at the dement edges which do rot intersed the node.
On all other elements in the grid, the basis functionisidenticadly zero.

The field quantities (electric or magnetic) may be expressed as alinea combination d these basis func-
tions:

E(x) = ) di&i(x) ®)

where &;(x) is the basis function at the ith node, and d; is its coefficient in the representation for E.
Notice that since, by definition, all other basis functions are 0 at node i, the value of d; isin fad the value

of E at the ith node. We dso write the test function T in terms of these basis functions. Substituting these
into Eq. (2), and recognizing that the test function T must be arbitrary results in a matrix equation for the
field coefficients di:

K =F 4
where d is the vector of field coefficients d; from Eq. (3), and K and F, known as the stiff ness matrix

and force vector, are given hy expressions involving integrals of individual basis functions or products of
basis functions. Since dl basis functions are locdized to a handful of finite dements, these integrals are
nonzero ony for thase elements which contain the basis functions involved. This results in a K matrix
which is quite sparse. As amatter of practice, these integrals are mmputed onan element by element basis,
with each element’ s contributionto K and F added inits turn. In this manner, the cmplexity of integrating
over adomain of irregular geometries is reduced to integrating over a set of regular finite sized elements.

Thisisthe basic finite element method. The EM finite dement application consists of two primary com-
putation phases: 1) matrix assembly and 2 matrix solve. In matrix assembly, the finite elements compute



contributions (i.e. matrix values) that are assembled (i.e. added) into the stiffnessmatrix K. The stiffness
matrix is banded and symmetric, in addition to being very sparse. During matrix assembly, the force vedor
F is dso computed by the elements. This vector beaomes the right-hand-side vector during the matrix
solve computation.

In matrix solve, the system of equations represented by the stiffnessmatrix with the force vector as the
right-hand-side, is solved by a conjugate-gradient algorithm known as Bi-conjugate gradient [10]. The
algorithm requires three basic operations: matrix-vedor multiplication, vector dot product, and vedor
saxpy. The solve phase poses challenges to achieving good performance on parallel machines due to the
sparse nature of the matrix-vector operations.

3.0 Mentat Overview

Mentat is a parallel objed-oriented programming environment developed at the University of Virginia
Mentat was designed to address two problems that plague programming paralel MIMD architectures.
First, writing parallel programs by hand is very difficult. The programmer must manage communication,
synchronization, and scheduling. The burden of corredly managing the environment often overwhelms
programmers, and requires a mnsiderable investment of time and energy. Second, onceimplemented ona
particular MIMD architedure, the resulting codes are usually nat portable. Thus, considerable dfort must
be re-invested to port the gplication to a new architecture.

Mentat offers a solutionto these problems by providing: 1) easy-to-use parallelism; 2) high performance
via parallel execution; and 3) applications portability acoss awide range of platforms. The premise under-
lying Mentat is that writing programs for parallel machines does not have to be hard. Instead, it isthe ladk
of appropriate astractions that has kept paralld architecures difficult to program, and hence, inaccessible
to mainstream, production system programmers.

The Mentat approach exploits the object-oriented paradigm to provide high-level abstractions that mask
the complex aspects of paralel programming, communication, synchronization, and scheduling from the
programmer. Instead o worrying about and managing these details, the programmer is free to concentrate
on the details of the gplication. The programmer uses application domain knowledge to specify those
object classes (Mentat classes) that are of sufficient computational complexity to warrant parallel execu-
tion. The remaining complex tasks are handled by Mentat.

There ae two primary components of Mentat: the Mentat Programming Language (MPL) [5] and the
Mentat runtime system [6]. MPL is an olject-oriented programming language based on C++ [13] that
masks the complexity of the parallel environment from the programmer. Mentat classes consist of corn-
tained oljects (local and member variables), their procedures, and athread of control. Instances of Mentat
classes, known as Mentat objeds, are the computation grains. Because Mentat is based onalayered virtual
machine model, and each layer introduces some amount of overhead, Mentat classes must be medium-to-
large grained to mask these overheads.



Mentat classes are denoted by the inclusion of the keyword “mentat” in the classdefinition, as in the
mentat class arse worker shown below. Mentat classes may be defined as either persistent or regular.

persistent nentat class sparse_worker {
/1 private data and function nenbers
public:
conpl exvec* mvec_mult (conpl exvec* vec);

b

Instances of regular Mentat classes are logicdly stateless, thus the implementation may creae anew
instance to hand e every member function invocation. Persistent Mentat classes maintain state information
between member function invocations. This is an advantage for operations that require large anourts of
data, or that require persistent semantics. Instances of Mentat classes are used exadly like C++ classes, as
in the fragment below. One differenceis that persistent Mentat objects are instantiated by the create com-

spar se_wor ker wor ker;

wor ker.create ();
result = worker.mvec_mul (rhs_vec);

mand.

Mentat supports a nation of parallelism encapsulation. Parallelism encgpsulation takes two forms that
we al intra-object encapsulation and inter-object encapsulation. Intra-object encapsulation d parallelism
means that cdlers of a Mentat object member function are unaware of whether the implementation of a
member function is sequential or paralel. Inter-objed encapsulation o paralelism means that program-
mers of code fragments (e.g., aMentat object member function) need nd concern themselves with the par-
alel exeaution goportunities between the different Mentat object member functions they invoke. Thus, the
data and control dependencies between Mentat class instances involved in invocation, communication, and
synchronization are automatically detected and managed by the compiler and run-time system without fur-
ther programmer intervention.

The computation model underlying Mentat is the macro data flow model [6], alarge-grain, graph-based,
data-driven computation model. The Mentat run-time system supports the macro data flow model via the
provision of avirtual maao data flow machine. Because the compiler uses avirtual machine modd, port-
ing applications to a new architecture does not require any user source level changes. Once the virtua
machine has been ported, user applications are re-compiled and can execute immediately.

Mentat runs on Sun 35, Sun 4s, the Intel iPSC/2 and iPSC/860, and the Silicon Graphics Iris. We are
currently porting Mentat to the IBM RS-600Q TMC CM-5 and the Intel Paragon. Performance resultsona
range of applications are available, and are quite encouraging [7].

4.0 Object-Oriented EM Design

Convwerting the sequential Fortran EM code into a parallel object-oriented code via Mentat requires two
major steps: 1) porting the existing code to a sequential objed-oriented language (C++) and 2) porting the



C++ implementation to Mentat. Both 1) and 2) pose different challenges. The Mentat conversion will be
discussed in the next section. The C++ conversion requires aredesign or “paradigm shift” from the Fortran
domain to the object-oriented domain. Thisisanontrivial conversion even before opportunities for paral-
lelism are considered. The use of global structures, aliasing, and the lack of data abstraction in Fortran
made the transition to C++ challenging.

4.1 The Approach

There ae severa approaches that can be taken to convert an existing Fortran implementation to C++,
and of these we considered two candidates. 1) reuse the Fortran artifact and wrap C++ classes aroundthe
existing code and 2 redo everything in C++ Although we operated on a very short time budget, we felt
that option 2 was clearly the best choice since this affords us the greatest flexibility in experimenting with
different problem decompositions. We also believe that a“pure” object-oriented system is easier to extend
than a mixed-language implementation. Since this work is part of a ontinuing research effort, thisis an
important factor. The down-side is a performance loss experienced in the sequential object-oriented code
due to disparities in current compiler technology and the quality of existing Fortran numeric libraries. We
exped this gap to close in the future, however.

Our approach then was to treat the Fortran code as a functional specification o the behavior of the EM
application at an algorithmic level. For example, the element computation implementation in C++ mir-
rored the Fortran. The Fortran code was used as a guide or reference for low-level details and the mathe-
matics. At the high-level, we seleded a class-object hierarchy that reflected our knowledge of the problem
domain. Once anatural class gructure was established, we inspeded the Fortran code for algorithmic
details that were necessary to faithfully reimplement the numeric computations encapsulated in the C++
member functions.

During this conversion the main dfficulty was the lack of data abstradion in the Fortran code - thisis
nat surprising since Fortran daesn’t support this notion. The data structures were typically represented as
collections of separate arays. Datathat was|ogically connected had to beinferred byits use or by the code
comments. An example of this was the ésence of an explicit representation for the dements themselves.
The implicit element representation was scattered across numerous global arrays. The object-oriented
approach requires just the opposite: that logicdly-connected data be represented together and encapsu-
lated. Anocther difficulty with the conversion was the use of complex numbers extensively in the Fortran
code. We had to implement afairly extensive mmplex classin C++ Our implementation was less efficient
than the built-in, optimized, complex data type provided by Fortran.

One of the research oljedives of thiswork is to consider the effort involved in converting existing sci-
entific goplications to an dbject-oriented patform (C++) and then to Mentat. The port from the sequential
Fortran implementation to a fully tested C++ code took two graduate students six weeks (about one man-
month of effort). Part of this time was needed to gain familiarity with the problem domain, which was
unfamiliar, and to review the details of Fortran. We feel that the short time frame validates our decision to
implement a C++ version and also provides further evidence for the suitability of the object-oriented para-
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Figure 4. Finite element class hierarchy

digm as applied to scientific applications like the EM problem. However, while this evidence suggests a
godd fit between the objed-oriented paradigm and this particular problem domain, there are performance
trade-offs. These are discus<ed in the final section.

4.2 C++ Classes

The heart of the sequential EM implementation is its decomposition into C++ classes. Some of the C++
classes will become parallel or Mentat classs in the paralel EM implementation. Discussion of Mentat
classes is deferred urtil the next section. The problem domain can be broken down into two pheses. ele-
ment assembly and matrix solve. The class-object hierarchies reflect this decomposition.

The first phase invalves the finite element computations needed to construct the sparse stiffness matrix
and right-hand-side vector. During this phase, each element computes a contribution to the matrix. We rep-
resented the dements as C++ objects contained within afinite dement class hierarchy, shownin Fig. 4.

The hierarchy is rooted by the virtual base classelement and the derived classes reflect the different
types of finite elementsthat are used in EM problems. The element type depends both onthe physical char-
acteristics of the material (e.g. 2D/3D or triangle/quadrilateral), and on the way the element computes its
matrix contribution (e.g. 3pt/6pt quadrature). A part of the C++ specification for the finite element hierar-
chy isshownin Fig. 5.

The dement representation is smply the nodal points that define its boundaries. The derived classes
contain element-specific information, such as the basis functions, that are needed in the dement computa-
tions. The dement contributions are computed by get_kf and are assembled into the sparse stiffness matrix
during the first phase. This sparse matrix is dored asalist of sparse vectors, each row isrepresented bythe



/1l Base class of the el enent hierarchy
class el enment {

int *nodes; // nodal points

i nt num nodes;

publi c:
[/ returns matrix and force-vector contributions
virtual KF_contrib* get kf ();
el enent ();

s

/1 3pt triangle 2D el enent
cl ass 2D 3pt_elenent : 2D el ement {
/! basis fns

publ i c:

KF_contrib* get _kf ();

2D 3pt _el enent (int *nodes, ...);
1

Figure 5. Finite element class specification

sparse_vec class. The sparse matrix isaspecia class known as a Mentat class and thisis discussed in the
next sedion.

During the second phase of the computation, matrix solve, “dense” vectors of complex numbers are
computed by the application. The representation of complexvec is a memory-contiguous variable-sized
array of complex type. The complexvec class ecificaion isgivenin Fig. 6. Memory contiguity isimpor-
tant in the parallel domain for objects that are transported between address spaaes (such as objects of type
complexveq).

Both the sparse vec and complexvec dasses had been implemented previoudy and we were able to
reuse them with dight modification (to use ammplex numbers). The C++ classes form the basis for the par-
allel EM design. The remaining C++ classesin the goplication have adual role: these classes can betreated
as C++ classes asin the sequentia version a as Mentat classes in the parallel version. These are discussed
next. In the next sectionwe will aso show how everything fits together in the parallel EM implementation.

5.0 Mentat EM Design

The design decisions that guided the transformation from the sequential Fortran implementation to the
sequential C++ were motivated by three fadors: 1) flexibility/extensibility, 2) fidelity and 3) support for



cl ass conpl exvec : public DD array {
int start_index, range;
/1 menory continguous representation
conpl ex a[1];
public:
conpl exvec (int cols);
compl exvec* saxpy(conpl exvec *f, conpl ex& m;
compl exvec* ssxpy(conpl exvec *f, conpl ex& m;
conmpl exvec* dot _product (conpl exvec* f);

Fig. 6. Complexvec classspecification

parallelization. Points 1) and 2) have been discussed and this section addresses point 3), transitioning to the
parallel EM code.

Theparallel EM code is based onthe parallel object-oriented model of computation provided by Mentat.
While the design d the parallel EM code is concerned with points 1) and 2) above, it is driven by perfor-
mance and scalability. In the parallel domain, the most critical factors affecting performance ae computa-
tion granularity and load balance. In Mentat, computation granularity is specified via a medanism known
as Mentat classes, and load balance is achieved by an even partitioning of work across the instantiated
Mentat objeds.

The parallel EM system design based on Mentat is illustrated in Fig. 7. The asembly (phase 1) and
solve computations (phase 2) are shown. The remainder of this sction will describe the Mentat classes
used, the rationale for choosing them, and aher important details of the parallel EM design and Mentat
implementation.

The seledion of Mentat classes is based upon exploiting oppartunities for paralelism and achieving an
acceptable computation granularity given Mentat overheads and the dharaderistics of the target architec-
ture. Our target isthe Intel iPSC/860, a very unbalanced machine in which communication costs dominate
computation costs by several orders of magnitude. The Mentat classes will need to be “computationally
heavy”, i.e. large-grained, to achieve reasonable performance given these factors. The EM application per-
forms two main computations, element assembly and matrix solve, and these will be implemented via
Mentat classes.

For element assembly, there ae many opportunities for parallelism since the element computations are
independent and may proceed in parallel. To exploit maximal parallelism, we would turn the finite dement
classes (of Fig. 4) into Mentat classes. However, a single element assembly computation is too fine-
grained for Mentat and this will lead to urecceptably poor performance. Instead, we define aMentat class

10



problem elmt_coll[] K sparse_worker []

(1..01) /@

elements

Phase 1 - assembly Phase 2 - solve

Figure 7. Parallel EM architecture

persistent nmentat class elnt _coll {
el enent** el enent s;
int element_num

public:
/1 element setup and partitioning
void initialize (string *f, int i, int numcoll);

/1l conpute and assenble all elenents
voi d assenble (sparse_matrix *K, svector *F);

Figure 8. Mentat class elmt_coll spedfication

which computes the cntributions for a wllection o elements, elmt_coll, see Fig. 8. Notice that the
el nt _col | classcontains C++ objects (of type element) as part of its representation.

A number of el mt _col | objeds are instantiated at runtime and each computes in paralel. Each
el m _col | isasdgned enough elements to achieve an acceptable computation granularity. The number
of el mt _col |l obeds instantiated and how the individual elements get assigned to a particular
el m _col | are discussed later. Once the el nt _col | s compute the matrix contributions and right-
hand-side force-vedor values associated with their contained elements (via get_kf), these values must be

11



persistent nmentat class sparse_matrix {
/1 sparse_matrix representation
sparse_vec** matrix;
int size;

/'l sparse_worker information
i nt num workers;
spar se_wor ker* workers;

publi c:
/1 Each elnmt _coll assenbles to matrix
void assenble (K list* K contrib);

/1 Solve matrix equation using rhs vector F
voi d sol ve (svector* F);

/1 Set up matrix with nunber of workers
void initialize (int numworkers);

Figure 9. Mentat class garse_matrix specification

assembled into the stiffnessmatrix and force-vector respectively. The assemble member function defined
onel nt _col | initiatesthe dement computations and invokes an assemble operation on the matrix. The
Mentat class sparse_matrix represents the stiffness matrix, see Fig. 9. Matrix assembly is performed via
the member function assemble called by each el nt _col | . The definition of the Mentat class svector,
the force-vedor, is omitted.

Most of the computation time is spent in the matrix solve phase. The solve computationis performed by
an iterative precondtioned Bi-conjugate gradient algorithm (BCG) [10] implemented by the solve mem-
ber function d the Mentat class spar se_mat ri x. Our implementation exploits the most profitable
opportunity for paralelism in the algorithm, namely the sparse matrix-vector multiplications done in each
iteration of the BCG algorithm.

Parallelizing the matrix-vector multiplications requires that ancther class Mentat class, sparse_worker,
be defined, seeFig. 10. Thespar se_wor ker classisresporsible for performing matrix-vedor multipli-
cation on dgjoint regions of the sparse matrix. A number of spar se_wor ker objects are instantiated at
runtime, and the sparse_natri x is partitioned into row-contiguous regions and dstributed to the
spar se_wor ker objects. Thisisdoneviathespar se_wor ker member function initialize. Once the
spar se_mat ri x has been distributed fully to the spar se_wor ker objects, the sparse_nmatri x
object engages the spar se_wor ker s in paralel matrix-vedor multiply operations (viam_vec_mult)
repeatedly during the solve phase. The sparse workers are encapsulated within the
spar se_mat ri x (Fig. 9) and this has performance implications as we will see.

12



persistent nmentat cl ass sparse_worker {

publ

/1l sparse_worker representation
sparse_vec** my_rows;

/1 region of global matrix stored by worker
region my_reg;

/1 partial result for matrix-vector multiply
compl exvec* result;

ic:

[/ Distributes rows to worker

void initialize (sparse_vec_list* sparse_rows,...

/1 Sparse nvec nultiplication
conpl exvec* mvec_nult (conpl exvec* vec);

Figure 10. Mentat class sparse_worker spedfication

#i f def Ment at

persistent nmentat cl ass sparse_worker {
#el se

cl ass sparse_worker {

#endi f

/! as above

b

Figure 11. Dua Mentat/C++ classspecification using “ifdefs”
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The Mentat classes, sparse_natri x, el nt _col |, and spar se_wor ker, reflect the mmputa-
tionally-intensive phases of the application and result in a granularity suitable both for Mentat and the tar-
get architecture. These dasses also alow sufficient parallelism in the application to be exploited. One
important advantage of Mentat is that the serial EM code requires only afew “ifdefs’ to turn these Mentat
classesinto C++ classes (see Fig. 11) - under 20 lines of code ae unique to either the serial or paral el ver-

At runtime, the programmer specifies the number of el m _col | objects for the assembly phase and
the number of spar se_wor ker objects for the solve phase. The number of objeds shoud match the
total number of available processors assuming the granularity is sufficient. For large applications, thisis
usually the case. On the iPSC/860 wnder NX, only one objed (i.e. process) may be placed on a processor.
Sincethese phases are non-overlapping (i.e. solve does nat begin until assembly has compl eted), the num-
ber of el nt _col | sand spar se_wor ker swill be the same.




Achieving acceptable performance in the parallel EM code depends upon god load balance. It is suffi-
cient to load balance the assembly and solve phases sparately since they are independent - only a synchro-
nizaion between these phasesis needed. The assembly load balance requiresthat theel nt _col | objects
each perform about the same amount of computation. An even partition of the dements across the
el m _col | swould seem to be an easy solution. However, the general EM problem will contain ele-
ments of different types - more cmplex elements require more computation to determine matrix contribu-
tions. A goodload balance solution ensures that each elmt_coll has roughly the same number of elements
of each type. As as approximation to this, our implementation randomizes the dement input files and ran-
domly assigns elements to the elmt_coll objects.

Similarly, load balancing the solve phase requires that the spar se_wor ker objects are evenly bal-
anced for the matrix-vedor multiplications. An even partition of the sparse_matri x across the
spar se_wor ker smay nat lead to load balance since the matrix has non-uniform sparsity (i.e. the num-
ber of nonzeros per row differs) and anly non-zeo pasitions of the matrix will be multiplied by the
spar se_wor ker s. Instead, load balancing is achieved by ensuring that each spar se_wor ker has
about the same number of non-zerosin the matrix region that it has been assgned. Note that the number of
rows assigned to each spar se_wor ker will, in general, be different.

The initial parallel EM design has a number of flaws that limit the scdability and performance of the
system. The most obviousas e clearly in Fig. 7 isthat asinglespar se_mmat ri x objed isabottlenedk
for both matrix assembly and matrix solve. During the solve phase, partial results from the matrix-vedor
multiplies are fanned into the spar se_mat ri X, thus creating acommunication bdtleneck. The problem
is due to the encapsulation of the spar se_wor ker s within the sparse_matri x. Thisis a classic
problem with the object-oriented paradigm. The singlespar se_nat ri x objed also limitsthe size prob-
lemsthat can be run sincethe entire matrix is assembled in one aldressspace before it is distributed to the
spar se_wor ker s. Furthermore, no attempt was made to parall elize the dot products that occur within
the BCG loop. These dat products are a good source of parallelism, especially for large vectors. The opti-
mized version of the parallel EM design has addressed all of these problems.

Once the C++ version df the EM code had been fully implemented and tested, the Mentat version (about
3000 lines of code) took two weeks to complete. One of the major problems we had with Mentat on the
iPSC/860 was the need to force aithmetic operands to be double-word aligned to get good performance on
this machine. This required some low-level pointer code and was time-consuming to implement and test.
The memory battleneck impased by the singlespar se_mat ri x objed did not allow our EM problem to
fit on a8MB iPSC/860 nade & ORNL, a 128 nock machine. We eventually ran on a 16MB/node iPSC/860
at Caltech. Fortunately, the Mentat system binaries ported smoothly to the Caltech machine - no recompi-
lation of the Mentat system code was necessary.

6.0 Preliminary Results

The initial Mentat EM code was developed onan 8-node Intel iPSC/860at JPL and run on a 64-node
Intel iPSC/860 at Caltech. The data collected are from an EM application that consisted of 2304 9pt quad-
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Speedup for Parallel FEM in Mentat (Dielectric Cylinder — 9313 nodes)
1 : i : —+ Problem Setup
] : : ; ® Assembly
127 < Assembly+Distribute |
] i i i < - Solve
] H : ! >< Total
107 :
£ ] ; ; ;
> 7 i i i
1 : : : -
6 :
] : : -
z . < ¢
SE R i i
] e - = —+ -+
o i i i ; ; ;
@) 2 4 8 10 12 14 16
Processors
Figure 12. Paralel EM performance with initial Mentat version

rilateral elements (9313 nodes). Thisis considered a small problem. We computed speedups with respect
to the sequential C++ EM coderun onasingle i860node, see Fig. 12.

Theresults are divided into the several phases: 1) problem setupisthetimetaken for theel mt _col | s
to read the dement files from CFS and create the dement partitions, 2) assembly is the time taken for the
el m _col | stocomplete the matrix assembly operations, 3) assembly and distribute includes the time to
distribute the matrix out to the workers, 4) solve is the time taken for the matrix solve operation, and 5
total isthe total time taken bythe gplicaion. We shoud reiterate that virtually no ogimization of theini-
tial Mentat version hed been performed.

Our results are compared with a hand-coded optimized parallel Fortran EM implementation that has
been in development for some time. We expected the performance to be worse than the hand-coded ver-
sion, but how much? The results indicate that this is indeed the case, but speedups were atieved even
thoughthe problem was small and the given implementation limitations that have been dscussed, seeFig.
13. Comparison of the Mentat and the hand-coded versions indicates that the Mentat implementation is
competitive with the hand-coded for small numbers of processors, but that performance doesn’t scae well
as the number of processors isincressed. This is due to the limitations that have been discussed, namely
thespar se_mat ri x bottlened for assembly and matrix-vector communication, and the sequential dot
productsin the solver. It is not surprising that the initial Mentat version does not scale given the design.

The optimized Mentat version does nat suffer from this problem and the comparative performance is
presented in Fig. 14. These results indicate that the optimized Mentat version is alingin a manner similar
to the hand-coded Fortran. The assembly phase scdes identically to the hand-coded while the solve phase
scales almost as well. The dlight discrepancy is probably due to Mentat overheads often seen for small
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Figure 13. Comparison of initial Mentat version to hand-coded EM version

problems. For larger problems this overhead is often amortized by the computation. We expect the perfor-
mance of the Mentat version to more closely match the hand-coded for larger problems.

C%méwporimg Speedups for Mentat and Hand—coded EM (Dielectric Cylinder)
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Figure 14. Comparison of optimized Mentat version to hand-coded EM version
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7.0 Summary and Future Work

The early results of the research are encouraging. The initial design and implementation o the parallel
EM code using Mentat took under two mornths, including the time to perform the “paradigm shift” from
Fortran to C++ Thisindicates to usthat the parallel object-oriented model in general, and Mentat in partic-
ular, is well-suited to this problem domain. What we have found is that the EM problem has a natural rep-
resentationin a object-oriented framework and performanceis encouraging. We have dso provided further
evidencethat Mentat is an easy-to-use programming environment for developing parallel object-oriented
scientific applications.

Other researchers have begunto report on the experience of using oljed-oriented implementation tech-
niques for scientific problems [1,3]. Our experience is smilar to [1] in that programmer efficiency seems
to be amore dea benefit than exeaution efficiency at present. The authors [1] report that the C++ perfor-
mance iswithin an order of magnitude of the Fortran code (oursiswithin afactor of 2-3), andthat this pro-
vides some hope.

While the Mentat version has smilar scaling properties to the hand-coded version, total elapsed times
are not as good due to inefficiencies in the serial portions of the code. Some of this inefficiency can be
attributed to superior numeric libraries and compiler optimizationsin Fortran relative to C++ Future work
addressing the seria bottlenecks is needed.
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