
1

Parallel Object-Oriented Computation Applied to a Finite
Element Problem

Jon B. Weissman and Andrew S. Grimshaw
Department of Computer Science

University of Virginia

Robert Ferraro
Jet Propulsion Laboratory/Cali fornia Institute of Technology

Abstract

The conventional wisdom in the scientific computing community is that the best way to solve large-

scale numerically-intensive scientific problems on today’s parallel MIMD computers is to use Fortran or C

programmed in a data-parallel style using low-level message-passing primitives. This approach inevitably

leads to non-portable codes and extensive development time, and restricts parallel programming to the

domain of the expert programmer. We believe that these problems are not inherent to parallel computing

but are the result of the programming tools used. We will show that comparable performance can be

achieved with little effort if better tools that present higher level abstractions are used. The vehicle for our

demonstration is a 2D electromagnetic finite element scattering code we have implemented in Mentat, an

object-oriented parallel processing system. We briefly describe the application, Mentat, the implementa-

tion, and present performance results for both a Mentat and a hand-coded parallel Fortran version.1

1.0 Introduction

Developing scientific applications on current parallel computers is diff icult due to the absence of suit-

able programming tools and models to manage the complex details of parallel programming. The vast

majority of today’s systems are programmed in an architecture-specific way using low-level message-

passing primitives that are hard to use and lead to non-portable codes. These systems are typically pro-

grammed in Fortran or C in a data-parallel SPMD style. We believe that the problem lies not with the

architectures, but with the tools that have been used to program them. We will show in this paper that one

can parallelize a real scientific application and obtain good performance with little effort if the right tools

are used.

The tool that we have used is Mentat [4], an object-oriented parallel processing system developed at the

University of Virginia. Using Mentat, the user is responsible for identifying object boundaries and specify-

ing those object classes that have sufficient computational complexity to warrant parallel execution. The

Mentat compiler and run-time system are responsible for managing all aspects of communication, synchro-

nization, and scheduling for the user. Mentat performs tasks that humans perform poorly, while the pro-

1. This work has been partially funded by grants NSF ASC-9201822, JPL-959303 and NASA NGT-50970.

2

grammer performs tasks (data and program decomposition) that compilers perform poorly. Thus, Mentat

exploits the capabil ities of both compilers and humans. Mentat is currently available on a range of plat-

forms from networks of heterogeneous workstations to tightly coupled machines such as the Intel iPSC/

860. An important benefit of the Mentat approach is that applications developed on one platform are

source code-portable from one platform to another. This eliminates another problem common to writing

software for parallel architectures, that applications are not portable across platforms.

The vehicle for our demonstration is a 2D electromagnetic finite element scattering code (EM). The

application was chosen for three reasons: 1) it is a real, non-trivial, scientific code; 2) the sequential For-

tran code was readily available; and 3) the application had previously been hand parallelized for a number

of MIMD computers (Caltech/JPL Mark IIIfp Hypercube, Intel iPSC/860, and Intel Delta) using explicit

message-passing primitives, providing us with the opportunity to compare the performance of hand gener-

ated parallelism against our compiled Mentat version. The code computes the electric or magnetic field on

an unstructured finite element mesh which defines the scattering objects as well as the space surrounding

it.

Our work on the Mentat implementation of this code focuses on two issues: what is the overhead penalty

which must be paid in order to use Mentat for this application, and how easy is it to apply Mentat to a sci-

entific application like the finite element scattering code. What we have found is that the application

domain mapped well to the object-oriented paradigm, and that the performance of the Mentat version is

comparable to the hand-coded version. For the initial version of the Mentat implementation, described

here, the latter claim is only true for small numbers of processors. An optimized version of the Mentat

implementation is also discussed. This version addresses the shortcomings in the initial version and has

much better scaling properties. The results of the initial and optimized Mentat versions are presented.

This paper is organized as follows. Section 2 discusses the EM application and finite element method.

Section 3 provides an overview of Mentat. Section 4 discusses the object-oriented redesign of the EM

application. Section 5 describes the parallel EM implementation via Mentat. Section 6 presents some pre-

liminary results obtained with the Mentat version, and Section 7 provides a summary and future work.

2.0 The EM Problem

The finite element method (FEM) has been in use for many years in structural mechanics [9] and has

become popular in recent years as a technique for use on electromagnetic problems [12]. FEM has the

advantage of being able to deal with the specific geometry of objects by using unstructured gridding which

follows an object’s shape. This can be of particular importance in EM scattering problems, where the cor-

rect representation of a scatterer’s surface is necessary for accurate computation. Finite elements are used

in 2 and 3 dimensional electromagnetic scattering problems to model objects of complex composition. The

“hand-coded” FEM code has been implemented on several MIMD computers, using explicit message pass-

ing. A complete description of this code, along with parallel implementation description and performance,

is found in [2]. For this work, we have concentrated on a 2D FEM problem.

3

The general scattering problem solved by the 2D EM code is illustrated in Fig. 1. The code solves a

Helmholtz equation for the electric or magnetic fields in the vicinity of a set of scatterers:

(1)

Here E is the electric field, and µ and ε are materials constants. An absorbing boundary condition on the

boundary Γ uniquely specifies the problem. The finite element method solves the equivalent “weak form”

integral equation:

(2)

The boundary condition is incorporated into the surface integral on Γ.

The 2D integral equation is transformed into a set of linear equations by decomposing the problem

domain into a set of finite elements. The problem domain Ω is meshed with nodal points at which the solu-

tion is to be found, matching the geometry of the objects. These nodes are then tiled with a set of finite ele-

ments as in Fig. 2. In 2D, the elements might be triangles or quadrilaterals. A set of basis functions are

defined at each node in the mesh, which have nonzero value only within the elements of which it is a part.

These basis functions are generally some polynomial function which is 1 at the node defining it, 0 at all

other nodes in the element, and 0 along the edges of the element opposite the defining node. An example of

a linear basis function at a node in a section of f inite element mesh is given in Fig. 3. The function is con-

Scatterers

Problem Boundary Γ

E

H

k

Figure 1. The General 2D EM Scattering Problem

E∇
µ-------

 ω2

c2
------εE+∇ • 0=

d2v
T∇ E∇•

µ--------------------
ω2

c2------εET–

Ω
∫ ds

T
µ---

E∂
n∂------

Γ
∫=

4

tinuous inside and across elements, dropping to zero at the element edges which do not intersect the node.

On all other elements in the grid, the basis function is identically zero.

The field quantities (electric or magnetic) may be expressed as a linear combination of these basis func-

tions:

(3)

where ξi(x) is the basis function at the ith node, and di is its coefficient in the representation for E.

Notice that since, by definition, all other basis functions are 0 at node i, the value of di is in fact the value

of E at the ith node. We also write the test function T in terms of these basis functions. Substituting these

into Eq. (2), and recognizing that the test function T must be arbitrary results in a matrix equation for the

field coefficients di:

(4)

where d is the vector of field coefficients di from Eq. (3), and K and F, known as the stiffness matrix

and force vector, are given by expressions involving integrals of individual basis functions or products of

basis functions. Since all basis functions are localized to a handful of f inite elements, these integrals are

non-zero only for those elements which contain the basis functions involved. This results in a K matrix

which is quite sparse. As a matter of practice, these integrals are computed on an element by element basis,

with each element’s contribution to K and F added in its turn. In this manner, the complexity of integrating

over a domain of irregular geometries is reduced to integrating over a set of regular finite sized elements.

This is the basic finite element method. The EM finite element application consists of two primary com-

putation phases: 1) matrix assembly and 2) matrix solve. In matrix assembly, the finite elements compute

Figure 2. A Simple Finite Element Mesh Figure 3. Node-based Linear Basis Function

ξ(x)

E x() diξ i x()
i

∑=

K d⋅ F=

5

contributions (i.e. matrix values) that are assembled (i.e. added) into the stiffness matrix K. The stiffness

matrix is banded and symmetric, in addition to being very sparse. During matrix assembly, the force vector

F is also computed by the elements. This vector becomes the right-hand-side vector during the matrix

solve computation.

In matrix solve, the system of equations represented by the stiffness matrix with the force vector as the

right-hand-side, is solved by a conjugate-gradient algorithm known as Bi-conjugate gradient [10]. The

algorithm requires three basic operations: matrix-vector multiplication, vector dot product, and vector

saxpy. The solve phase poses challenges to achieving good performance on parallel machines due to the

sparse nature of the matrix-vector operations.

3.0 Mentat Overview

Mentat is a parallel object-oriented programming environment developed at the University of Virginia.

Mentat was designed to address two problems that plague programming parallel MIMD architectures.

First, writing parallel programs by hand is very difficult. The programmer must manage communication,

synchronization, and scheduling. The burden of correctly managing the environment often overwhelms

programmers, and requires a considerable investment of time and energy. Second, once implemented on a

particular MIMD architecture, the resulting codes are usually not portable. Thus, considerable effort must

be re-invested to port the application to a new architecture.

Mentat offers a solution to these problems by providing: 1) easy-to-use parallelism; 2) high performance

via parallel execution; and 3) applications portability across a wide range of platforms. The premise under-

lying Mentat is that writing programs for parallel machines does not have to be hard. Instead, it is the lack

of appropriate abstractions that has kept parallel architectures difficult to program, and hence, inaccessible

to mainstream, production system programmers.

The Mentat approach exploits the object-oriented paradigm to provide high-level abstractions that mask

the complex aspects of parallel programming, communication, synchronization, and scheduling from the

programmer. Instead of worrying about and managing these details, the programmer is free to concentrate

on the details of the application. The programmer uses application domain knowledge to specify those

object classes (Mentat classes) that are of sufficient computational complexity to warrant parallel execu-

tion. The remaining complex tasks are handled by Mentat.

There are two primary components of Mentat: the Mentat Programming Language (MPL) [5] and the

Mentat run-time system [6]. MPL is an object-oriented programming language based on C++ [13] that

masks the complexity of the parallel environment from the programmer. Mentat classes consist of con-

tained objects (local and member variables), their procedures, and a thread of control. Instances of Mentat

classes, known as Mentat objects, are the computation grains. Because Mentat is based on a layered virtual

machine model, and each layer introduces some amount of overhead, Mentat classes must be medium-to-

large grained to mask these overheads.

6

Mentat classes are denoted by the inclusion of the keyword “mentat” in the class definition, as in the

mentat class sparse_worker shown below. Mentat classes may be defined as either persistent or regular.

Instances of regular Mentat classes are logically stateless, thus the implementation may create a new

instance to handle every member function invocation. Persistent Mentat classes maintain state information

between member function invocations. This is an advantage for operations that require large amounts of

data, or that require persistent semantics. Instances of Mentat classes are used exactly like C++ classes, as

in the fragment below. One difference is that persistent Mentat objects are instantiated by the create com-

mand.

Mentat supports a notion of parallelism encapsulation. Parallelism encapsulation takes two forms that

we call intra-object encapsulation and inter-object encapsulation. Intra-object encapsulation of parallelism

means that callers of a Mentat object member function are unaware of whether the implementation of a

member function is sequential or parallel. Inter-object encapsulation of parallelism means that program-

mers of code fragments (e.g., a Mentat object member function) need not concern themselves with the par-

allel execution opportunities between the different Mentat object member functions they invoke. Thus, the

data and control dependencies between Mentat class instances involved in invocation, communication, and

synchronization are automatically detected and managed by the compiler and run-time system without fur-

ther programmer intervention.

The computation model underlying Mentat is the macro data flow model [6], a large-grain, graph-based,

data-driven computation model. The Mentat run-time system supports the macro data flow model via the

provision of a virtual macro data flow machine. Because the compiler uses a virtual machine model, port-

ing applications to a new architecture does not require any user source level changes. Once the virtual

machine has been ported, user applications are re-compiled and can execute immediately.

Mentat runs on Sun 3s, Sun 4s, the Intel iPSC/2 and iPSC/860, and the Silicon Graphics Iris. We are

currently porting Mentat to the IBM RS-6000, TMC CM-5 and the Intel Paragon. Performance results on a

range of applications are available, and are quite encouraging [7].

4.0 Object-Oriented EM Design

Converting the sequential Fortran EM code into a parallel object-oriented code via Mentat requires two

major steps: 1) porting the existing code to a sequential object-oriented language (C++) and 2) porting the

persistent mentat class sparse_worker {
// private data and function members
public:

complexvec* m_vec_mult (complexvec* vec);
...

};

sparse_worker worker;
...
worker.create ();
result = worker.m_vec_mul (rhs_vec);

7

C++ implementation to Mentat. Both 1) and 2) pose different challenges. The Mentat conversion wil l be

discussed in the next section. The C++ conversion requires a redesign or “paradigm shift” from the Fortran

domain to the object-oriented domain. This is a non-trivial conversion even before opportunities for paral-

lelism are considered. The use of global structures, aliasing, and the lack of data abstraction in Fortran

made the transition to C++ challenging.

4.1 The Approach

There are several approaches that can be taken to convert an existing Fortran implementation to C++,

and of these we considered two candidates: 1) reuse the Fortran artifact and wrap C++ classes around the

existing code and 2) redo everything in C++. Although we operated on a very short time budget, we felt

that option 2) was clearly the best choice since this affords us the greatest flexibil ity in experimenting with

different problem decompositions. We also believe that a “pure” object-oriented system is easier to extend

than a mixed-language implementation. Since this work is part of a continuing research effort, this is an

important factor. The down-side is a performance loss experienced in the sequential object-oriented code

due to disparities in current compiler technology and the quality of existing Fortran numeric libraries. We

expect this gap to close in the future, however.

Our approach then was to treat the Fortran code as a functional specification of the behavior of the EM

application at an algorithmic level. For example, the element computation implementation in C++ mir-

rored the Fortran. The Fortran code was used as a guide or reference for low-level details and the mathe-

matics. At the high-level, we selected a class-object hierarchy that reflected our knowledge of the problem

domain. Once a natural class structure was established, we inspected the Fortran code for algorithmic

details that were necessary to faithfully reimplement the numeric computations encapsulated in the C++

member functions.

During this conversion the main difficulty was the lack of data abstraction in the Fortran code - this is

not surprising since Fortran doesn’ t support this notion. The data structures were typically represented as

collections of separate arrays. Data that was logically connected had to be inferred by its use or by the code

comments. An example of this was the absence of an explicit representation for the elements themselves.

The implicit element representation was scattered across numerous global arrays. The object-oriented

approach requires just the opposite: that logically-connected data be represented together and encapsu-

lated. Another difficulty with the conversion was the use of complex numbers extensively in the Fortran

code. We had to implement a fairly extensive complex class in C++. Our implementation was less efficient

than the built-in, optimized, complex data type provided by Fortran.

One of the research objectives of this work is to consider the effort involved in converting existing sci-

entific applications to an object-oriented platform (C++) and then to Mentat. The port from the sequential

Fortran implementation to a fully tested C++ code took two graduate students six weeks (about one man-

month of effort). Part of this time was needed to gain familiarity with the problem domain, which was

unfamiliar, and to review the details of Fortran. We feel that the short time frame validates our decision to

implement a C++ version and also provides further evidence for the suitability of the object-oriented para-

8

digm as applied to scientific applications like the EM problem. However, while this evidence suggests a

good fit between the object-oriented paradigm and this particular problem domain, there are performance

trade-offs. These are discussed in the final section.

4.2 C++ Classes

The heart of the sequential EM implementation is its decomposition into C++ classes. Some of the C++

classes will become parallel or Mentat classes in the parallel EM implementation. Discussion of Mentat

classes is deferred until the next section. The problem domain can be broken down into two phases: ele-

ment assembly and matrix solve. The class-object hierarchies reflect this decomposition.

The first phase involves the finite element computations needed to construct the sparse stiffness matrix

and right-hand-side vector. During this phase, each element computes a contribution to the matrix. We rep-

resented the elements as C++ objects contained within a finite element class hierarchy, shown in Fig. 4.

The hierarchy is rooted by the virtual base class element and the derived classes reflect the different

types of finite elements that are used in EM problems. The element type depends both on the physical char-

acteristics of the material (e.g. 2D/3D or triangle/quadrilateral), and on the way the element computes its

matrix contribution (e.g. 3pt/6pt quadrature). A part of the C++ specification for the finite element hierar-

chy is shown in Fig. 5.

The element representation is simply the nodal points that define its boundaries. The derived classes

contain element-specific information, such as the basis functions, that are needed in the element computa-

tions. The element contributions are computed by get_kf and are assembled into the sparse stiffness matrix

during the first phase. This sparse matrix is stored as a list of sparse vectors, each row is represented by the

Figure 4. Finite element class hierarchy

element

2D_element 3D_element

2D_3pt_element 2D_9pt_element

...

9

sparse_vec class. The sparse matrix is a special class known as a Mentat class and this is discussed in the

next section.

During the second phase of the computation, matrix solve, “dense” vectors of complex numbers are

computed by the application. The representation of complexvec is a memory-contiguous variable-sized

array of complex type. The complexvec class specification is given in Fig. 6. Memory contiguity is impor-

tant in the parallel domain for objects that are transported between address spaces (such as objects of type

complexvec).

Both the sparse_vec and complexvec classes had been implemented previously and we were able to

reuse them with slight modification (to use complex numbers). The C++ classes form the basis for the par-

allel EM design. The remaining C++ classes in the application have a dual role: these classes can be treated

as C++ classes as in the sequential version or as Mentat classes in the parallel version. These are discussed

next. In the next section we will also show how everything fits together in the parallel EM implementation.

5.0 Mentat EM Design

The design decisions that guided the transformation from the sequential Fortran implementation to the

sequential C++ were motivated by three factors: 1) flexibility/extensibility, 2) fidelity and 3) support for

Figure 5. Finite element class specification

// Base class of the element hierarchy
class element {

int *nodes; // nodal points
int num_nodes;
...

public:
// returns matrix and force-vector contributions
virtual KF_contrib* get_kf ();
element ();

};

// 3pt triangle 2D element
class 2D_3pt_element : 2D_element {
// basis fns
...
public:

KF_contrib* get_kf ();
2D_3pt_element (int *nodes, ...);
...

};

10

parallelization. Points 1) and 2) have been discussed and this section addresses point 3), transitioning to the

parallel EM code.

The parallel EM code is based on the parallel object-oriented model of computation provided by Mentat.

While the design of the parallel EM code is concerned with points 1) and 2) above, it is driven by perfor-

mance and scalability. In the parallel domain, the most critical factors affecting performance are computa-

tion granularity and load balance. In Mentat, computation granularity is specified via a mechanism known

as Mentat classes, and load balance is achieved by an even partitioning of work across the instantiated

Mentat objects.

The parallel EM system design based on Mentat is illustrated in Fig. 7. The assembly (phase 1) and

solve computations (phase 2) are shown. The remainder of this section will describe the Mentat classes

used, the rationale for choosing them, and other important details of the parallel EM design and Mentat

implementation.

The selection of Mentat classes is based upon exploiting opportunities for parallelism and achieving an

acceptable computation granularity given Mentat overheads and the characteristics of the target architec-

ture. Our target is the Intel iPSC/860, a very unbalanced machine in which communication costs dominate

computation costs by several orders of magnitude. The Mentat classes will need to be “computationally

heavy” , i.e. large-grained, to achieve reasonable performance given these factors. The EM application per-

forms two main computations, element assembly and matrix solve, and these will be implemented via

Mentat classes.

For element assembly, there are many opportunities for parallelism since the element computations are

independent and may proceed in parallel. To exploit maximal parallelism, we would turn the finite element

classes (of Fig. 4) into Mentat classes. However, a single element assembly computation is too fine-

grained for Mentat and this will lead to unacceptably poor performance. Instead, we define a Mentat class

class complexvec : public DD_array {
int start_index, range;
// memory continguous representation
complex a[1];

public:
complexvec (int cols);
complexvec* saxpy(complexvec *f, complex& m);
complexvec* ssxpy(complexvec *f, complex& m);
complexvec* dot_product (complexvec* f);
...

};
Fig. 6. Complexvec class specification

11

which computes the contributions for a collection of elements, elmt_coll, see Fig. 8. Notice that the

elmt_coll class contains C++ objects (of type element) as part of its representation.

A number of elmt_coll objects are instantiated at runtime and each computes in parallel. Each

elmt_coll is assigned enough elements to achieve an acceptable computation granularity. The number

of elmt_coll objects instantiated and how the individual elements get assigned to a particular

elmt_coll are discussed later. Once the elmt_colls compute the matrix contributions and right-

hand-side force-vector values associated with their contained elements (via get_kf), these values must be

Figure 7. Parallel EM architecture

problem K

F

()

()

elmt_coll[] sparse_worker []

Phase 1 - assembly Phase 2 - solve

.

.

.
.
.

elements
...

...

persistent mentat class elmt_coll {
element** elements;
int element_num;

public:
// element setup and partitioning
void initialize (string *f, int i, int num_coll);

// compute and assemble all elements
void assemble (sparse_matrix *K, svector *F);
...

};

Figure 8. Mentat class elmt_coll specification

12

assembled into the stiffness matrix and force-vector respectively. The assemble member function defined

on elmt_coll initiates the element computations and invokes an assemble operation on the matrix. The

Mentat class sparse_matrix represents the stiffness matrix, see Fig. 9. Matrix assembly is performed via

the member function assemble called by each elmt_coll. The definition of the Mentat class svector,

the force-vector, is omitted.

Most of the computation time is spent in the matrix solve phase. The solve computation is performed by

an iterative preconditioned Bi-conjugate gradient algorithm (BCG) [10] implemented by the solve mem-

ber function of the Mentat class sparse_matrix. Our implementation exploits the most profitable

opportunity for parallelism in the algorithm, namely the sparse matrix-vector multiplications done in each

iteration of the BCG algorithm.

Parallelizing the matrix-vector multiplications requires that another class Mentat class, sparse_worker,

be defined, see Fig. 10. The sparse_worker class is responsible for performing matrix-vector multipli-

cation on disjoint regions of the sparse matrix. A number of sparse_worker objects are instantiated at

runtime, and the sparse_matrix is partitioned into row-contiguous regions and distributed to the

sparse_worker objects. This is done via the sparse_worker member function initialize. Once the

sparse_matrix has been distributed fully to the sparse_worker objects, the sparse_matrix

object engages the sparse_workers in parallel matrix-vector multiply operations (via m_vec_mult)

repeatedly during the solve phase. The sparse_workers are encapsulated within the

sparse_matrix (Fig. 9) and this has performance implications as we will see.

Figure 5.

persistent mentat class sparse_matrix {
// sparse_matrix representation
sparse_vec** matrix;
int size;
...
// sparse_worker information
int num_workers;
sparse_worker* workers;
...

public:
// Each elmt_coll assembles to matrix
void assemble (K_list* K_contrib);

// Solve matrix equation using rhs vector F
void solve (svector* F);

// Set up matrix with number of workers
void initialize (int num_workers);
...

};

Figure 9. Mentat class sparse_matrix specification

13

The Mentat classes, sparse_matrix, elmt_coll, and sparse_worker, reflect the computa-

tionally-intensive phases of the application and result in a granularity suitable both for Mentat and the tar-

get architecture. These classes also allow sufficient parallelism in the application to be exploited. One

important advantage of Mentat is that the serial EM code requires only a few “ ifdefs” to turn these Mentat

classes into C++ classes (see Fig. 11) - under 20 lines of code are unique to either the serial or parallel ver-

sion.

At runtime, the programmer specifies the number of elmt_coll objects for the assembly phase and

the number of sparse_worker objects for the solve phase. The number of objects should match the

total number of available processors assuming the granularity is sufficient. For large applications, this is

usually the case. On the iPSC/860 under NX, only one object (i.e. process) may be placed on a processor.

Since these phases are non-overlapping (i.e. solve does not begin until assembly has completed), the num-

ber of elmt_colls and sparse_workers will be the same.

persistent mentat class sparse_worker {
// sparse_worker representation
sparse_vec** my_rows;

// region of global matrix stored by worker
region my_reg;

// partial result for matrix-vector multiply
complexvec* result;
...

public:
// Distributes rows to worker
void initialize (sparse_vec_list* sparse_rows,...);

// Sparse mvec multiplication
complexvec* m_vec_mult (complexvec* vec);
...

};
Figure 10. Mentat class sparse_worker specification

#ifdef Mentat
persistent mentat class sparse_worker {
#else
class sparse_worker {
#endif
// as above
...
};

Figure 11. Dual Mentat/C++ class specification using “ ifdefs”

14

Achieving acceptable performance in the parallel EM code depends upon good load balance. It is suffi-

cient to load balance the assembly and solve phases separately since they are independent - only a synchro-

nization between these phases is needed. The assembly load balance requires that the elmt_coll objects

each perform about the same amount of computation. An even partition of the elements across the

elmt_colls would seem to be an easy solution. However, the general EM problem will contain ele-

ments of different types - more complex elements require more computation to determine matrix contribu-

tions. A good load balance solution ensures that each elmt_coll has roughly the same number of elements

of each type. As as approximation to this, our implementation randomizes the element input files and ran-

domly assigns elements to the elmt_coll objects.

Similarly, load balancing the solve phase requires that the sparse_worker objects are evenly bal-

anced for the matrix-vector multiplications. An even partition of the sparse_matrix across the

sparse_workers may not lead to load balance since the matrix has non-uniform sparsity (i.e. the num-

ber of non-zeros per row differs) and only non-zero positions of the matrix will be multiplied by the

sparse_workers. Instead, load balancing is achieved by ensuring that each sparse_worker has

about the same number of non-zeros in the matrix region that it has been assigned. Note that the number of

rows assigned to each sparse_worker will , in general, be different.

The initial parallel EM design has a number of f laws that limit the scalability and performance of the

system. The most obvious as seen clearly in Fig. 7 is that a single sparse_matrix object is a bottleneck

for both matrix assembly and matrix solve. During the solve phase, partial results from the matrix-vector

multiplies are fanned into the sparse_matrix, thus creating a communication bottleneck. The problem

is due to the encapsulation of the sparse_workers within the sparse_matrix. This is a classic

problem with the object-oriented paradigm. The single sparse_matrix object also limits the size prob-

lems that can be run since the entire matrix is assembled in one address space before it is distributed to the

sparse_workers. Furthermore, no attempt was made to parallelize the dot products that occur within

the BCG loop. These dot products are a good source of parallelism, especially for large vectors. The opti-

mized version of the parallel EM design has addressed all of these problems.

Once the C++ version of the EM code had been fully implemented and tested, the Mentat version (about

3000 lines of code) took two weeks to complete. One of the major problems we had with Mentat on the

iPSC/860 was the need to force arithmetic operands to be double-word aligned to get good performance on

this machine. This required some low-level pointer code and was time-consuming to implement and test.

The memory bottleneck imposed by the single sparse_matrix object did not allow our EM problem to

fit on a 8MB iPSC/860 node at ORNL, a 128 node machine. We eventually ran on a 16MB/node iPSC/860

at Caltech. Fortunately, the Mentat system binaries ported smoothly to the Caltech machine - no recompi-

lation of the Mentat system code was necessary.

6.0 Preliminary Results

The initial Mentat EM code was developed on an 8-node Intel iPSC/860 at JPL and run on a 64-node

Intel iPSC/860 at Caltech. The data collected are from an EM application that consisted of 2304 9pt quad-

15

rilateral elements (9313 nodes). This is considered a small problem. We computed speedups with respect

to the sequential C++ EM code run on a single i860 node, see Fig. 12.

The results are divided into the several phases: 1) problem setup is the time taken for the elmt_colls

to read the element files from CFS and create the element partitions, 2) assembly is the time taken for the

elmt_colls to complete the matrix assembly operations, 3) assembly and distribute includes the time to

distribute the matrix out to the workers, 4) solve is the time taken for the matrix solve operation, and 5)

total is the total time taken by the application. We should reiterate that virtually no optimization of the ini-

tial Mentat version had been performed.

Our results are compared with a hand-coded optimized parallel Fortran EM implementation that has

been in development for some time. We expected the performance to be worse than the hand-coded ver-

sion, but how much? The results indicate that this is indeed the case, but speedups were achieved even

though the problem was small and the given implementation limitations that have been discussed, see Fig.

13. Comparison of the Mentat and the hand-coded versions indicates that the Mentat implementation is

competitive with the hand-coded for small numbers of processors, but that performance doesn’ t scale well

as the number of processors is increased. This is due to the limitations that have been discussed, namely

the sparse_matrix bottleneck for assembly and matrix-vector communication, and the sequential dot

products in the solver. It is not surprising that the initial Mentat version does not scale given the design.

The optimized Mentat version does not suffer from this problem and the comparative performance is

presented in Fig. 14. These results indicate that the optimized Mentat version is scaling in a manner similar

to the hand-coded Fortran. The assembly phase scales identically to the hand-coded while the solve phase

scales almost as well. The slight discrepancy is probably due to Mentat overheads often seen for small

Figure 12. Parallel EM performance with initial Mentat version

16

problems. For larger problems this overhead is often amortized by the computation. We expect the perfor-

mance of the Mentat version to more closely match the hand-coded for larger problems.

Figure 13. Comparison of initial Mentat version to hand-coded EM version

Figure 14. Comparison of optimized Mentat version to hand-coded EM version

17

7.0 Summary and Future Work

The early results of the research are encouraging. The initial design and implementation of the parallel

EM code using Mentat took under two months, including the time to perform the “paradigm shift” from

Fortran to C++. This indicates to us that the parallel object-oriented model in general, and Mentat in partic-

ular, is well-suited to this problem domain. What we have found is that the EM problem has a natural rep-

resentation in a object-oriented framework and performance is encouraging. We have also provided further

evidence that Mentat is an easy-to-use programming environment for developing parallel object-oriented

scientific applications.

Other researchers have begun to report on the experience of using object-oriented implementation tech-

niques for scientific problems [1,3]. Our experience is similar to [1] in that programmer efficiency seems

to be a more clear benefit than execution efficiency at present. The authors [1] report that the C++ perfor-

mance is within an order of magnitude of the Fortran code (ours is within a factor of 2-3), and that this pro-

vides some hope.

While the Mentat version has similar scaling properties to the hand-coded version, total elapsed times

are not as good due to inefficiencies in the serial portions of the code. Some of this inefficiency can be

attributed to superior numeric libraries and compiler optimizations in Fortran relative to C++. Future work

addressing the serial bottlenecks is needed.

Acknowledgments

Chiang Chang was responsible for implementing the sequential C++ version of the EM application. Part

of the research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute

of Technology, under a contract with the National Aeronautics and Space Administration. Reference

herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or

otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propul-

sion Laboratory, California Institute of Technology.

This research was performed in part using the Intel Gamma operated by Caltech on behalf of the Con-

current Supercomputing Consortium. Access to this facil ity was provided by the Jet Propulsion Labora-

tory.

8.0 References

[1] I. G. Angus, and J. L. Stolzy, “Experiences in Converting an Application from Fortran to C++:

Beyond f2c,” C++ at Work Conference, November 1991.

[2] R. D. Ferraro, “Solving PDEs for Electromagnetic Scattering Problems on Coarse Grained Concur-

rent Computers” , in the PIER volume COMPUTATIONAL ELECTROMAGNETICS AND SUPER-

COMPUTER ARCHITECTURE, Elsevier Science Publishing Company, Inc. (Chapter, In Press).

[3] D. W. Forslund et al, “Experiences in Writing a Distributed Particle Simulation Code in C++,”

Usenix C++ Conference, 1990.

18

[4] A. S. Grimshaw, “Easy to Use Object-Oriented Parallel Programming with Mentat,” IEEE Com-

puter, pp. 39-51, May, 1993.

[5] A. S. Grimshaw, E. Loyot Jr., and J. B. Weissman, “Mentat Programming Language (MPL) Refer-

ence Manual,” University of Virginia, Computer Science TR 91-32, 1991.

[6] A. S. Grimshaw, “The Mentat Run-Time System: Support for Medium Grain Parallel Computation,”

Proceedings of the Fifth Distributed Memory Computing Conference, pp. 1064-1073, Charleston, SC., April

9-12, 1990.

[7] A. S. Grimshaw, W. T. Strayer, and P. Narayan, “Dynamic Object-Oriented Parallel Processing,”

IEEE Parallel & Distributed Technology: Systems & Applications, pp. 33-47, May, 1993.

[8] A. S. Grimshaw, E. A. West, and W.R. Pearson, “No Pain and Gain! - Experiences with Mentat on

Biological Application,” Concurrency: Practice & Experience, pp. 309-328, Vol. 5, issue 4, July, 1993.

[9] T. J. R. Hughes, The Finite Element Method, Prentice-Hall, Inc., Englewood Cliffs, New Jersey

1987.

[10] D. A. H. Jacobs, “The Exploitation of Sparsity of Iterative Methods,” Sparse Matrices and Their

Uses, edited by I. S. Duff, Academic Press, London, 1982.

[11] J. W. Parker, T. Cwik, R. D. Ferraro, P. C. Liewer, P. Lyster, and J. E. Patterson, “Helmholtz Finite

Elements Performance On Mark III and Intel iPSC/860 Hypercubes,” Proceedings of the Sixth Distributed

Memory Computing Conference, IEEE Computer Society Press, 1991.

[12] R. P. Silvestri and R. L. Ferrari, “Finite Elements for Electrical Engineers,” Cambridge University

Press, New York, 1983.

[13] B. Stroustrup, The C++ Programming Language, 2nd ed. Addison-Wesley, Reading, Mass., 1991.

