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Abstract Grid resource management is not just about scheduling jobs on the fastest ma-
chines, but rather about scheduling all compute objects and all data objects on
machines whose capabilities match the requirements, while preserving site au-
tonomy, recognizing usage policies and respecting conditions for use. In this
chapter, we present the Grid resource management of Legion, an object-based
Grid infrastructure system. We argue that Grid resource management requires
not a one-size-fits-all scheduler but an architectural framework that can accom-
modate different schedulers for different classes of problems.
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1. INTRODUCTION
The Legion Project began in late 1993 with the recognition of the dra-

matic increases in wide-area network bandwidth, truly low-cost processors,
and cheap disks looming on the horizon. Given the expected changes in the
physical infrastructure, we asked what sorts of applications would people want,
and what system software infrastructure would be needed to support those
applications. As a result of this analysis, we designed and implemented the
Legion Grid Computing system, which is reflective, object-based to facilitate
encapsulation, extensible, and is in essence an operating system for Grids.
Whereas Globus is a collection of tools from a toolkit [FK99], Legion pro-
vides standard operating system services – process creation and control, inter-
process communication, persistent storage, security and resource management
– on a Grid. By doing so, Legion abstracts the heterogeneity inherent in dis-
tributed resources and makes them look like part of one virtual machine. We
feel strongly that having a common underlying architecture and set of neces-
sary services built over it is critical for success in Grids, particularly as the line
between computational Grids and data Grids blurs [AVD01]. In this sense, the
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Legion architecture anticipates the drive to Web Services and the Open Grid
Systems Architecture (OGSA) [FKNT02]. There are many papers describ-
ing Legion’s core architecture and use (e.g., [GW97, GFKH99, NCWD+01,
LFH+03]); in this chapter, we focus on the Legion resource management sys-
tem.

2. OBJECT PLACEMENT IN A GRID
The scheduling process in Legion broadly translates to placing objects on

processors. Scheduling is invoked not just for running users’ jobs but also
to create any object on a Grid, such as a Grid file, a Grid directory, a Grid
application or even a Grid scheduler. After an object is created on a processor,
it can perform its tasks, for example, respond to read/write calls if the object
is a Grid file, or respond to status requests if it is a Grid job. Therefore, object
placement is crucial to the design of the Legion run-time system because it
can influence an object’s run-time behavior greatly. An improper placement
decision may impede an object from performing its tasks, for example, because
it cannot start on any processor of a given architecture or because the processor
is no longer available. Even if a placement decision ensures that an object
starts correctly, it does not guarantee that the decision is beneficial to the user.
A good placement decision is certain to vary depending on the object being
placed and the user’s goals as well as resource usage policies.

Determining good object placements in a large distributed, heterogeneous
environment, such as a Grid, is difficult because the underlying system is com-
plex, and because object behavior can be influenced by many different fac-
tors, such as system status (number, type, and load of components), hardware
capabilities (processor, network, I/O, memory, etc.), interactions between ob-
jects and object-specific characteristics (size, location of persistent state, es-
timated performance, etc.). Factors such as security concerns, fault-tolerance
objectives and special resource requirements may place hard restrictions on
where an object can be placed. These factors are usually expressed as con-
straints on the placement decision. In general, finding an optimal placement is
prohibitively expensive. Several research efforts, such as Utopia [ZWZD93],
NOW [ACP+94], Condor [LL90, PL95], Zoom [WASB95], Prophet [Wei95]
and others [Cof76, FC90, GY93, WKN+92], have focused on algorithms and
systems for near-optimal solutions or optimal solutions to very restricted prob-
lem sub-types or user goals [Kar96].

In Legion, we designed a scheduling framework that can accommodate dif-
ferent placement strategies for different classes of applications. In addition to
the expected Grid goals of support for heterogeneity and multi-organizational
control, the goals included [Kar96]:
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Support for multiple placement algorithms. The framework must be flex-
ible enough to be able to incorporate placement algorithms developed by
others.

Support for user selection of placement. Users must be permitted to
choose the placement approach that best matches their goals.

Ease of use. It should be easy for developers to add new placement al-
gorithms as schedulers in the framework. Additionally, it should be easy
for end-users to access the schedulers for performing their tasks. Default
placement mechanisms ease the use of the framework for inexperienced
users.

Ability to cope with uncertain, outdated or partial information. We
expect that in Grids, information may be missing or inaccurate. The
scheduling framework in general and the schedulers that are part of it
must continue to perform acceptably even when the available system in-
formation is less than perfect.

Ability to resolve conflicts. In a system that supports shared objects and
resources, conflicts may arise over their use. The framework must have
a well-defined resolution behavior in the case of conflicts.

Scalability. The framework should not degrade significantly (or at least
degrade gracefully) when the number of processors becomes large or
when the requests for placement become more frequent.

Low overhead. The framework should not impose penalties on users
who choose not to use it. For users who do choose to use it, the overheads
involved in invoking the scheduling process should be small compared
to the duration of the task performed.

Integration with other Legion services. As a direct relation to the Legion
philosophy of providing an integrated Grid infrastructure, the scheduling
framework must cooperate and communicate with other frameworks in
Legion, such as those for security and fault-tolerance. The framework
must also take into account persistent storage associated with the shared
object space in Legion.

In the following sub-sections, we describe the main tasks of the Legion
scheduling framework. The goal of this description is not to advocate one
placement policy over another. Although we did select a particular placement
policy in order to validate (and populate) our framework, we did not and do
not claim that placement policy to be optimal or best-suited for all objects.
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2.1 Initiating Placement
Placement decisions can be initiated in two ways. In the first case, an object

can request the underlying infrastructure explicitly to place (or schedule) other
objects with which it must interact. For example, a user (represented as an
object in Legion) may request Legion to run a particular job on a particular
machine. In this case, the placement initiation is explicit in two senses: the
request to place is a direct implication of issuing the run command, and the
placement location is provided by the user directly. Legion does not require
a user to initiate placement in the latter sense – an undirected run command
transfers the burden of finding a placement location from the user to Legion.

In the second case, placement initiation may be implicit, and therefore must
be automatic. In other words, an object, say a user, may access another ob-
ject without realizing that the latter is currently inactive. In this case, Legion
will re-activate the second object automatically, which in turn may require it
to be placed on an available processor. The processor chosen in this case may
or may not be the same processor on which that object was active previously.
Implicit or automatic placement initiation occurs frequently in Legion; in or-
der to conserve resources, Legion may deactivate infrequently-used objects.
When a subsequent action does require such objects to be available, Legion
will re-activate them. Seemingly mundane Grid operations such as logging in,
checking the contents of a Grid directory and issuing a run may cause several
objects to be re-activated.

2.2 Preparing for Placement
Regardless of how placement is initiated, preparing for placement involves

three tasks. The first task is selecting an appropriate scheduler from the frame-
work. To be most effective, the scheduler chosen must factor in criteria that are
important to the user [BW96, Ber99, LYFA02]. Since the scheduler itself may
require time and CPU cycles to make a decision, its performance and cost must
be weighed against its anticipated benefits. This selection may be made auto-
matically by Legion, or may be specified by sophisticated users who choose
to indicate which scheduler, or even which processor, must be used. When
placement is initiated automatically, there exists a mechanism for indicating
which scheduler to use. This mechanism is captured in attributes of class ob-
jects, which are managers or factories for creating instances of different kinds
of objects. For example, when users decide to port an application to Legion,
they use a tool that essentially creates an application class object in the Grid. A
class object may be associated with any of the schedulers available in the Grid.
When a user requests that this application be run, the class object consults its
attributes, determines the associated scheduler and invokes this scheduler to
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perform a placement decision for an instance of the application, namely the
run desired by the user.

The second task in preparing for placement is sending the selected scheduler
a placement request. Each scheduler may implement a different algorithm and
may require different system information for performing placement. Design-
ing a format for the placement request is a non-trivial task; some may argue
that if this problem can be solved the problem of designing a general-purpose
scheduler for all classes of applications is made much easier. One approach
for designing a placement request format is to design a general description
language that is flexible and extensible enough to express most placement re-
quests. The challenge with this approach is actually being able to design a
scheduler that takes all possible programs that can be written in this language
and do something useful. Another approach is to develop a standard interface
for all schedulers. Unfortunately, a standard interface often implies being able
to express only a small subset of functionality possible just so that the more
simplistic schedulers can be accommodated. In Legion, we incorporated both
approaches. The scheduling framework required conforming to a standard in-
terface, but we also provided a language for querying the database object that
collected information on all processors in a Grid so that other schedulers could
be written.

The third task is to specify object-specific placement constraints to the sched-
uler. In Legion, specific placement constraints are specified as attributes on the
associated class objects. Typically, these constraints permit specifying either
processors that are suited (or unsuited) for this class object or arbitrary at-
tributes that a processor is expected to possess as well in order to qualify as a
match. When a class object receives a request to create an instance, it passes
these constraints to the scheduler as part of the placement request. The default
scheduler we provided with the system takes these constraints into account
when making a decision; however, we do not require all schedulers that were
part of the framework to take those constraints into account.

2.3 Performing Placement
Placement is performed by the selected scheduler. The scheduler is clearly

the heart of the placement process; however, we recognized that others were
better at writing schedulers than we were. We provided a framework wherein
experts could write schedulers and plug them into our framework. Naturally, in
order to validate the framework as well as provide default placement, we wrote
our own scheduler. The main tasks of this scheduler are what we expected of
any scheduler:

Determine the application requirements. These are available as con-
straints passed in by the class object.
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Determine the resources available. These are available from a database
object, called a collection, which can be accessed programmatically as
well as by using a query language.

Invoke a scheduling algorithm. Invoking the algorithm results in a sched-
ule. For our default scheduler, we employed a random algorithm. Given
that this scheduler was a default, we did not expect it to be used fre-
quently. Moreover, given that we could not predict which objects in a
Grid would end up using the default scheduler as opposed to a more
appropriate scheduler, we felt that random was as good or as bad an
algorithm as any.

Enforce the schedule. A schedule is of academic interest unless it results
in the object actually being created on some suitable processor. As part
of the placement process, the framework must ensure that the schedule
generated results in object creation, or if it does not, invoke the schedul-
ing algorithm again, perturbing it so that it generates a different schedule.
Alternatively, the framework must communicate its failure clearly back
to the class object or the user so that other actions can be taken.

2.4 Gathering System Information
A key component in making any placement decision is gathering the nec-

essary information, such as processor types, OS types and versions, attached
devices, available disk space, memory and swap size, CPU load, run queue
length, security and reservation policies, network bandwidth, network latency,
packet drop percentages, etc. Earlier, we alluded to this step, but assumed that
the information was already available when preparing for placement. How-
ever, when designing a scheduling framework, we had to design mechanisms
to ensure that this kind of information was available to the scheduler. We de-
signed a new object, called a collection (similar in spirit to MDS [CFFK01]),
which functioned as a database for this information. We felt a collection object
was necessary so that a scheduler could find reasonably-current information
about available processors in one place instead of contacting every processor
in a Grid. In turn, either the collection object polled every processor period-
ically for system information or processors themselves pushed this data into
the collection. Collections are generic repositories of object attributes; collec-
tions that specifically store information about processors are associated with
schedulers in order to aid placement.

2.5 Gathering Application Information
Accurate and detailed information about the behavioral characteristics of

different objects can aid scheduling. In Legion, application-specific informa-
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tion can be specified in a class object, as we discussed earlier. The class object
can be given a set of placement constraints that essentially restricts the proces-
sors on which its instances can run. Also arbitrary attributes, typically called
desired host properties, can be used to restrict the choice of processors; only
processors that possess those properties may be selected. Setting these con-
straints and attributes can be done at any time in the lifetime of the Grid. An
additional manner in which the choice of processors can be constrained is by
controlling the platforms on which instances of the class object can run. For
example, if a user provides only Solaris and Windows binaries for a particu-
lar class object, then instances of that class can never be scheduled on, say, a
Linux or SGI machine. Furthermore, the user can instruct a particular run –
which creates an instance of the class object – to run on any machine of a par-
ticular architecture. Thus, Legion provides users with mechanisms to control
the scheduling process with application-level information.

3. MECHANICS OF RESOURCE MANAGEMENT
Legion is both an infrastructure for Grids as well a collection of integrated

tools constructed on top of this infrastructure. The basic infrastructure en-
ables secure, dataflow-based, fault-tolerant communication between objects.
Communicating objects could be diverse resources, such as applications, jobs,
files, directories, schedulers, managers, authentication objects (representations
of users in a Grid), databases, tools, etc. The Legion scheduling framework
acts as a mediator to find a match between placement requests and processors.
The scheduling process in Legion is one of negotiation between resource con-
sumers, i.e., autonomous agents acting on behalf of applications or users or
objects, and resource providers, i.e., autonomous agents acting on behalf of
processors or machines or resources. By providing mechanisms for specifying
security and usage policies, resource providers can control who runs what and
when on their processors. Likewise, by specifying constraints and choosing
schedulers, users can control how their applications run.

The scheduling framework that exists between the providers and consumers
attempts to satisfy the expectations of both the providers and the consumers. In
the context of Grid resource management, the main contribution of the Legion
project is not the algorithm used by the default scheduler, but the surrounding
infrastructure that takes security, fault-tolerance, matching, etc. into account
for every single object created in a Grid. The infrastructure enables creating
objects, jobs included, on any appropriate processor in a Grid, whether across
a room or across the globe. The location transparency gained is a deep-rooted
part of the Legion philosophy of providing a single virtual machine abstraction
for the disparate resources in a Grid.
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Figure 1.1. Scheduling Process in Legion

The components of the Legion resource management framework are: class
objects, resource objects (hosts and vaults), information database objects (col-
lections), scheduler objects, schedule implementor objects (enactors) and im-
plementation objects [CKKG99]. Before we examine each component in de-
tail, we will examine their interactions at a higher level (Figure 1). A typical
chain of events in a Grid could involve a user initiating a tool to start an instance
of an application on a machine. This chain results in a tool object contacting
an application class object (to create an instance of this application); which in
turn contacts a scheduler (to generate schedules for running this application
on a machine); which contacts a collection (to procure information about ma-
chines), an enactor (to reserve time on the target machine) and a host object
(to start the job on the machine). After the scheduler selects a host object,

it contacts the application class object with enough information to start a job
instance on the machine.

In the rest of this section, we describe the different objects that participate
in resource management. The implementation and interaction of these objects
echoes the philosophy we discussed above. However, we regard this set of
objects as only one of many possible implementations of that philosophy.
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3.1 Class Objects
In Legion, class objects define the type of their instances, as in other object-

oriented systems, but in addition are also active entities, acting as managers
for their instances. A class is the final authority in controlling the behavior of
its instances, including object placement. When a Legion Grid is deployed, a
variety of class objects are pre-created already. These class objects can create
instances of commonly-used Grid objects such as directories, files, schedulers,
collections and even other class objects. Later, other class objects may be
added to the Grid. For example, a developer may add a new class object that
creates instances of an entirely new kind of object, such as a network object.
Alternatively, a developer may refine an existing class object, such as the file
class object in order to create a new class object that can create specialized
instances, such as matrix or two-dimensional files. Finally, users who port
their applications to a Grid typically create, unbeknownst to them, application
class objects that are managers for every single run of that application.

All class objects define a create instance method, which is invoked during
placement initiation. This method may take parameters for an explicit place-
ment or may be called with minimum parameters for an implicit placement.
If the placement is explicit, Legion bypasses schedulers, enactors and collec-
tions and attempts to start objects on host-vault pairs directly. If the placement
is implicit, the scheduling framework is invoked with as much information as
available.

3.2 Scheduler and Enactor Objects
A scheduler objects maps requests to resources. As part of this process, the

scheduler is given information by the class object about how many instances to
create, as well as what constraints apply. Application-specific schedulers may
demand and may be supplied with more information about the resource re-
quirements of the individual objects to be created. In addition, a scheduler also
requires information about the platforms or architectures on which instances
of this class can run. All of this information is procured from the class object.

A scheduler obtains resource information by querying a collection, and then
computes a schedule for placing the requested objects. This schedule is passed
to an enactor that bears the responsibility of ensuring that the schedule is suc-
cessful. Each schedule has at least one master version and a list of variant
versions. Master and variant versions contain a list of mappings, with each
mapping indicating that an instance of the class should be started on the indi-
cated host/vault pair. The master version of a schedule contains the scheduler’s
best attempt to schedule the requested objects. A variant version differs from
a master schedule slightly in terms of the resources selected, representing a
poorer scheduling decision to which the enactor can resort if the master fails.
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Upon receiving a schedule from a scheduler, the enactor attempts to deter-
mine whether the schedule will be successful. In order to do so, it extracts
the mappings from the master version, contacts each host/vault pair involved
and inquires whether the sub-request on it will be successful. A host/vault pair
may choose to reject this sub-request based on its current situation – such a
rejection is part and parcel of the negotiation philosophy. If the master version
cannot be satisfied because of such rejections, the enactor resorts to the vari-
ant versions to schedule successfully. If no version can be made successful,
the enactor reports an error and cancels the rest of the scheduling process. If
a successful version can be found, the enactor procures reservations from the
host/vault (if the host/vault support it) and reports back to the class object with
the successful version.

3.3 Collection Objects
A collection is an object that acts as a repository for information describing

the state of the resources in a Grid. Each record is stored as a set of Legion
object attributes. Collections provide methods to join them and update records.
Typically, host and vault objects join collections, although other objects may
also join. Members of a collection may supply their attributes in either a pull
model or a push model. In a pull model, the collection takes on the respon-
sibility of polling its members periodically for updates. In a push model, the
members periodically initiate updates to the collection (Legion authenticates
the member to ensure it is allowed to update the data in the collection). A push
model is more appropriate in a scenario in which the members of a collection
may lose and regain connectivity with the rest of the Grid. A pull model is
more appropriate in a scenario in which we wish to avoid the update implosion
of several members updating a single collection.

Users, or their agents such as schedulers, obtain information about resources
by issuing queries to a collection. A collection query is a string conforming
to some grammar. Currently, a collection is a passive database of static in-
formation, queried by schedulers. Collections can be extended to support the
ability for users to install code to compute new description information dy-
namically and integrate it with existing description information for a resource.
This capability is especially important to users of the Network Weather Ser-
vice [WSH99], which predicts future resource availability based on statistical
analysis of past behavior.

Another use of collections is to structure resources within the Legion sys-
tem. Having a few, global collections can reduce scalability. Therefore, col-
lections may receive data from, and send data to, other collections. Making
collections be members of other collections gives us the flexibility to have a
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collection for each administrative domain and thus achieve hierarchical struc-
turing of Grid resources.

3.4 Host and Vault Objects
Host and vault objects represent two basic resource types in Legion, pro-

cessors and disk space respectively. Typically, these objects are started on the
same machine, but they are not required to be co-located. A host object en-
capsulates processor capabilities (e.g., a processor and its associated memory)
and is responsible for instantiating objects on the processor. Thus, the host
object acts as an arbiter for the processor’s capabilities. A host object can rep-
resent single-machine systems as well as a queue management system such
as LoadLeveler [Cor93], NQS [Kin92], PBS [BHL+99] or LSF [Zho92]. A
vault object encapsulates storage capabilities (e.g., available disk space) and is
responsible for storing the persistent state of objects running on that machine.
Every Legion object must have a vault to hold its Object Persistent Represen-
tation (OPR) . The OPR holds the persistent state of the object, and is used
for migration and for shutdown/restart purposes. When requested by an en-
actor, a host object grants reservations for future service. The exact form of
the reservation may vary by implementation of the host object, but it must be
non-forgeable tokens; the host object must recognize these tokens when they
are passed in with subsequent requests from the class.

There are three broad groups of host/vault functions: reservation manage-
ment, object management, and information reporting. Reservation functions
are used by an enactor to obtain a reservation token for each sub-request in
a schedule. When asked for a reservation, a host is responsible for ensuring
that its vault is accessible, that sufficient resources are available, and that its
local placement policy permits instantiating the object. A host/vault pair is re-
sponsible for managing an object during its lifetime. Object management may
involve de-activation and re-activation if requested as well as migration. Mi-
grating an object involves collecting its OPR and transmitting it to some other
host/vault pair. Hosts and vaults repopulate their meta-data after reassessing
their local state periodically. This reassessment is done by invoking local re-
source management tools or calls on the underlying machine or queuing sys-
tem. The resultant meta-data, also called attributes, may be pushed into or
pulled by a collection object.

3.5 Implementation Objects
Implementation objects may be viewed as representations of the actual bi-

naries required to run objects on a processor. Every object, whether it be a
user’s job or a Legion object, requires a binary of the appropriate architec-
ture to run on a processor. Registering these binaries with a class object is
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the porting process in Legion; the crux of Legion’s support for running legacy
applications as well as Legion-aware applications is registering binaries with
class objects. A class object tracks the implementation objects associated with
itself when initiating placement. Therefore, a class that has only Solaris and
Windows implementations will never request a schedule containing Linux or
SGI machines. When a class receives a viable schedule from an enactor, it
communicates with the host/vault objects in order to start objects. Host/vault
objects in turn receive the names of the implementation objects for that class,
and contact the implementation objects to download the associated binary for
running the instance.

Since implementations are objects themselves, they are created in much the
same way as any other object. Implementations for hosts and vaults, however,
are more basic than implementations of most other class objects. Therefore,
host/vault implementations are procured by looking in well-known directories
in the Legion installation. Once the host/vault pairs are running, implemen-
tations for any other object can be procured from anywhere in the Grid. A
minor but interesting point about implementations is that it is perfectly possi-
ble and reasonable that the Linux implementation of a particular application
class object may actually be started on a Solaris machine. The distinction to
remember is that the application’s Linux binary happens to be stored on a So-
laris machine; therefore the implementation runs on a Solaris machine, but the
application binary, when desired, will run only on a Linux machine.

3.6 Proxy Objects
Proxy objects are used to execute legacy application binaries on host and

vault pairs and do not play a role in scheduling. However, they are a resource
management component because they enable users to employ Legion tools to
monitor the progress of a job on a remote machine even though the original
job does not respond to Legion requests. Instead, the proxy responds to Le-
gion requests about the status of the job. Since the proxy is not the job itself,
it cannot give application-specific status of the job. However, the proxy can
provide information such as the name of the machine on which the job runs,
the current working directory of the job, the files present in that directory as
well as contents of those files at any time, etc.

4. LESSONS LEARNED FROM THE LEGION
RESOURCE MANAGEMENT SYSTEM

Several of the key lessons we learned about Grid resource management are
captured in the design decisions we incorporated in the scheduling framework.
First, in many ways, scheduling should be treated no differently than the
other parts of the Grid infrastructure. Although not shown in Figure 1,
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Figure 1.2. Protocol Stack in Legion

every object-to-object communication in the scheduling sequence requires the
reliability, efficiency, and privacy/integrity of those object interactions not re-
lated to scheduling. We chose to implement the scheduling framework using
the same policies and mechanisms available to all object interactions – every
communication between any pair of objects must go through the Legion pro-
tocol stack (see Figure 2 for an example stack), which involves constructing
program graphs, making method invocations, checking authorization, assem-
bling or disassembling messages, encrypting messages, retransmitting mes-
sages, and so on. Since every communication goes through such a stack, Le-
gion provides security and fault-tolerance as well as scheduling as part of an
integrated resource management framework.

Second, scheduling in Legion is a process of negotiation. Most sched-
ulers view CPU cycles as passive resources waiting to be utilized by the next
available job. However, in a multi-organizational framework, a CPU is not
necessarily available simply because it is idle. The owner of the CPU – the
organization that controls the machine – may impose restrictions on its usage.
Therefore, when matching a job to an available CPU, Legion initiates a ne-
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gotiation protocol which respects the requirements of the job as well as the
restrictions imposed by the CPU owner. In other words, we consider site au-
tonomy an important part of the scheduling, or more correctly, the resource
management process. Even if a scheduler selects a particular host for running
a job, the host may reject the job based on its current policies. Depending on
the implementation, the scheduler may investigate variant schedules or may
inform the user of the failure to run the job.

Third, the scheduler can be replaced. Each and every component of a
Legion Grid is replaceable. Thus the scheduler in the figure can be replaced
by a new one that employs any algorithm of choice. Not just the scheduler,
but the toolset that uses the scheduler can be changed as well. For example,
we wrote a queue object that uses a similar chain of events to mimic the oper-
ation of a queuing system. Also, we wrote a parameter-space tool (similar in
spirit to Nimrod [ASGH95]) that can start jobs instantaneously or send them
to our queue. A Legion Grid can have multiple schedulers or even multiple
instances of a particular scheduler. Applications can be configured to use a
specific scheduler. Thus, the Legion Grid resource management framework
explicitly allows for different schedulers for different classes of applications.
Of course, users can bypass the entire scheduling mechanism, by specifying
machines directly or using some non-Legion tool for constructing a schedule
for their applications. Bypassing the scheduling mechanism does not mean by-
passing security and fault-tolerance, because those functions are at lower levels
in the stack. Naturally, if desired, lower levels can be replaced or eliminated as
well with the attendant implications.

Fourth, the scheduling infrastructure can be used as a meta-scheduling
infrastructure as well. The host object shown in Figure 1 could be running

on the front-end of a queuing system or the master node of an MPI cluster.
Thus, Legion could be used to select such a host, but subsequent scheduling on
the queue or the cluster could be delegated to the queuing system or the MPI
system.

When designing the Legion Grid resource management framework, we had
a wider definition of resource management than most other distributed sys-
tems. We tried to construct a framework within which other parties could write
schedulers for different classes of applications. We consciously did not design
for only the classic applications – long-running, compute-intensive, parallel
applications, requiring high performance. Naturally, we did provide a single
reference implementation of a scheduler in order to perform resource manage-
ment on a Legion Grid immediately upon installation. However, we intended
this scheduler to be a default – a catch-all scheduler for users who wished to
use a Legion Grid as-is. We always intended permitting other schedulers to be
part of any Legion Grid.
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We did make mistakes in the design of our Grid infrastructure; some of
those mistakes were in the scheduling framework. Some of these mistakes are
technical, whereas others are psychological. If we were to re-design Legion,
here are some lessons we would keep in mind:

People are reluctant to write schedulers. We could not rely on Grid
scheduling experts to write schedulers for Legion. Once we learned this les-
son, we wrote two new schedulers to complement the default scheduler that
already came with every Legion installation. One was a round-robin scheduler
for creating instances of files, directories and other objects on a Grid. The

round-robin scheduler made quick decisions based on a machine file that was
part of its state, thus avoiding expensive scheduling decisions for simple ob-
ject creation. The second scheduler was a performance-based scheduler for
parameter-space studies. This scheduler took CPU speeds, number of CPUs

and loads into account for choosing machines on which to run parameter-space
jobs.

Writing schedulers deep into a framework is difficult. While we did
provide a framework for writing schedulers, a mistake we made was requiring
scheduler writers to know too much about Legion internals. Typically, in ad-
dition to the scheduling algorithm of interest, a scheduler writer would have
to know about schedulers, enactors, hosts, classes and collections; their inter-
nal data structures; the data they packed on the wire for several method calls;
and Legion program graphs. The effort required to write such a deep sched-
uler was too much. In essence, we had violated one of our own principles:
ease of use. Our mistake lay in making Legion easy-to-use for end-users, but
not necessarily so for developers. Once we recognized our error, we wrote
a shallow scheduler, i.e., a scheduler that was about as complex as the de-
fault scheduler but did not require knowing too much about Legion internals.
The performance-based scheduler for parameter-space studies mentioned ear-
lier is an example of a shallow scheduler. This scheduler is a self-contained
Perl script that requires knowing about the collection object (a database of at-
tributes) and the one command to access it. Not having to know Legion details
was a significant advantage in the design of this scheduler.

The lesson we learned from this experience was that a high cost of construct-
ing new schedulers is a deterrent to development. Another lesson we learned
was that a high cost of running a scheduler can hurt a Grid as well. Put differ-
ently, we learned that a quick and acceptable scheduler is much better than a
slow but thorough scheduler.

High scheduler costs can undermine the benefits. In Legion, a scheduler
is invoked every time an object must be placed on some machine on a Grid.
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Given the Legion view of scheduling as a task for placing any object not just
a compute object, creating files and directories, implementations and queue
services, consoles and classes, all require an intermediate scheduling step. For
long, the scheduler that would be invoked for any creation was the default
scheduler. While we fully understood the need for different schedulers for
different kinds of objects, an artifact of our implementation was that we created
only one scheduler – the default one.

The default scheduler’s algorithm was complex in two respects. One, the ac-
tual processing time took long, especially as the number of machines in a Grid
grew. Moreover, the scheduler constructed variant versions for every request
just in case the master version did not meet with success. Two, the process
invoked methods on too many remote objects. Each method call (or outcall)
was a relatively expensive operation. Therefore, even a simple schedule would
take too long to generate. Accordingly, we built faster schedulers which per-
haps did not find near-optimal and variant schedules, but were far quicker than
the default. The round-robin scheduler made fewer outcalls and had a sim-
ple algorithm for choosing hosts, but was adequate for scheduling files and
directories. Likewise, the shallow scheduler we wrote for performance-based
scheduling scheduled parameter-space jobs quickly [NHG02]. It initially spent
a few seconds building a schedule, but re-used the schedule for the duration of
the application.

Over-complex schedulers are unnecessary. In Legion, we created a so-
phisticated scheduling framework, but we also implemented this framework
in a complicated manner. In particular, splitting the scheduling process from
the reservation process (the scheduler and enactor objects respectively), was
overkill. The added flexibility this split gave us was never used, and we believe
that it will not be used for a while because complex scheduling techniques,
such as co-scheduling, that require reservations are useful for a small subset of
applications only [SF02]. Too many objects were involved in the scheduling
process, making it feel like the process had too many moving parts. The failure
of any one object could derail the scheduling process, making it hard to create
new objects – files, directories, implementations, jobs, etc. – on a Grid.

5. SUMMARY
In this chapter, we discussed the philosophy and mechanisms of the Legion

resource management framework. In Legion, resource management is invoked
not just for running jobs but also to place other Grid components, such as
files, directories, databases, etc. The key element in resource management
is placement, i.e., determining on which machine to start running an object.
In Legion, placement is a negotiation process between the requirements of
users and the policies of resource managers. This negotiation process is car-
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ried out by a scheduler which also employs an algorithm to determine which
resources of the available ones is most suited for starting the requested ob-
ject. Every scheduler in Legion implements the negotiation process, although
different schedulers may employ different algorithms.

As Grids mature, diverse resources will be included in Grids and Grid re-
source management will be central to the working of a Grid. We hope that our
experience will serve to guide the design of resource managers. In particular,
we believe that the pressing challenges that face the Grid community are the
design of rich and flexible resource specification languages in order to match
resources with requests, and the design of a framework that can incorporate
different solutions for different aspects of Grid resource management.
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