Resource Management in Legion *

Steve J. Chapin, Dimitrios Katramatos, John Karpovich, and
Andrew Grimshaw

Department of Computer Science, School of Engineering € Applied Science,
University of Virginia, Charlottesville, VA 22903-2442,
{chapin,dk3z,karp,grimshaw} Quirginia. edu

Abstract

The recent development of gigabit networking technology, combined with the pro-
liferation of low-cost, high-performance microprocessors, has given rise to metacom-
puting environments. These environments can combine many thousands of hosts,
from hundreds of administrative domains, connected by transnational and world-
wide networks. Managing the resources in such a system is a complex task, but is
necessary to efficiently and economically execute user programs.

In this paper, we describe the resource management portions of the Legion meta-
computing system, including the basic model and its implementation. These mech-
anisms are flexible both in their support for system-level resource management but
also in their adaptability for user-level scheduling policies. We show this by imple-
menting a simple scheduling policy and demonstrating how it can be adapted to
more complex algorithms.

Keywords: parallel and distributed systems, task scheduling, resource
management, autonomy

1 Introduction

The recent development of gigabit networking technology, combined with the
proliferation of low-cost, high-performance microprocessors, has given rise to
metacomputing environments. These environments can combine many thou-
sands of hosts, from hundreds of administrative domains, connected by local,

* This work was funded in part by NSF grant CDA9724552, ONR grant N00014-
98-1-0454, Northrup-Grumman contract 9729373-00, and DOE contracts DEFG02-
96ER25290, SANDIA #LD-9391, and D45900016-3C.

Preprint submitted to Elsevier Science 5 October 1998

transnational, and world-wide networks. Managing the resources in such a sys-
tem is a complex task, but is necessary to efficiently and economically execute
user programs. The Legion project is developing metacomputing software, and
in this paper, we will describe the resource management subsystem of Legion.
In particular, we will describe the Legion scheduling model, our implemen-
tation of the model, and the use of these mechanisms to support user-level
scheduling.

Legion [6] is an object-oriented metacomputing environment, intended to con-
nect many thousands, perhaps millions, of hosts ranging from PCs to mas-
sively parallel supercomputers. Such a system will manage millions to billions
of objects. To be successful, Legion will require much more than simply gang-
ing computers together via gigabit channels—a sound software infrastructure
must allow users to write and run applications in an easy-to-use, transparent
fashion. Furthermore, the software must unite machines from thousands of
administrative domains into a single coherent system. This requires extensive
support for autonomy, so that we can assure administrators that they retain
control over their local resources.

In a sense, then, we have two goals which can often be at odds: users want to
ensure that their programs receive the best treatment, while administrators
want to ensure that their systems are safe, secure, and available for their
priority users. Legion provides a methodology allowing each group to express
their desires, and the system acts as a mediator to find a resource allocation
that is acceptable to both parties. With such a system in place, users may
neither know nor care whether their jobs are running across the hall or across
the country. Administrators can offer excess cycles to the Legion system, or
even set up workstation farms selling cycles as a commodity, secure in the
knowledge that their local access and use policies will be respected.

Legion achieves this vision through a flexible, modular approach to scheduling
support. Throughout the paper, we will refer to the current implementation
of Legion, or the default behavior. This is because Legion is fundamentally
a set of interface definitions for an object system, and our prototype is only
one implementation that manifests those interfaces. We fully expect others
to reimplement or augment portions of the system, reflecting their needs for
specific functionality. For scheduling, as in other cases, we provide reasonable
default policies and allow users and system administrators to customize be-
havior to meet their needs and desires. Our mechanisms have cost that scales
with capability—the effort required to implement a simple policy is low, and
rises slowly, scaling commensurately with the complexity of the policy being
implemented. This continuum is provided through a substrate rich in func-
tionality that simplifies the implementation of scheduling algorithms.

Section 2 describes the Legion metacomputing system, and section 3 outlines

the resource management subsystem. We develop a Scheduler using Legion
resource management in section 4, and describe other resource management
systems for metacomputing in section 5. Finally, we give concluding remarks
in section 6.

2 Legion

The Legion design encompasses ten basic objectives: site autonomy, support
for heterogeneity, extensibility, ease-of-use, parallel processing to achieve per-
formance, fault tolerance, scalability, security, multi-language support, and
global naming. These objectives are described in greater depth in Grimshaw
et al. [6]. Resource Management is concerned primarily with autonomy and
heterogeneity, although other issues certainly play a role.

Supporting heterogeneity requires Legion to accommodate vastly differing
computing capabilities among constituent machines, including differences in
architectures, operating systems, and installed software. Such support is im-
portant to run complex distributed computations, such as a weather fore-
casting and visualization program—portions of the computation may be best
suited for vector supercomputers, message-passing architectures, or graphics
workstations. Autonomy means that each site has the freedom to have het-
erogeneous resources, define local policies, and refuse to run jobs from remote
sites. Users have the freedom to choose where they would like their jobs to
run, and to decline an unsatisfactory choice made by the system.

The resulting Legion design contains a set of core objects, without which the
system cannot function, a subset of which are shown in figure 1. These objects
are critical to resource management in that they provide the basic resources
to be managed, and the infrastructure to support management. Between core
objects and user objects lie service objects—objects which improve system
performance, but are not truly essential to system operation. Examples of
service objects include caches for object implementations, file objects, and the
resource management infrastructure.

In the remainder of this section, we will examine the core objects and their
role in resource management. For a complete discussion of the Legion Core
Objects, see [10]. We will defer discussion of the service objects until section 3.

LegionClass
Y

HostClass MyObjClass VaultClass
[Hostl} [HostZ] [Vaultl} [VauItZ}

Fig. 1. The Legion Core Object Hierarchy

2.1 Legion Core Objects

Class objects (e.g. HostClass, LegionClass) in Legion serve two functions. As
in other object-oriented systems, Classes define the types of their instances. In
Legion, Classes are also active entities, and act as managers for their instances.
Thus, a Class is the final authority in matters pertaining to its instances,
including object placement. The Class defines the create_instance() method,
which is responsible for placing an instance on a viable host. create_instance
takes an optional argument suggesting a placement, which is necessary to
implement external Schedulers. In the absence of this argument, the Class
makes a quick (and almost certainly non-optimal) placement decision.?

The two remaining core objects represent the basic resource types in Legion:
Hosts and Vaults.? Each has a corresponding guardian object class. Host
Objects encapsulate machine capabilities (e.g., a processor and its associated
memory) and are responsible for instantiating objects on the processor. In this
way, the host acts as an arbiter for the machine’s capabilities. Our current Host
Objects represent single-host systems (both uniprocessor and multiprocessor
shared memory machines), although this is not a requirement of the model.
We are working with the Globus project and the NSF PACI centers to imple-
ment generic functionality that will allow Host Objects to interact with queue
management systems such as LoadLeveler and Condor.

To support scheduling, Hosts grant reservations for future service. The exact
form of the reservation depends upon the Host Object implementation, but
they must be non-forgeable tokens; the Host Object must recognize these to-
kens when they are passed in with service requests. It is not necessary for any

1 The current default is to place the object “here,” i.e. using the class’s Host and
Vault, if possible.

2We are developing Network Objects to encapsulate host connectivity and
interconnection.

- Application Application
Application + Application +
Scheduler
Scheduler + Scheduler + Scheduler
RM Services RM .
RM Services Services RM Services
Resource Objects Resource Objects Resource Objects Resource Objects

@ (b) © ()

Fig. 2. Choices in Resource Management Layering

other object in the system to be able to decode the reservation token. Our
current implementation of reservations encodes both the Host and the Vault
which will be used for execution of the object. Vaults are the generic storage
abstraction in Legion. To be executed, a Legion object must have a vault to
hold its Object Persistent Representation (OPR). The OPR holds the persis-
tent state of the object, and is used for migration and for shutdown/restart
purposes.

Hosts also contain a mechanism for defining event triggers—this allows a host
to, e.g., initiate object migration if its load rises above a threshold. Conceptu-
ally, triggers are guarded statements which raise events if the guard evaluates
to a boolean true. These events are handled by the Reflective Graph and Event
(RGE) mechanisms in all Legion objects. RGE is described in detail in [14,15];
for our purposes, it is sufficient to note that this capability exists.

3 Resource Management Infrastructure (RMI)

Our philosophy of scheduling is that it is a negotiation of service between
autonomous agents, one acting on the part of the application (consumer) and
one on behalf of the resource or system (provider). This approach has been
validated by both our own past history [4,8] and the more recent work of
groups such as the AppLeS project at UCSD [1]. These negotiating agents
can either be the principals themselves (objects or programs), or Schedulers
and intermediaries acting on their behalfs. Scheduling in Legion is never of
a dictatorial nature; requests are made of resource guardians, who have final
authority over what requests are honored.

Figure 2 shows several different layering schemes that can naturally arise in
metasystems. In part (a), the application does it all, negotiating directly with
resources and making placement decisions. In part (b), the application still

makes its own placement decision, but uses the provided Resource Manage-
ment services to negotiate with system resources. Part (c) shows an application
taking advantage of a combined placement and negotiation module, such as
was provided in MESSIAHS [4]. The most flexible layering scheme, shown in
part (d), performs each of these functions in a separate module. Without loss
of generality, we will write in terms of the third layering scheme, with the
understanding that the Scheduler may be combined with other layers, thus
producing one of the simpler layering schemes. Any of these layerings is pos-
sible in Legion; the choice of which to use is up to the individual application
writer.

Legion provides simple, generic default Schedulers that offer the classic “90%”
solution—they do an adequate job, but can easily be outperformed by Sched-
ulers with special knowledge of the application. Application writers can take
advantage of the resource management infrastructure, described below, to
write per-application or application-type-specific user-level Schedulers. We are
working with Weissman’s group at UTSA [16] to develop Schedulers for broad
classes of applications with similar structures (e.g. 5-point stencils).

Our resource management model, shown in figure 3, supports our scheduling
philosophy by allowing user-defined Schedulers to interact with the infras-
tructure. The components of the model are the basic resources (hosts and
vaults), the information database (the Collection), the schedule implementor
(the Enactor), and an execution Monitor. Before we examine each component
in detail, we will examine their interactions at a higher level. Note that figure
3 and the following discussion are intended to detail the logical components
and steps involved in the scheduling process. Again, this description conforms
to our implementation of the interfaces; others are free to substitute their own
modules—for example, several components may be combined (e.g. the Sched-
uler or Enactor and the Monitor) for efficiency. The steps in object placement
are as follows:

(i) The Collection is populated with information describing the resources.
(ii) The Scheduler queries the Collection, and
(iii) based on the result and knowledge of the application, computes a map-
ping of objects to resources. This application-specific knowledge can ei-
ther be implicit (in the case of an application-specific Scheduler), or can
be acquired from the application’s classes.
This mapping is passed to the Enactor, which
invokes methods on hosts and vaults to
obtain reservations from the resources named in the mapping.
After obtaining reservations, the Enactor consults with the Scheduler to
confirm the schedule, and
(viii) after receiving approval from the Scheduler,

(ix) attempts to instantiate the objects through member function calls on the

13

4,8
' Enactor
7,11
59 T 6,10

LegionClass

HostClass| MyObjClass VaultClass

13 Monitor

Collection

Fig. 3. Use of the Resource Management Infrastructure

appropriate class objects.
(x) The class objects report success/failure codes, and
(xi) the Enactor returns the result to the Scheduler.
(xii) If, during execution, a resource decides that the object needs to be mi-
grated, it performs an outcall to a Monitor,
(xiii) Which notifies the Scheduler and Enactor that rescheduling should be
performed.

The remainder of this section examines each of the components in greater
detail.

3.1 Host and Vault Objects

The resource management interface for the Host object appears in table 1.
There are three broad groups of functions: reservation management, object
management, and information reporting.

Reservation Management | Process Management | Info. Reporting
make_reservation() startObject() get_compatible_vaults()
check_reservation() killObject() vault_OK()
cancel reservation|() deactivateObject()

Table 1

Host Object Resource Management Interface

The reservation functions are used by the Enactor to obtain a reservation
token for each subpart of a schedule. When asked for a reservation, the Host
is responsible for ensuring that the vault is reachable, that sufficient resources

are available, and that its local placement policy permits instantiating the
object.

In addition to the information reporting methods listed above, the Host also
supports the attribute database included in all Legion objects. These informa-
tion reporting methods for Host Objects allow us to build Collections using a
pull model—the Collection can query the host to determine its current state.
All Legion objects include an extensible attribute database, the contents of
which are determined by the type of the object. Host objects populate their
attributes with information describing their current state, including architec-
ture, operating system, load, available memory, etc. Future versions of host
objects will export scheduling policy information so that user-level Schedulers
can better determine whether particular hosts are good candidates for object
placement.

The Host Object reassesses its local state periodically, and repopulates its at-
tributes. If a push model® is being used, it will then deposit information into
its known Collection(s). The flexibility of Legion object attribute databases
allows the Host Object to export a rich set of information, well beyond the
minimal “architecture, OS, and load average” information used by most cur-
rent scheduling algorithms. For example, the Host could export information
such as the amount charged per CPU cycle consumed, domains from which it
refuses to accept object instantiation requests, or a description of its willing-
ness to accept extra jobs based on the time of day. This kind of information
can help Schedulers to make better choices at the outset, thus avoiding the
computation of subtly nonfeasible schedules.

The current implementation of Vault Objects does not contain dynamic state
to the degree that Host Objects do. Vaults, therefore, only participate in the
scheduling process at the start, when they verify that they are compatible with
a host. They may, in the future, be differentiated by the amount of storage
available, cost per byte, security policy, etc.

3.2 The Collection

The Collection acts as a repository for information describing the state of
the resources comprising the system. Each record is stored as a set of Legion
object attributes. As seen in figure 4, Collections provide methods to join
(with an optional installment of initial descriptive information) and update
records, thus facilitating a push model for data. The security facilities of Legion
authenticate the caller to be sure that it is allowed to update the data in the

3 Our current default is a push model, although we are implementing intermediate
agents while will pull data from hosts and push it into collections.

int JoinCollection(LOID joiner);

int JoinCollection(LOID joiner, LinkedList <Uval_ObjAttribute>);

int LeaveCollection(LegionLOID leaver);

int QueryCollection(String Query, &CollectionData result);

int UpdateCollectionEntry(LOID constituent, LinkedList <Uval _ObjAttribute>);

Fig. 4. Collection Interface

int-binop = +| =| /| *| mod| & ||
max | min
int-expr = int-expr int-binop int-expr |

(int-expr) | integer |
int(float-expr) | id
string-expr = string-expr + string-ezpr |
(string-expr) | string | id
float-binop = +| =] /|*]| max| min
float-expr = float-expr float-binop float-expr |
(float-expr) | float |
float(int-expr) | id

comp = <|>|=|>=|<=|<>
bool-binop = and | or | xor
bool-expr = bool-expr bool-binop bool-expr |

not bool-ezpr |

int-expr comp int-expr |
float-expr comp float-expr |
string-expr comp string-ezpr |
match(string-expr, string-expr) |
(bool-expr) | true | false | id

Fig. 5. Grammar for Collection Query Language

Collection. As noted earlier, Collections may also pull data from resources.
Users, or their agents, obtain information about resources by issuing queries
to a Collection. A Collection query is string conforming to the grammar in
figure 5, which is largely the same as that used in our earlier work [3]. This
grammar allows typical operations (field matching, semantic comparisons, and
boolean combinations of terms). Identifiers refer to attribute names within a
particular record, and are of the form $AttributeName.

For example, to find all hosts that run the IRIX operating system version 5.x,
one could use the regular expression matching feature for strings and query

as follows:
match($host_os_name, “IRIX") and match($host_os_name, “5\..*")

In its current implementation, the Collection is a passive database of static
information, queried by Schedulers. We plan to extend Collections to support
function injection—the ability for users to install code to dynamically com-
pute new description information and integrate it with the already existing
description information for a resource. This capability is especially important
to users of the Network Weather Service [17], which predicts future resource
availability based on statistical analysis of past behavior.

An important use of Collections is to structure resources within the Legion
system. Having a few, global, Collections will prohibit the scalability we wish
to achieve. Therefore, Collections may receive data from, and send data to,
other Collections. This allows us to have a Collection for each administrative
domain, and to combine Collections in other Collections. This is analogous to
the hierarchical structuring of scheduling modules in [4], and we expect to see
the same scalability benefits realized there.

3.3 The Scheduler and Schedules

The Scheduler computes the mapping of objects to resources. At a mini-
mum, the Scheduler knows how many instances of each class must be started.
Application-specific Schedulers may implicitly have more extensive knowledge
about the resource requirements of the individual objects, and any Scheduler
may query the object classes to determine such information (e.g., the available
implementations, or memory or communication requirements). The Scheduler
obtains resource description information by querying the Collection, and then
computes a mapping of object instances to resources. This mapping is passed
on to the Enactor for implementation. It is not our intent to directly develop
more than a few widely-applicable Schedulers; we leave that task to experts in
the field of designing scheduling algorithms. Our job is to build mechanisms
that assist them in their task.

Schedules must be passed between Schedulers and Enactors. A graphical rep-
resentation for a Schedule appears in figure 6. Each Schedule has at least one
Master Schedule, and each Master Schedule may have a list of Variant Sched-
ules associated with it. Both master and variant schedules contain a list of
mappings, with each mapping having the type (Class LOID — (Host LOID x
vault LOID)). Each mapping indicates that an instance of the class should be
started on the indicated (host, vault) pair. In the future, this mapping process
may also select from among the available implementations of an object as well.

10

Master Schedule

{

Variant Schedules

- NEelE 4

More Master Schedules

<O

’ / [] Listof Master Schedules
‘_,@ [l Head of Master or Variant Schedule

Object Class to (Host, Vault) mapping

Fig. 6. The Schedule data structure

There are three important data types for interacting with the Enactor: the
LegionScheduleFeedback, LegionScheduleList, and LegionScheduleRequestList.
A LegionScheduleList is simply a single schedule (e.g. a Master or Variant
schedule). A LegionScheduleRequestList is the entire data structure shown in
figure 6. LegionScheduleFeedback is returned by the Enactor, and contains
the original LegionScheduleRequestList and feedback information indicating
whether the reservations were successfully made, and if so, which schedule
succeeded.

3.4 The Enactor

The pertinent portion of the Enactor interface appears in figure 7. A Scheduler
first passes in the entire set of schedules to the make_reservations() call, and
waits for feedback. If all schedules failed, the Enactor may (but is not required
to) report whether the failure was due to an inability to obtain resources, a
malformed schedule, or other failure. If any schedule succeeded, the Scheduler
can then use the enact_schedule() call to request that the Enactor instantiate
objects on the reserved resources, or the cancel_reservations() method to release
the resources.

We have mentioned master and variant schedules, but have not explained
how they are used by the Enactor. Each entry in the variant schedule is a
single-object mapping, and replaces one entry in the master schedule. If all
mappings in the master schedule succeed, then scheduling is complete. If not,
then a Variant schedule is selected that contains a new entry for the failed
mapping. This Variant may also have different mappings for other instances,

11

&LegionScheduleFeedback make_reservations(&LegionScheduleList);
int cancel_reservations(&LegionScheduleRequestList);
&LegionScheduleRequestList enact_schedule(&LegionScheduleRequestList);

Fig. 7. Enactor Interface

which may have succeeded in the Master schedule. Implementing the Variant
schedule entails making new reservations for items in the Variant schedule and
canceling any corresponding reservations from the Master schedule. Our de-
fault Schedulers and Enactor work together to structure the Variant schedules
so as to avoid reservation thrashing (the canceling and subsequent remaking
of the same reservation).

As mentioned earlier, Class objects implement a create_instance() method. This
method has an optional argument containing an LOID and a reservation token.
Use of the optional argument allows directed placement of objects, which is
necessary to implement externally computed schedules. The Class object is
still responsible for checking the placement for validity and conformance to
local policy, but the Class does not have to go through the standard placement
steps.

3.5 Application Monitoring

As noted earlier, Legion provides an event-based notification mechanism via its
RGE model [14]. Using this mechanism, the Enactor can register an outcall
to the host objects; this outcall will be performed when a trigger’s guard
evaluates to true. There is no explicitly-defined interface for this functionality,
as it is implicit in the use of RGE facilities. If desired, the Enactor or Scheduler
can perform the monitoring, with the outcall registered appropriately.

4 Examples of Use

We now give an example of a Scheduler that uses our resource management
infrastructure. While it does not take advantage of any application-specific
knowledge, it does serve to demonstrate some of the flexibility of the mecha-
nisms. We start with a simple random policy, and demonstrate how to build a
“smarter” Scheduler based on the simple random policy. This improved Sched-
uler provides a template for building Schedulers with more complex placement
algorithms. We then discuss our plans for building more sophisticated Sched-
ulers with application and domain-specific knowledge.

12

Generate_Random_Placement(ObjectClass list) {
for each ObjectClass O in the list, do {
query the class for available implementations
query Collection for hosts matching available implementations
k = the number of instances of this class desired
for i :=1to k, do {
pick a host H at random
extract list of compatible vaults from H
randomly pick a compatible vault V
append the target (#, V) to the master schedule

roo)

return the master schedule

Fig. 8. Pseudocode for random placement

For the sake of brevity and presentation, we have omitted the full source code
in favor of pseudocode. The source code is contained in release 1.4 of the
Legion system, first made available in September 1998. The current release of
the Legion software is available from [9].

4.1 Random Scheduling

The Random Scheduling Policy, as the name implies, randomly selects from
the available resources that appear to be able to run the task. There is no
consideration of load, speed, memory contention, communication patterns, or
other factors that might affect the completion time of the task. The goal here
is simplicity, not performance.

Pseudocode for our random schedule generator in figure 8. The Generate_Ran-
dom_Placement() function is called with a list of classes for which instantiation
is desired. The Scheduler iterates over this list, and executes the following steps
for each item. First, the Scheduler extracts the list of available implementa-
tions from the attribute list of the class of the object it is to instantiate. The
Scheduler then queries the Collection for matching hosts, and picks a matching
host at random. After extracting that host’s list of compatible vaults from the
description returned by the Collection, the Scheduler randomly selects a vault.
This (host, vault) pair is added to the master schedule. This pair selection is
done once for each instance desired for this class.

Note that this algorithm only builds one master schedule, and does not take

13

advantage of the variant schedule feature, nor does it calculate multiple sched-
ules. The Scheduler could call this function multiple times to generate addi-
tional master schedules. This is not efficient, nor will it necessarily generate a
near-optimal schedule, but it is simple and easy. This is, in fact, the equivalent
of the default schedule generator for Legion Classes in releases prior to 1.4.

After generating the mapping, the Scheduler must interact with the Enactor to
determine if the placement was successful. Although not shown in figure 8, the
simple implementation passes a single master schedule to the Enactor via the
make_reservations() and enact_schedule() methods, and reports the success or
failure of that call back to the object that invoked the Scheduler. No attempt
is currently made to generate other placements, although a more sophisticated
Scheduler would certainly do so.

4.2 Improved Random Scheduling (IRS)

There are many possible improvements on our random placement algorithm,
both for efficiency of calculation and for efficacy of the generated schedule. The
improvement we focus on is not in the basic algorithm; the IRS still selects a
random host and vault pair. Rather, we will compute multiple schedules and
accommodate negative feedback from the Enactor. The pseudocode for IRS is
in figures 9 and 10.

The improved version generates n random mappings for each object class, and
then constructs n schedules out of them. The Scheduler could just as easily
build n schedules through calls to the original generator function, but IRS does
fewer lookups in the Collection. Note also that, because this is random place-
ment, we do not consider dependencies between objects in the placement. A
more sophisticated Scheduler would take this into account either when gener-
ating the individual instance mappings or when combining instance mappings
into a schedule.

The Wrapper function has three global variables that limit the number of
times it will try to generate schedules, the number of times it will attempt
to enact each schedule, and the number of variant schedules generated per
call to the generation function.* Again, this is a simple-minded approach to
solving the problem, but serves to demonstrate how one could construct a
richer Scheduler.

4 We realize that the value returned from the generator and passed to the Enactor
should be a list of master schedules; we take liberty with the types in the pseudocode
for the sake of brevity.

14

IRS_Generate_Placement(ObjectClass list, int n) {
for each ObjectClass O in the list, do {
query the class for available implementations
query Collection for hosts matching available implementations
k = the number of instances of this object desired
forl :==1tomn, do {
for i :=1to k, do {
pick a host H at random
extract list of compatible vaults from
randomly pick a compatible vault V
append the target (H, V) to the list for this instance
|
master schedule = first item from each object instance list
for I :==2ton, do {
select the [** component of the list for each object instance
construct a list of all that do not appear in the master list
append to list of variant schedules

}

return the master schedule

Fig. 9. Pseudocode for the IRS Placement Generator

IRS_Wrapper(ObjectClass list) {

for i in 1 to SchedTryLimit, do {

sched = IRS_Generate_Placement(ObjectClass List, NSched);

for j in 1 to EnactTryLimit, do {

if (make_reservations(sched) succeeded) {
if (enact_placement(sched) succeeded) {
return success;

yoor o)

return failure;

Fig. 10. Pseudocode for the IRS Wrapper

4.8 Specialized Policies

We are in the process of defining and implementing specialized placement
policies for structured multi-object applications. Examples of these applica-

15

tions include MPI-based or PVM-based simulations, parameter space stud-
ies, and other modeling applications. Applications in these domains quite of-
ten exhibit predictable communication patterns, both in terms of the com-
pute/communication cycle and in the source and destination of the commu-
nication. For example, we are working with the DoD MSRC in Stennis, Mis-
sissippi to develop a Scheduler for an MPI-based ocean simulation which uses
nearest-neighbor communication within a 2-D grid.

5 Related Work

The Globus project [5] is also building metacomputing infrastructure. At a
high level, their scheduling model closely resembles that of Legion, as we first
presented it at the 1997 Legion Winter Workshop [2]. There is a rough corre-
spondence between Globus Resource Brokers and Legion Schedulers; Globus
Information Services and Legion Collections; Globus Co-allocators and Le-
gion Enactors; and Globus GRAMs and Legion Host Objects. However, there
are substantial differences in realization of the model, due primarily to two
features of Legion not found in Globus: the object-oriented programming
model and strong support for local autonomy among member sites. Legion
achieves its goals with a “whole-cloth” design, while Globus presents a “sum-
of-services” architecture layered over pre-existing components. Globus has the
advantage of a faster path to maturity, while Legion encompasses functionality
not present in Globus.

There are many software systems for managing a locally-distributed multi-
computer, including Condor [11] and LoadLeveler [13]. These systems are
typically Queue Management Systems intended for use with homogeneous
resource pools. While extremely well-suited to what they do, they do not map
well onto wide-area environments, where heterogeneity, multiple administra-
tive domains, and communications irregularities dramatically complicate the
job of resource management. Indeed, these types of systems are complemen-
tary to a metasystem, and we will incorporate them into Legion by developing
specialized Host Objects to act as mediators between the queuing systems and
Legion at large.

SmartNet [7] provides scheduling frameworks for heterogeneous resources. It is
intended for use in dedicated environments, such as the suite of resources avail-
able at a supercomputer center. Unlike Legion, SmartNet is not intended for
large-scale systems spanning administrative domains. Thus, SmartNet could
be used within a Legion system by developing a specialized Host Object, sim-
ilar to the Condor and LoadLeveler Host Objects mentioned earlier. IBM’s
DRMS [12] also provides scheduling frameworks, in this case targeted towards
reconfigurable applications. The DRMS components serve functions similar

16

to those of the Legion RMI, but like SmartNet, DRMS is not designed for
wide-area metacomputing systems.

6 Conclusions and Future Work

This paper has described the resource management facilities in the Legion
metacomputing environment. We have examined the components of the RM
subsystem, presented their functionality, and described the interfaces of each
component. Using these interfaces, we have implemented sample Schedulers,
including a simple random Scheduler and a more sophisticated, but still ran-
dom, Scheduler. These sample Schedulers point the way to building more
complex and sophisticated Schedulers for real-world applications.

We are in the process of benchmarking the current system so that we can mea-
sure the improvement in performance as we develop more intelligent Sched-
ulers. We expect to incorporate Network Objects as a core Legion resource
in late 1998 or early 1999. The object interfaces will evolve in response to
need—as we work with our research partners who are developing scheduling
algorithms, we will enrich both the content and capability of the Resource
Management Infrastructure and the Legion core objects.

References

[1] F. Berman and R. Wolski. Scheduling from the perspective of the application.
In Proceedings of the 5th International Symposium on High-Performance
Distributed Computing (HPDC-5). IEEE, August 1996.

[2] S. Chapin and J. Karpovich. Resource Management in Legion. Legion Winter
Workshop. http://www.cs.virginia.edu/"legion/Winter Workshop /slides/
Resource_Management/, January, 1997.

[3] S. Chapin and E. Spafford. Support for Implementing Scheduling Algorithms
Using MESSIAHS. Scientific Programming, 3:325-340, 1994. special issue on
Operating System Support for Massively Parallel Computer Architectures.

[4] S. J. Chapin. Distributed Scheduling Support in the Presence of Autonomy. In
Proceedings of the 4th Heterogeneous Computing Workshop, IPPS, pages 22-29,
April 1995. Santa Barbara, CA.

[56] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
International Journal of Supercomputer Applications, to appear.

[6] A. S. Grimshaw, Wm. A. Wulf, and the Legion Team. The legion vision of
a worldwide virtual computer. Communications of the ACM, 40(1), January
1997.

17

[7] D. Hensgen, L. Moore, T. Kidd, R. Freund, E. Keith, M. Kussow, J. Lima, and
M. Campbell. Adding rescheduling to and integrating condor with smartnet. In
Proceedings of the 4th Heterogeneous Computing Workshop, pages 4-11. IEEE,
1995.

[8] J. Karpovich. Support for object placement in wide area heterogeneous
distributed systems. Technical Report CS-96-03, Dept. of Computer Science,
University of Virginia, January 1996.

[9] Legion main web page. http://legion.virginia.edu.

[10] M. J. Lewis and A. S. Grimshaw. The core legion object model.
In Proceedings of the 5th International Symposium on High-Performance
Distributed Computing (HPDC-5). IEEE, August 1996.

[11] M. Litzkow, M. Livny, and M. W. Mutka. Condor—A Hunter of Idle
Workstations. In Proceedings of the International Conference on Distributed
Computing Systems, pages 104-111, June 1988.

[12] J. E. Moreira and V. K. Naik. Dynamic resource management on distributed
systems using reconfigurable applications. IBM Journal of Research &
Development, 41(3), 1997.

[13] A. Prenneis, Jr. Loadleveler: Workload management for parallel and
distributed computing environments. In Proceedings of Supercomputing Europe
(SUPEUR), October 1996.

[14] A. Nguyen-Tuong, S. J. Chapin and A. S. Grimshaw. Designing Generic and
Reusable ORB Extensions for a Wide-Area Distributed System. The Eighth
IEEE International Symposium on High-Performance Distributed Computing
(HPDC), poster session, July, 1998.

[15] C. L. Viles, M. J. Lewis, A. J. Ferrari, A. Nguyen-Tuong, and A. S. Grimshaw.
Enabling flexiblity in the legion run-time library. In Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA’97), pages 265-274, June 1997.

[16] J. Weissman and X. Zhao. Scheduling parallel applications in distributed
networks. Journal of Cluster Computing, to appear.

[17] R. Wolski. Dynamically forecasting network performance to support dynamic
scheduling using the network weather service. In Proceedings of the
6th International Symposium on High-Performance Distributed Computing
(HPD(C-6), August 1997.

18

