Portable Run-Time Support for Dynamic
Object-Oriented Parallel Processing

ANDREW S. GRIMSHAW, JON B. WEISSMAN, and
W. TIMOTHY STRAYER

University of Virginia

Mentat is an object-oriented parallel processing system designed to simplify the task of
writing portable parallel programs for parallel machines and workstation networks. The
Mentat compiler and run-time system work together to automatically manage the communi-
cation and synchronization between objects. The run-time system marshalls member function
arguments, schedules objects on processors, and dynamically constructs and executes large-
grain data dependence graphs. In this article we present the Mentat run-time system. We
focus on three aspects —the software architecture, including the interface to the compiler and
the structure and interaction of the principle components of the run-time system; the run-time
overhead on a component-by-component basis for two platforms, a Sun SparcStation 2 and an
Intel Paragon: and an analysis of the minimum granularity required for application programs
to overcome the run-time overhead.

Categories and Subject Descriptors: D.1.3 [Programming Techniques): Concurrent Pro-
gramming —parallel programming;, D.1.5 [Programming Techniques]: Object-Oriented Pro-
gramming: D.3.2 [Programming Languages|: Language Classifications—concurrent, dis-
tributed. and parallel languages; objected-oriented languages, D.3.4 |(Programming
Languages|: Processors —run-time environment

General Terms: Languages, Performance

Additional Key Words and Phrases: Dataflow, distributed memory, MIMD, object-oriented,
parallel processing

1. INTRODUCTION

The object-oriented paradigm has proven to be a powerful tool for manag-
ing complexity in the development of software for sequential computers,
and its power is being exploited in the more complex domain of software for

This work was partially funded by NSF grants ASC-9201822 and CDA-8922545-01, and NASA
NGT-50970. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement by
the United States Government or the Jet Propulsion Laboratory, California Institute of
Technology.

Authors’ address: University of Virginia, Thornton Hall, Charlottesville, VA 22903-2442;
email: {grimshaw; weissman; strayer}@virginia.edu.

Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fec.

¢ 1996 ACM 0734-2071/96/0500-0139 $03.50

ACM Transactions on Computer Systems, Val. 14, No. 2, May 1996, Pages 139-170.

140 . Andrew S. Grimshaw et al.

parallel machines as well [Beck 1990; Bershad et al. 1988; Bodin et al.
1993; Grimshaw 1993a; Lee and Gannon 1991; Smith et al. 1989]. Software
for parallel machines must provide efficient run-time support if it is to
achieve acceptable performance. This is particularly true for distributed-
memory MIMD machines where communication and synchronization costs
can be large. Given that high performance is the raison d’etre of parallel
computing, performance cannot be allowed to suffer due to run-time over-
head. Therefore, if the object-oriented approach is to be successfully applied
to parallel systems, efficient run-time support must be provided.

Mentat is an object-oriented parallel processing system designed to
simplify the task of writing portable, parallel applications software [Grim-
shaw 1993a; Grimshaw et al. 1993a; 1993b; Weissman et al. 1994]. The
fundamental objectives of Mentat are to (1) provide easy-to-use parallelism,
(2) facilitate the portability of applications across a wide range of plat-
forms, and (3) achieve good performance. The first two objectives are
addressed through Mentat’s underlying object-oriented approach: high-
level abstractions mask the complex aspects of parallel programming,
including communication, synchronization, and scheduling. The question is
whether Mentat— or any parallel processing system— can meet the first
two objectives and not sacrifice the third. How Mentat dynamically sup-
ports its object-oriented programming language, and the run-time costs
incurred, is the topic of this discussion.

Mentat has two primary components: the Mentat programming language
(MPL) and the Mentat run-time system (RTS). The MPL is an object-
oriented programming language based on C+ +. The granule of computa-
tion is the class-member function. The programmer is responsible for
identifying those object classes whose member functions are of sufficient
computational weight to allow efficient parallel execution. MPL programs
manipulate instances of these special classes by invoking member functions
on them just as if they were instances of C++ classes.

The compiler and run-time system work together to ensure that the data
and control dependencies between Mentat class instances are automatically
detected and managed without programmer intervention. The underlying
assumption is that the programmer’s strength is in making decisions about
granularity and partitioning, while the compiler together with the run-time
system can better manage communication, synchronization, and schedul-
ing. This simplifies the task of writing parallel programs.

Mentat differs from other systems in several ways.! First, Mentat is the
only system in the literature that combines the object-oriented paradigm
with coarse-grain dataflow. Further, Mentat dynamically detects and man-
ages data dependencies as they develop, rather than at compile-time. This
facilitates larger-grain computation by eliminating many small-grain con-
trol actors which are inefficient in a distributed-memory environment.
Second, Mentat supports both task and data-parallelism, not just data-
parallelism as in Bodin et al. [1993], Cheung and Reeves [1992], Fox et al.

1A more complete discussion of related work appears in Section 5.

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

Dynamic Object-Oriented Parallel Processing . 141

119901, Hatcher et al. [1991], and Loveman [1993]. Third, Mentat operates
over a spectrum of architectures, from loosely coupled heterogeneous
networks of workstations to tightly coupled multicomputers. Finally,
Mentat has a scalable, distributed, control mechanism. This includes
both the mechanism used to construct and modify program graphs at
run-time as well as the scheduling mechanism. We must point out,
however, that Mentat is not suitable for all applications: Mentat is
useful for medium-to-coarse-grain applications. If the computation gran-
ularity of an application is too small, performance will suffer.
Performance aspects of Mentat are presented in Grimshaw et al. [1993a;
1993b|. For a general overview of Mentat and of the Mentat parallel
processing philosophy see Grimshaw [1993b). In this article we present the
Mentat run-time system which supports the Mentat programming lan-
guage. Our objectives are threefold: first, to describe the inner workings of
the run-time system, its software architecture, and the structure and
interaction of its components; second, to present the run-time costs in-
curred by Mentat applications on two platforms; and third, to provide
insight into the minimum computation granularity required on those
platforms. We begin with background information on the macro dataflow
model of computation and the Mentat programming language. Macro
dataflow is the model used by Mentat and implemented by the run-time
system. The run-time system architecture is our next focus, starting with
the virtual-machine structure, a description of the services provided, and
their design. We follow that with a sketch of the unique implementation
aspects and performance of two of the run-time system implementations,
on a network of Sun SparcStation 2 workstations and an Intel Paragon.

2. BACKGROUND

2.1 Macro Dataflow

The macro dataflow (MDF [Grimshaw 1993a]) model is a medium-grain,
data-driven computation model inspired by dataflow [Agerwala and Arvind
1982; Dennis 1975; Srini 1986; Veen 1986]. Recall that, in dataflow,
programs are directed graphs where the vertices are computational primi-
tives (e.g., add, subtract, compare, etc.) called actors; the edges, or arcs,
model data dependencies; and tokens carry data along the edges between
the actors. An actor is a function that maps inputs to outputs. Dataflow is
data driven in that programs are self-synchronized by data motion. An
actor may only execute when all of the required data, in the form of tokens,
have arrived.

Macro dataflow differs from traditional dataflow in three ways. First, the
computation granularity is larger than in traditional dataflow [Babb 1984,
Beguelin et al. 1992; Browne et al. 1990]. Actors are high-level functions
such as matrix-multiply specified in a high-level language, not primitive
operations such as addition. The required granularity in the Mentat MDF
model varies from platform to platform, but is in the thousands of instruc-

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

N

A’s future

Fig. 1. (a) A macro dataflow subgraph. The future of an actor A is shown; (b) new futures
after actor A from (a) returns a value.

tions rather than tens of instructions. In Section 4.4, we present a detailed
analysis of the required granularity. Second, some actors, called persistent
actors, may maintain state between invocations. Sets of persistent actors
may share the same state. The actors that share the same state are
executed in mutual exclusion, in a monitor-like fashion. Finally, program
graphs are not fixed at compile-time; instead, program graphs are con-
structed at run-time by observing the data dependencies as execution
unfolds.

Program graphs are represented in MDF using futures.? A future repre-
sents the future of the computation with respect to a particular actor at a
particular instant in time. In this respect MDF futures are similar to a
parallel form of a continuation [Abelson et al. 1985]. For example, consider
the program graph fragment of Figure 1(a). A’s future is shown by the
shaded area enclosing the actors (B, C, D, G). The future of A includes all
computations that are data dependent on the result of the computation that
A performs. Although actors E and F are in the same program graph as A,
they are not in A’s future, nor is A in their future.

Within the MDF execution model, actors such as A may execute when
their tokens arrive. A’s future is passed along with the tokens. When the
actor completes, one of two things happens: the actor returns a value that
is transmitted to each direct descendent in its future, or the actor elabo-
rates itself into a subgraph. In either case, modifications need to be made
to the program graph, either to reflect the completion of the actor or to
include the new subgraph. Because the modifications require changing A’s
future only, the modifications can be made locally. Other processors, such
as those executing E or F, need not be notified.

Suppose that A returns the value 5. Since A has two output arcs, A’s
future is broken into two futures which, along with the value 5, are
forwarded to B and C. The new state is shown in Figure 1(b). B and C are
now enabled and may execute, since they have a token (value) on each
input arc.

2MDF futures should not be confused with Multilisp futures {Halstead 1985]. Multilisp futures
represent a promise to deliver a value in the future.

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

(a) A’s elaborated subgraph (b) New graph

Fig. 2. Actor elaboration. The actor A from Figure 1 may elaborate into the subgraph of (a).
The resulting graph is shown in (b). This figure also illustrates an optimization with respect to
futures. Although H and I have the same future, a single copy of this future is sent from H to
J. resulting in a smaller message.

Alternatively, A may elaborate itself into an arbitrary subgraph. Sub-
graph elaboration takes place when an actor’s implementation is realized
using other actors connected together to form a small subgraph. Which
actors, and how they are connected together, is a language issue and will be
discussed later. For now, suppose that A elaborates into the subgraph
shown in Figure 2(a). The new state is shown in Figure 2(b). In this case
the graph has grown, rather than contracted as in Figure 1(b). The point is
that in both cases only A’s future needs modification; neither E, nor any
other actor, need be notified of the change.

2.2 The Mentat Programming Language

Rather than invent a new language for writing parallel programs, the
Mentat programming language (MPL) is an extension of the object-oriented
language C+ +. The extensions allow the programmer to provide granular-
ity information to the compiler and run-time system.

The most important extension to C++ is the keyword “mentat” as a
prefix to class definitions, as shown in Figure 3. This keyword indicates to
the compiler that the member functions of the class are of sufficient
computational weight to be worth executing concurrently. Mentat classes
are defined to be either regular or persistent. The distinction reflects the
two different types of actors in MDF. Regular Mentat classes are stateless,
and their member functions can be thought of as pure functions in the
sense that they maintain no state information between invocations. As a
consequence, the run-time system may instantiate a new instance of a
regular Mentat class to service each invocation of a member function from
that class, even while other instances of the same class already exist.

Persistent Mentat classes, on the other hand, do maintain state informa-
tion between member function invocations. Since state must be main-
tained, each member function invocation on a persistent Mentat object is
served by the same instance of the object.

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

144 . Andrew S. Grimshaw et al.

mentat class bar {
// private member functions and variables
public:
int op1(int,int) ;
int op2(int, int) ;
1

Fig. 3. A Mentat class definition. Without the keyword “mentat,” it is a legitimate C+ + class
definition.

DAL WD =

Instances of Mentat classes are called Mentat objects. Each Mentat object
possesses a unique name, an address space, and a single thread of control.
Mentat objects are logically address-space disjoint. The current implemen-
tation of Mentat objects is address-space disjoint, although a thread-based
implementation is planned. Because Mentat objects are address-space
disjoint, all communication is via member function invocation and is
accomplished by RPC. Because Mentat objects have a single thread of
control, they have monitor-like properties. In particular, only one member
function may be executing at a time on a particular persistent object. The
single thread and disjoint address space provide constrained access to
contained variables and state manipulated by the object, and they prevent
race conditions.

Variables whose classes are Mentat classes are analogous to variables
that are pointers. They are not an instance of the class; rather they name
or point to an instance. We call these variables Mentat variables. As with
pointers, Mentat variables are initially unbound (they do not name an
instance) and must be explicitly bound. A bound Mentat variable names a
specific Mentat object. Unlike pointers, when an unbound Mentat variable
is used and a member function is invoked, it is not necessarily an error. If
the variable names a regular Mentat class, the underlying system instan-
tiates a new Mentat object to service the member function invocation. On
the other hand, instances of persistent Mentat classes must be bound
explicitly through other language mechanisms not discussed here.

2.2.1 Member Function Invocation. Member function invocation on
Mentat objects is syntactically the same as for C++ objects. Semantically,
however, there are three important differences. First, Mentat member
function invocations are nonblocking, providing parallel execution of mem-
ber functions when data dependencies permit. Second, each invocation of a
regular Mentat object-member function causes the instantiation of a new
object to service the request. This, combined with nonblocking invocation,
means that many instances of a regular class-member function can be
executing concurrently. Finally, Mentat member functions are always
call-by-value because the model assumes distributed memory. All parame-
ters are physically copied to the destination object. Similarly, return values
are by-value. Pointers and references may be used as formal parameters
and as results, but the effect is that the memory object to which the
pointer points is copied. Variable-size arguments are supported as well,

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

Dynamic Object-Oriented Parallel Processing . 145

since they are convenient for implementing class libraries (e.g., matrix
algebra classes).

2.2.2 The Return-to-Future Mechanism. Mentat member functions use
the return-to-future rtf to return values. The value returned is forwarded to
all Mentat object-member function invocations that are data dependent on
the result, and to the caller if necessary.

While there are many similarities between the C return and the MPL rtf,
they differ in three significant ways. First, a return returns data to the
caller. An rtf may or may not return data to the caller depending on the
data dependencies of the program. If the caller does not use the result
locally, then the caller does not receive a copy. This reduces communication
overhead. Second, a C return signals the end of the computation in a
function, while an rtf does not. An rtf indicates only that the result is
available. Since each Mentat object has its own thread of control, additional
computation may be performed after the rtf, e.g., to update state informa-
tion or to communicate with other objects. By making the result available
as soon as possible, we permit data-dependent computations to proceed
concurrently with the local computation that follows the rtf. This is
analogous to send-ahead in message-passing systems. Third, in C, before a
function can return a value, the value must be available. This is not the case
with an rtf. When a Mentat object member function is invoked, the caller
does not block; rather, we ensure that the results are forwarded wherever
they are needed. Thus, a member function may rtf a “value” that is the
result of another Mentat object-member function that has not yet been
completed, or perhaps even begun execution, as in Figure 2(b).

2.2.3 The mselect/ maccept Statement. The MPL mselect/maccept state-
ment is modeled on the Ada select/accept. The programmer may specify
which member functions are candidates for execution by including them in
the mselect. As in Ada, the entries may be protected with a guard that
must evaluate to true at run-time in order for the member function to be a
candidate for execution. Unlike Ada, rendezvous semantics are not sup-
ported, and the caller does not block. The mselect/maccept statement gives
the programmer the ability to control access to the object by specifying
conditions for access. It also permits the construction of more elaborate and
explicit synchronization constructs than are implicit in the language.

2.2.4 Task and Data Parallelism in Mentat. Task parallelism is real-
ized using the language features just described. Instances of Mentat classes
are created by users and used much as their C++ counterparts are. For
each instance a thread and a logically disjoint address space are created.
The compiler generates code to marshall arguments and to construct macro
dataflow graphs at run-time. The nodes in the graphs are member function
invocations; the arcs model the formal parameters; and tokens represent
the actual parameters.

Data parallelism in Mentat applications is currently realized manually
using the task parallelism features and encapsulation. The basic idea is

ACM Transactions on Computer Systems, Vol. 14. No. 2, May 1998

146 . Andrew S. Grimshaw et al.

simple. A data-parallel object is implemented using a persistent Mentat
class that encapsulates several persistent Mentat objects. Member func-
tions of the class are implemented by calling the same member function on
the contained persistent Mentat objects which contain the data for the
class. For example, a Mentat matrix class has been implemented by
decomposing the matrix into 2 submatrices [MacCallum and Grimshaw
1994]. Each submatrix is implemented using a persistent Mentat object.
Member functions that manipulate the whole matrix are treated as task-
parallel invocations by the caller. Internally they are implemented by
appropriately manipulating the submatrices. This is known as intraobject
parallelism. The result is a program graph elaboration as described earlier
in which the program subgraph has a node for each contained Mentat
object. This results in a combined task- and data-parallel program.

Similar techniques can be used for a wide range of data structures, not
just regular, dense, two-dimensional arrays. The difficulty with this
method for realizing data parallelism is that, while it is straightforward for
the programmer, it is somewhat tedious. The programmer is responsible for
managing the iteration space, data domain decomposition, and the ex-
change of boundary regions for some problems. The iteration must be
performed over the contained Mentat objects and their contained data
elements.

To eliminate the need to manually generate this rather tedious code we
are exploring the incorporation of data-parallel language features into the
Mentat programming language [West and Grimshaw 1995]. The language
extensions are similar to those being developed by Lee and Gannon {1991],
Hatcher et al. [1991], Larus et al. [1992], and others. Our work is signifi-
cantly different in that the result will be a language that combines task
and data parallelism in a seamless fashion, while the above languages are
data parallel only.

3. THE RUN-TIME SYSTEM (RTS)

MPL programs are executed on a virtual macro dataflow machine imple-
mented by the RTS. Each Mentat class-member function corresponds to an
MDF actor, and each formal parameter corresponds to an incoming arc for
that actor. Tokens correspond to the actual parameters of the member
function invocation. Token matching is the process of matching tokens
(messages) that are the actual arguments of the same Mentat object-
member function invocation. The RTS constructs program graphs, manages
communication and synchronization, performs token matching, performs
object instantiation and scheduling, and allows selective message reception
to support an ADA-like select/accept semantics. The virtual machine
abstracts the platform-specific details so that the MPL code is portable
across various MIMD architectures. The run-time system is currently
running on several systems: the Intel iPSC/860 and Intel Paragon, both
using NX/2 [Intel 1988], the IBM SP-2, and networks of Sun, Hewlett-

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

Dynamic Object-Oriented Paralle! Processing . 147

Packard, Silicon Graphics, and IBM RS/6000 workstations using UDP
packets and Unix sockets.

3.1 The Virtual Machine

The virtual macro dataflow machine provides a service interface to the
compiled MPL code. The services are divided into two groups: those library
routines that are linked with application objects and those that are
provided by independent daemon Mentat objects. The library services
include communication, dataflow detection, and token matching for persis-
tent Mentat objects. Object scheduling and instantiation are provided by
instantiation managers (IMs), and unbound token matching by the token-
matching units (TMUSs). The IMs and TMUs are daemons.

Internally, the virtual machine uses a classic layered approach. The top
level provides an interface through which the compiler-generated code
interacts with the virtual machine. The interface in turn is implemented as
machine-independent modules. At the bottom level are the architecture-
and operating-system-specific modules where all platform-specific code has
been isolated. The platform-specific modules include the communication
system MMPS (the Modular Message Passing System [Grimshaw et al.
1990]), and the object loader used by the instantiation manager. By
isolating platform-dependent code we simplify both software maintenance
and the task of porting Mentat to new platforms.

Each Mentat object and daemon have a unique name, address space, and
thread of control. Communication between objects is solely through the
message-passing system —there is no shared memory.

3.2 System Services

There are five basic services provided by the run-time system: (1) object
naming and basic communication, (2) dataflow detection, (3) token match-
ing for persistent objects, (4) token matching for regular objects, and (5)
object scheduling and instantiation. As discussed earlier, the first three are
implemented by libraries and the latter two by daemons.

The run-time libraries are linked to each Mentat application and to the
daemon objects. The library interface is the virtual machine used by the
MPL compiler. Naturally, the interface is object oriented and consists of a set
of class definitions. Instances of these classes are manipulated by the com-
piler. The most important classes are computation. instance, mentat object,
mentat message, and predicate.manager.

Class computation instance. The RTS keeps track of Mentat object-
member function invocations at run-time using computation instances,
which correspond to nodes in an MDF program graph. They contain the
name of the Mentat object invoked, the number of the invoked member
function, the computation tag that uniquely identifies the computation, a
list of the arguments (either values or pointers to other computation
instances that will provide the values), and a successor list (also computa-
tion instances). A computation instance contains sufficient information to

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

148 . Andrew S. Grimshaw et al.

1 class metat_object {

2 object_name i_name ;

3 public:

4 CIP invoke_fn(int fn_number,int arg_count,arg_struct ...) ;

5 // invoke_fn marshals the arguments. fn_number indicates the function,
6 // arg_count the number of arguments

7 void create() ; // instantiate new back-end

8 void destroy() ; // destroy the back-end

9 };

Fig. 4. Partial interface of the front-end mentat_object class.

acquire the value that is the result of the operation. A CIP is a computation
instance pointer.

Class mentat_object. The RTS implementation of Mentat objects con-
sists of two components: (1) the front-end class mentat_object that contains
the name of a Mentat object (process) and is the handle with which
operations on the Mentat object are performed and (2) a back-end server
object process that contains the Mentat object’s state and performs the
member functions. Mentat class-member function names are mapped by
the compiler to function numbers; thus a pop() operation on a queue might
be mapped to function number 104. Member function invocation involves
using the front-end as a surrogate for the back-end server object. The
front-end mentat_objects are essentially object names and a set of member
functions used to communicate with the back-end server. The compiler
generates the server loops that implement the back-ends and code to
manipulate mentat_objects. Three member functions defined on every men-
tat_object, invoke_fn(), create(), and destroy() are shown in Figure 4.

The member function invoke_fn() is called when a Mentat object-member
function is invoked. For example, to invoke A.pop() the compiler would
emit a A.invoke_fn(104,0) to call function 104 on object A with no argu-
ments. Invoke_fn() creates a new computation instance for the computa-
tion, (i.e., a new program graph node is created) and marshalls the
arguments, both actual arguments (line 3, Figure 5(a)) and arguments that
are computation instances (line 5, Figure 5(a)). If an argument is a
computation instance, invoke_fn{) adds an arc from the argument to the
new computation instance it is constructing. The functions create() and
destroy()} are called when a persistent Mentat object is instantiated and
destroyed, respectively.

Class mentat_message. A mentat_message is a message that contains
the destination object name, the destination function number, an argument
number, a computation tag, a future, and some data. Mentat messages
have the property that if the destination object name is not bound, i.e., it
does not name a specific instance, the message will be sent to a token-
matching unit (TMU).

Class predicate_manager. A predicate_manager specifies a predicate
which is a set of member functions that are candidates for execution. The

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

Dynamic Object-Oriented Parallel Processing . 149

1 barABC : 1 barA ;
2 intwxy ; 2 intw,xy
3 w = Aopl{4,5) ; 3 w:=Aopl 4 5 ;
4 x = B.op1(6,7) ; 4 y=w~+1;
5 y - Copt{wx) ;
6 rifly) .
ta) Draw an arc from A.op1() and (b) w is used in a strict expression,
B.op1({) to C.op1(). block at wait for value.

Fig. 5. Two uses of result variables. In this example, bar is a regular Mentat class.

compiler constructs a predicate manager for each mselect/maccept in the
program. The predicate manager class implements the token-matching
function for bound Mentat objects.

3.2.1 Naming and Basic Communication. Naming and basic communi-
cation services are provided by the Modular Message Passing System
{MMPS) [Grimshaw et al. 1990]. MMPS provides C+ + class-based naming
and message-passing services, message construction, synchronous and
asynchronous send, and blocking and nonblocking receive.

An MMPS-name is an address that names a specific object (process) on a
specific processor. It contains information to allow the implementation to
communicate with the object using the underlying host operating system’s
IPC primitives. For example, on Unix systems using UDP datagrams, an
MMPS-name contains an index into a host table that contains 30-character
host names (IP format) and a port number. On the Intel iPSC/860 and Intel
Paragon, an MMPS-name contains an integer host identifier and an integer
process identifier. The use of an address in the MMPS-name means that
named objects may not migrate—a restriction that we have not found
burdensome, to date. We expect to change this soon, though, to allow
objects to migrate to support fault tolerance and better resource utilization.

3.2.2 Run-Time Dataflow Detection. The objective of run-time dataflow
detection is to dynamically detect and manage data dependencies between
Mentat object invocations, mapping the resulting dependence graph onto a
macro dataflow program graph. The data dependencies between Mentat object
function invocations correspond to arcs in the MDF program graph.

The dataflow detection library routines monitor the use of certain vari-
ables (called result variables) at run-time to produce data dependence
graphs. The basic idea is to monitor the use of Mentat objects and the use
of the results of Mentat object-member function invocations. Informally, if
at run-time we chserve a variable w (Figure 5) being used on the left-hand
side of a Mentat object-member function invocation, we mark w as delayed
and monitor all uses of w. Whenever w is delayed and is used as an
argument to a Mentat object-member function invocation, we construct an
arc from the invocation that generated w to the consumer of w. If w is not
delayed, we use its value directly. Whenever w is used in a strict expres-
sion, we start the computation that computes w and block waiting for the

ACM Transactions on Computer Systems, Vol. 14, No. 2. May 1996.

150 . Andrew S. Grimshaw et al.

answer. A strict expression is an expression in which we must have the
value in order to proceed. For example, on line 4 of Figure 5(b) the plus
operator is strict; we must have the value of w to proceed.

More formally, let A be a Mentat object with a member function

int operationi(int,int)

A Mentat expression is one in which the outermost function invocation is an
invocation of a Mentat member function, e.g., the right-hand side of

X = A.operationi(4,5) ;

A Mentat expression may be nested inside of another Mentat expression,
e.g.,

x = A.operation1(5,A.operation1(4,4)) ;

The right-hand side of every Mentat assignment statement is a Mentat
expression, e.g.,

x = A.operation(4,5) ;

A result variable (RV) is a variable that occurs on the left-hand side of a
Mentat assignment statement, e.g., w in Figure 5. It has a delayed value if
the most recent assignment statement to it was a computation instance and
if the actual value for the computation instance has not been resolved. An
RV has an actual value if it has a value that may be used. To detect data
dependence at run-time we monitor all uses of result variables, both on the
left- and right-hand sides.

Each RV has a state that is either delayed or actual. We define the result
vartable set (RVS) to be the set of all result variables that have a delayed
value. Membership in RVS varies during the course of object execution. We
define the potential result variable set (PRV) to be the set of all result
variables. A variable may be a member of the PRV set and never be a
member of the result variable set. Membership in the PRV set is deter-
mined at compile-time.

The run-time system performs run-time dataflow detection by maintain-
ing a table of the addresses of the members of the result variable set called
the RV_TABLE. There are two cases to consider. If the result variable is not
in the RVS then it is not in the RV_TABLE, and its value is already stored
at its address in memory. If the result variable address is in the RVS then
its value depends on a Mentat expression not yet evaluated, and the result
variable is stored in the RV_TABLE. Each RV_TABLE entry contains the result
variable’s address and a pointer to a computation instance. The computation
instance corresponds to the most recent assignment to the variable.

There are four functions of interest that operate on the RV_TABLE:

RV_INSERT((char*)rv_address, computation_instance* node) ;
RV_DELETE((char*) rv_address) ;

force() ;

RESOLVE((char*) rv_address, int size) ;

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

Dynamic Object-Oriented Parallel Processing . 151

The function RV INSERT() creates an entry in the RV TABLE for the
result variable pointed to by rv address with a computation instance
pointed to by node. If an entry already existed for rv_address, it is
overwritten. Thus, we are implementing the single-assignment rule using
the RV TABLE and computation instances. RV _INSERT(} is the mechanism
for adding a PRV to the RVS.

The function RV DELETE() deletes the RV TABLE entry associated with
rv address if one exists. Before the entry is deleted, its associated compu-
tation instance is decoupled. By decoupling the computation instance the
compiler tells the RTS that this computation instance will never occur on
the right-hand side of an expression again. This is the mechanism for
removing a PRV from RVS.

The function force() examines all of the locally created computation
instances. If the computation instance has not previously been evaluated,
i.e., its arguments have not been sent, then a future is constructed, and the
arguments are sent to the object that is being invoked. Once the arguments
have been sent, the computation instance is marked as evaluated. If the
computation instance has no actual arguments, then the corresponding
member function invocation will receive its arguments from its predeces-
sors in the program graph.

The function RESOLVE() is called when the user program requires a
value for a result variable. This is the case when a strict expression is en-
countered. If an entry in the RV_TABLE exists for rv address, RESOLVE()
calls force() and blocks until the result is available. Otherwise the value is
known and simply returned. Once the result is available, RESOLVE()
places the result into the memory to which the rv_address points.

In Figure 5 two program fragments were presented to illustrate blocking
versus nonblocking member function invocation. The MPL translations for
these code fragments are shown in Figures 6(a) and 6(b), respectively. In
Figure 6(c), the left-hand figure illustrates the program subgraph state
before execution of the code fragment of (a). The actor labeled F executes
the code fragment, creates the subgraph containing A, B, and C, and
replaces itself with the subgraph. The result is the right-hand figure.

In Figure 6(d) there is no graph elaboration. Instead, because w is used
in a strict expression, the compiler emits a RESOLVE to acquire the delayed
value of w. The effect in this case is the execution of a short subgraph and
a blocking RPC semantics.

This example illustrates the basic concepts used to detect data depen-
dence at run-time. Although these particular code fragments were straight-
line code, more complicated fragments, such as those that contain loops,
conditionals, and multiple scopes, are handled in the same fashion.

3.2.3 Token Matching. In the macro dataflow model, as in pure data-
flow, tokens belonging to a particular computation must be matched [Srini
1986: Veen 1986]. For example, in Figure 7(a), the tokens containing the
values 4 and 5 must be matched. When both tokens are available, and they
have been matched, we say the actor is enabled and may fire (execute). The

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

152 o Andrew S. Grimshaw et al.

bar A ;

int w,x,y ;

/ w = Aopl 4,5 ;

/4 Add w to RVS, create a node in the subgraph, marshall arguments.

(*RV_INSERT((&w))) = A.invoke_fn(101,2, // function 101 takes two arguments
ICON_TO_ARG(4), /7 marshall the first argument
ICON_TO_ARG(5)} ; // marshall the second argument

// x = B.op1(6,7) ;

("RV_INSERT((&x))) = B.invoke_fn(101,2 ICON_TO_ARG(6),ICON_TO_ARG(7)) ;

/Ity = C.opl{w,x) ;

(*RV_INSERT((&y))) = C.invoke_fn(101,2,PRV_TO_ARG(&w,sizeof(w)),PRV_TO_ARG(&

x,sizeof(w))) ;

ony)

// elaborate the current actor into the constructed subgraph
ntf(PRV_TO_ARG(&y,sizeof(y))) ;

(a) Code transformation for Figure 5(a)

bar A ;

int w,x,y ;

// w = Aopl4)5) ;

1/ Add w to RVS, create a node in the subgraph, marshall arguments.
(*RV_INSERT{{&w))) = A.invoke_fn(101,2,ICON_TO_ARG(4),ICON_TO_ARG(5)) ;

/1 y=w+1;
y = (RESOLVE@w),w) + 1; // force() and wait for the value

(b) Code transformation for Figure 5(b). Control flow blocks waiting for the result
of the member function invocation, resulting in an RPC-like behavior.

5
caller
4
the future
(¢) Initial graph and elaboration for fragment (a) (d) Graph for (b).

Fig. 6. Code transformations and generated graphs for code fragments of Figure 5. ICON_
TO_ARG and PRV_TO_ARG are marshalling functions for integer constants and PRVs
respectively. PRV_TO_ARG marshalls the argument if the RV is actual. If the RV is delayed, it
constructs an arg_struct that points to the computation instance that will generate the value.

matching process is complicated by the fact that there may be more than
one instance of an actor in a particular program graph. For example, in
Figure 7(b) there are three + actors and four tokens, two for the first
operand of +, 5 and 3, and two for the second operand, 4 and 2. The
problem is correctly matching the 5 and 4 to the +, execution and the 3 and

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

Dynamic Object-Oriented Paralle! Processing . 153

5 4 3 2

©)

(a) (b)

Fig. 7. Token-matching example. An actor may fire when there are tokens on each input arc.

2 to the +, execution. The problem is further complicated by the fact that
there may be multiple instances of +, executed, for example, as a loop
unrolls, or for multiple parallel invocations of a function.

The problem of identifying which tokens belong together has been solved
in dataflow using token coloring [Srini 1986; Veen 1986]. Each actor
invocation is assigned a unique color, and then tokens destined for that
actor instance are marked with that color. The problem then reduces to
matching tokens of the same color. A similar coloring scheme is used in the
Mentat RTS. Each computation is assigned a unique computation tag. The
computation tag is formed from the MMPS name of the caller and an
integer. Each invocation made by a particular caller is assigned a unique
integer value used in forming the tag (we use a counter). Once the tokens
are matched the actor may be scheduled for execution.

In Mentat, the token-matching problem has two components: token
matching for bound persistent Mentat objects whose location is known and
token matching for unbound regular object-member function invocations.
The primary difference is that in the former case all of the tokens can be
sent directly to the object, where matching the tokens can easily be done in
the object’s local address space. In the latter case the location of the regular
object is unknown—in fact it does not yet exist and will not exist until its
tokens have been matched. In this case, the tokens must be matched first
by another agent, the token-matching unit. The regular-object token-
matching problem is complicated by the fact that the tokens may be
generated on different processors in a distributed-memory system, requir-
ing the use of a distributed algorithm. The realization of token matching
for bound and unbound tokens is provided by the predicate manager and
the token-matching unit, respectively.

3.2.4 Token Matching for Persistent Objects. Token matching for persis-
tent objects is performed by the predicate manager (PM). The PM is a
library linked into all Mentat applications and objects. In addition to token
matching, the PM supports the MPL mselect/maccept statement. For
example, the compiler can construct a predicate that says that it is
interested in messages for member functions 101, 103, and 105, where 101,
103, and 105 take one, three, and two arguments, respectively. The PM
examines its database of received messages to determine if it has any
complete 101, 103, or 105 work units. A work unit is a set of messages that

ACM Transactions on Computer Systems, Vol 14, No. 2, May 1996.

154 . Andrew S. Grimshaw et al.

incoming message queue

Fig. 8. The predicate manager maintains its message database as a set of linked lists of work
units. Incoming messages are forwarded to the correct list based on the function number. The
complete work units are shaded.

all share the same computation tag, i.e., they correspond to the different
arguments of the same instance of a member function invocation. A work
unit is complete when all argument messages have arrived.

Work units are stored in a structure known as the actor list. The actor
list contains an entry for each separate invocation on a member function.
This is shown in Figure 8. For example, member function 105 has two
entries in its actor list. The work unit corresponding to the first entry is
complete. The collection of messages into work units corresponds to token
matching in the MDF model.

The predicate management interface to the compiler allows the compiler
to specify an ordered list of functions. Each function in the list corresponds
to an accept in a mselect/maccept. The compiler generates code for a
select/accept such that, when the mselect/maccept is encountered at run-
time, the guards are evaluated to determine the ordered list of functions
with the list ordered by priority. This is illustrated in Figure 9.

At run-time when an mselect/maccept is encountered the list of functions
is generated, and a call to block_predicate is made. First, block_predicate
traverses the ordered list of functions. For each function it finds the actor
list for that function and scans the actor list for a complete work unit. If a
complete work unit is found, the messages corresponding to the arguments
are returned, and the work unit is deleted. At this point the compiler-
generated code invokes the appropriate object-member function using the
values contained in the messages as arguments. If no complete work unit is
found then the next function in the ordered function list is similarly
checked. This continues until a completed work unit is found or until the
list is exhausted. If none is found, block_predicate blocks on message
arrival. The code fragment and transformation shown in Figure 9 illustrate
how the PM is used to support the mselect/maccept semantics.

3.2.5 Token Matching for Regular Objects. The token-matching unit
(TMU) is responsible for matching tokens for regular-object-member func-
tion invocations. The basic problem is similar to that of token matching for
bound objects discussed earlier. The difference is that there is no bound
object to which to send the tokens where matching can occur, since the
object that will perform the member function does not yet exist.

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

Dynamic Object-Oriented Parallel Pracessing . 155

mselect {
maccept opl1{int arg1,int arg?) ;
break ;
(z > 5) : maccept op2(int arg1,int arg2) ;
break ;

ta) MPL mselect/maccept statement. The maccept op2(} is guarded by (z - 5).

{

int pred number ;

mentat. message *msg(2] ;

predicate manager pred(2) ;

pred.enable_ operation(0, 101, 2) ;
/7 The first parameter is the result that will be returned it
// operation 101 is accepted. The second parameter is the function
//identifier, and the third indicates the number of arguments to 101.

if {z .- B) pred.enable_ operation(1, 102, 2} ;
// The guard (z > 5) must be true for operation 102 to be enabled.
pred number - pred.block_predicate(msg) ;
switch (pred number) {
case 0 : ({ op1(intint) has been called, service it.
int argt = RESOLVE MSG(int, msg{0]) ;
// The macro RESOLVE_MSG converts a message to the indicated type.
int arg2 - RESOLVE _MSG(int, msg[1]) ;
opi{argt,arge) :
delete msgl0] :

delete msg[1] : }
break ;
case 1 : { // op2(int,int) has been called, service it.

int arg! - RESOLVE MSG(int, msg[0]) ;
int arg2 = RESOLVE MSG(int, msg[1)) ;
op2(argl.arg?) ;
delete msg(0]
delete msg[t] ; }
break ;
}
}

thby Translation of (a) generated by the MPL compiler. Each enable operation tells the
predicate manager that calls on that function are to be accepted.

Fig. 9. Code transformations for run-time support of msefect/maccept.

Token matching is accomplished using a distributed algorithm. The
number of TMUs grows with system size so that the token matching does
not become a bottleneck. On Unix machines, there is one TMU for each
processor in the system. On multicomputers such as the Intel Paragon, a
TMU is assigned to each processor cluster. The algorithm is both simple
and scalable and has four stages that are executed for each regular Mentat

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

156 . Andrew S. Grimshaw et al.

object-member function invocation: unbound token routing, token match-
ing, instance acquisition, and token delivery.

During unbound token routing, tokens which are generated at Mentat
objects and are destined for an unbound regular-object-member function
invocation are routed to the same TMU. This TMU is determined using a
hash function on the computation tag of the member function invocation
instance. This is similar to the way hashing is done on token colors in
dynamic dataflow [Dennis 1975; Srini 1986]. The hash functions are very
simple and uniformly distribute the tokens to the TMUSs at run-time. A
result of using a hash function to route tokens is that each token typically
makes one hop in the first stage of the algorithm.

Once the tokens have arrived at the designated TMU they are stored in a
token database. The database is organized in a manner similar to that used
in the PM. Tokens are collected into unmatched work units. Because tokens
may both be large and unmatched for a long time, tokens may be stored on
disk when the memory allocation for the TMU is exhausted.

When all of the tokens for a particular computation tag have arrived, the
TMU issues an instantiation request to the local instantiation manager
(IM). The TMU does not block on the instantiation request. Instead, it
continues to receive unmatched tokens and issues additional instantiation
requests. Thus, several instantiation requests may be outstanding at any
given time.

Token delivery begins once the IM has replied to the instantiation
request. The IM returns a bound Mentat object name. The named object
has been selected by the IM to service the member function. The TMU
extracts from the token database the tokens for the computation and
forwards them to the named object. Thus, each token is transported two
hops: once to the TMU and once from the TMU to the object. When the
tokens arrive at the bound object, they are rematched using the PM, and
the member function is executed to completion.

3.2.6 Scheduling and Instantiation. The IMs perform four basic func-
tions: Mentat object placement (scheduling), Mentat object instantiation,
binding and name services, and general configuration and status informa-
tion services. The first two services, scheduling and instantiation, are the
most important and the most interesting. The last two, binding and status
information services, are primarily bookkeeping, e.g., reporting to the user
the name of the objects running on a particular processor. Here we will
confine our attention to scheduling and instantiation. A more detailed
description can be found in Grimshaw and Vivas [1991].

The basic scheduling problem is to assign Mentat objects to processors in
such a manner that total execution time of the application is minimized.
The problem is complicated by three facts. First, nothing is known about
the future resource requirements of the object being scheduled or of the
application as a whole. Second, the communication patterns of the applica-
tion and the precedence relations between objects are unknown. Third, the
current global state of the system is unknown, e.g., what are the utiliza-

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

Dynamic Object-Oriented Parallel Processing . 157

tions and queue lengths of the processors. This third problem is further
complicated by the fact that in distributed-systems environments, there
may be other users whose resource demands cannot be anticipated.

There is a rich literature on scheduling in distributed systems [Casavant
and Kuhl 1988; Eager et al. 1986; Hac 1989). The general scheduling
problem is NP-hard. Thus, much of the work in scheduling is based upon
heuristics. Our scheduler, FALCON (Fully Automatic Load Coordinator for
Networks) [Grimshaw and Vivas 1991] is heuristic and based upon the
work of Eager et al. [1986] who developed a model for sender-initiated
adaptive load sharing for homogeneous distributed systems. Their model
uses system state information to describe the way in which the load in the
system is distributed among its components.

Scheduling decisions are reached using a distributed algorithm. Each
node (or virtual node in the case of multicomputers) has an instantiation
manager and a token-matching unit. The scheduling decision on each IM
consists of two subdecisions: (1) determining whether to process a task
locally or remotely (transfer policy) and (2) determining to which node a
task selected for transfer should be sent (location policy).

The transfer policy that we have selected is a threshold policy: a distrib-
uted, adaptive policy in which each node of the system uses only local state
information to make its decisions. No exchange of state information is
required in deciding whether to transfer a task. A task originating at a
node is accepted for processing if the local state of the system is below some
threshold. Otherwise, an attempt is made to transfer that task invocation
request to another node. Only newly received tasks are eligible for transfer.

In order to avoid instability, where nodes are devoting all of their time to
transferring tasks and none of their time to processing them, we employ a
simple control policy that places a transfer limit on the number of times a
task may be transferred. When the transfer limit is reached the IM must
accept the task. The transfer limit is set in a configuration file.

The location policy is invoked if the transfer policy does not accept the
task for local instantiation or if a location hint specifies a different node for
execution of the task. The three location policy algorithms that we have
implemented are random, round-robin, and best-most-recently.

Once the task location is determined, the instantiation of a persistent
Mentat object is accomplished by loading a new copy of the executable. For
the instantiation of regular objects, the IM tries to reuse an existing object
of the same class, i.e., it does not load a new instance. Instead it returns
the name of the existing object. This saves the time required to perform the
load and exploits the fact the regular-object instances are stateless.

4. IMPLEMENTATION

As of January, 1995, Mentat has been implemented on 10 platforms. The
implementations fall into two categories: Unix-based workstation net-
works, the Sun 3, Sun 4, Silicon Graphics, Hewlett-Packard, and IBM
RS/6000; and distributed-memory MIMD multicomputers, the TMC CM-5,

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996,

158 . Andrew S. Grimshaw et al.

IBM SP-2, Intel iPSC/2,® Intel iPSC/860 Gamma, and the Intel Paragon.
Within each category the implementations are similar, although there are
some significant differences among the multicomputers. Rather than de-
scribe each implementation in detail, we present the core features of the
Unix and multicomputer implementations. We then present the perfor-
mance of the run-time system primitives on two well-known and represen-
tative platforms: the Sun SparcStation 2 and the Intel Paragon.

4.1 Unix Workstations

The multitasking Unix implementation of the run-time system is by far the
most complex of our implementations, primarily because it requires the
most system-specific code; the operating system communication support is
very weak; interrupts of various forms must be managed; and the process
model, while offering many options, differs in subtle ways from platform to
platform.

Mentat objects are implemented by Unix processes that are forked by the
IM. Multiple Mentat objects may reside on each Unix host and may execute
concurrently. All communication between objects, including intrahost com-
munication, is implemented in MMPS using UDP packets and an interrupt-
driven, stop-and-wait protocol.

4.2 Multicomputers

The four multicomputers to which we have ported Mentat differ in several
important respects—yet they are very similar in terms of their communica-
tion support; all provide for asynchronous, guaranteed delivery of arbi-
trary-size messages. The differences lie in their level of process support.
They fall into a spectrum from no process support on the TMC CM-5, to
almost Unix-like process support on the iPSC/2 and Paragon, to full process
support on the IBM SP-2,

On the CM-5 there is one user process per processor, and all processors
must execute the same executable image.? Thus, there is no support for
dynamically loading different Mentat object executables on different pro-
cessors, nor for multiple Mentat objects per processor. Instead all Mentat
objects, the IM, the token-matching unit, and the main program must be
linked into one large executable. A switch statement is then used to select
which object to execute.

At the other extreme are the IBM SP-2, Intel iPSC/2, and Paragon, which
have multitasking operating systems. The iPSC/2 supports up to 20 pro-
cesses per processor and the capability to load new executables. Thus, the
iPSC/2 execution model is very similar to the Unix model. The Paragon
nodes run OSF-1 and have complete multitasking support.

In the middle is the Intel iPSC/860 Gamma. The Gamma supports
exactly one process per processor. However, the executable image on the

3The iPSC/2 and the CM-5 are currently unsupported.
“The CM-5 is actually multitasking, but a single-user application is restricted to a single task
per node.

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

Dynamic Object-Oriented Parallel Processing . 159

processor may be changed by issuing a load command to the operating
system. Since both the Gamma and the CM-5 allow only one process per
processor. a different process-mapping paradigm is adopted.

4.3 Performance

Overhead is the friction of parallel processing. The performance of Mentat
applications depends upon the overhead of the Mentat run-time system
calls needed for program execution. Good performance requires that the
run-time overhead be kept low. The performance of each Mentat run-time
system component is presented for a network of Sun SparcStation 2
workstations and the Intel Paragon. Two types of run-time system over-
head are measured: library calls and service requests. A library call is a
function that is performed by the run-time system on behalf of the user
application. Most library calls are simple function calls that operate in the
local address space of the caller without any communication. A service
request is a special type of library call that requires participation of a
Mentat daemon process and requires communication. All measurements
were taken when the machine or network usage was as low as possible.

We have divided the functions into two types: primitives and compos-
ites. The primitives include communication, dataflow detection, token and
predicate management, and scheduling, and correspond to run-time system
features already discussed. The composites contain a number of primitive
operations and capture all of the overhead terms for three different
scenarios. Below are descriptions of the overhead terms, and how they were
measured, followed by the data for the two platforms.

4.3.1 Communication

—New and delete a mentat_message—Allocate a mentat message, initial-
ize its members, and delete it.

—Message transport—Send a message containing one byte of data. There is
a 192-byte header in the Unix implementation and a 124-byte header on
the Paragon. The time is measured by starting a timer, sending the
message from A to B; on receipt B sends a message back to A; on receipt
A stops the timer. The result is then divided by two to determine the
one-way cost.

—Message send—Send a one-byte message, but do not wait for delivery.
This is measured by starting a timer, sending from A to B using the
asynchronous send capability, and stopping the timer. The message has
been delivered to the communication system (MMPS) only. MMPS will
asynchronously transport the message.

—Communication bandwidth—the per-byte communication bandwidth.
Computed as the message transport time for an N-byte message minus
latency (one-byte message transport) divided by the message size N.

All communication times are based on MMPS [Grimshaw et al. 1990]. All
times are the average of 1000 iterations.

ACM Transactions on Computer Systems, Vol. 14. No. 2, May 1996.

160 . Andrew S. Grimshaw et al.

4.3.2 Dataflow Detection

—New and delete a computation instance—Allocate a computation in-
stance; initialize its members; and destroy it.

—Add an arc—Add an arc between two computation instances.

—Construct a future—Construct a future from the computation instances.
Two cases are given: for a short RPC-like future and for an unrolled loop
with 100 actor invocations.

—RV_TABLE insert—We measure the time required to insert an entry into
the RV_TABLE. Because the table is implemented by a hash table, the
insertion cost is constant, since the number of entries is typically low.

—RV_TABLE lookup—Look up an entry in the RV_TABLE.
4.3.3 Token and Predicate Management

—Block predicate—We measure the time required to search the message
database. All of the necessary messages have already arrived. Thus,
there is no blocking while waiting for a message. However, the time to
probe the message system to determine if a message has arrived is
included. Two predicates were enabled; the match was found for the first
predicate. The cost includes the token matching.

4.3.4 Scheduling

—Object instantiation—The time required to create a new Mentat object.
This includes all scheduling time and the time to load the executable.
Because measurements were done on an idle system these results should
be viewed as lower bounds, not expected values. Note that the time will
normally vary depending on the number of transfers required for sched-
uling. Subsequent loads of the same executable from the same instantia-
tion manager are often much faster due to file caching by the operating
system.

—Object destruction—The time required to destroy a Mentat object.
4.3.5 Composite Costs

—Null RPC on a persistent object—Perform a blocking RPC that takes an
integer parameter and returns an integer. This includes the time to
construct the graph, transport the tokens, match the tokens at the
invoked object, and return the result to the caller. No computation is
performed.

—Null RPC on a regular object—Here we measured the time for a single
blocking RPC call on a regular Mentat object. This includes the time to
construct the graph, transport the tokens to the TMU, match the tokens
at the TMU, have the TMU acquire an instance (via IM), transport the
tokens from the TMU to the object, match the tokens at the object, and
return the result to the caller.

—Total Mentat overhead—Null RPC time — 2X(message transport time).
This captures Mentat overhead versus handwritten send/receive.

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

Dynamic Object-Oriented Parallel Processing . 161

inti,j; intij;

timer.start() ; timer.start() ;
for (i ;i < 25;i++) | for (i 0;i < 25;i++) {
j = Aopl(} ; j = A.op1() ;
i = B.opi(j) ; j = Aopl(j) ;
| = C.op1(j) ; i = Aopl(j) ;
j = D.opl(j) : j = Aoopi(j) ;
D.sink (j) ; D.sink(j) ;
' }
/4 wait for last computation /! wait for last computation
if (D.done()) : if (D.done()} ;
timer.stop() : timer.stop() ;
{a) (b)
Figure 10

—Pipelined RPC on persistent objects—Four persistent objects are instan-
tiated and then called as shown; see Figure 10(a). The member functions
perform no computation and return a value. The average time per
member function invocation is determined by dividing the elapsed time
by 100, e.g., by 4 x 25,

—Pipelined RPC on regular objects—This is similar to the above except
that A is regular object; see Figure 10(b).

4.3.6 Environments

Sun SparcStation 2. The Sun configuration consisted of a collection of 8
Sparc2s connected by ethernet. Each Sparc (Sun 4) processor runs at
40MHz and was configured with 32MB of real memory. The run-time
system performance is presented in Table 1.

Intel Paragon. The Paragon performance data was collected on a 56-
node Intel Paragon at the Jet Propulsion Laboratory using an 8-node
partition. Each i860 processor runs at 40MHz and contains 32MB of real
memory. The run-time system performance is also shown in Table 1.

4.4 Performance Observations

On the Sun network, the cost of communication clearly dominates all other
overhead terms. This is no surprise given the UDP/IP implementation.
The cost of dynamic graph construction, monitoring RVs, creating com-
putation instances, adding arcs, and constructing short future lists is
quite small (120usec.) when compared to the message transport costs.
This number is obtained by adding up the component costs for these
operations in Table 1.

On the Intel Paragon, communication does not dominate to nearly the
same degree. Communication is an order of magnitude faster than on the
Sun 4. Once again, this is not a surprise, as the Paragon has an optimized
communication system and special communication hardware. The result is

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

162 o Andrew S. Grimshaw et al.

Table I. Performance of Mentat RTS on the Sun Network and Intel Paragon

Cost (psec.)
Category Functions Sun Network Intel Paragon
Communication New and delete a message 16 16
Message transport 1730 260
Message send 566 16*
Bandwidth (KB/sec.) 710 3930
Dataflow Detection New and delete computation instance 21 15
Add arc 3 3
Construct a future—short 57 6
Construct a future~—100 actors 1684 910
RV_Table insert 13 20
RV_Table lookup 10 20
Token Management Block predicate 170 48
Scheduling Object instantiation 235,800 621,000
Object destruction 2400 300
Composites Single null RPC—persistent 3960 1280
Pipelined null RPC—persistent 775 413
Single null RPC—regular 12,320 520,800
Pipelined null RPC—regular 2950 10,210
Total Mentat overhead 500 760

*The latency is for a zero-byte Mentat message that includes over 100 bytes of header and is
therefore higher than the minimum latency reported elsewhere.

that the RTS software overhead, which remains fairly constant between
these two platforms, is the dominant overhead on the Paragon. On both
platforms, object instantiation is also very slow due to the overhead of
process creation in these environments—fork/exec in Unix and load in NX.
The cost for regular-object RPC and pipelining includes the cost of object
instantiation while the cost for persistent object RPC and pipelining does
not. Hence, the cost of these operations for regular objects is higher. On the
Paragon the cost of regular-object RPC is even higher, since there is
currently no regular-object reuse on this platform.

With low-level performance numbers in hand we can now address the
question: is Mentat efficient? Mentat introduces overhead that will not be
experienced by a hand-coded implementation. This raises several new
questions. What is the penalty versus hand-coded? Given the overhead
costs what are the granularity requirements for Mentat objects? And
finally, are there any performance benefits obtained by using Mentat?
Below we answer these in turn.

What is the Performance Penalty? From Table I we see that the cost of
performing an RPC “by hand” on the Suns is 2 X (message transport + new
and delete message) = 2 X (1730 + 31) = 3522usec. The Mentat time is
3960usec., a 12% increase. Whether this is acceptable depends on the
application, though even a hand-coded application must be fairly coarse
grain to achieve good performance. On the Paragon the picture is worse.
The “by-hand” time is 2 X (260 + 16) = 552usec. versus 1280usec. for
Mentat, a 132% increase in overhead. This means that the minimum grain
size for Mentat applications is significantly larger on the Paragon than for
hand-coded applications. This is significant for applications that require a

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

Dynamic Object-Oriented Parallel Processing . 163

worker 2 caller worker 1

(1) message send

i message transport
tme 2) me‘ssw/ message send g P
block predicate
(3) block predicate wait

execute function

(4) execute function
message transport

(5) message transpo block predicate
block predicate (6)

continue execution

Fig. 11. Timeline for two-worker fan-out/fan-in.

small grain size. As to inherently fine-grained problems, it is important to
note that the ratio between processor performance (MFLOPS) and interpro-
cessor communication bandwidth is expected to increase over time, making
inherently fine-grained problems more difficult to execute on MIMD
machines.

What are the Granularity Requirements for Mentat Applications? The
granularity requirements depend on the Mentat application. To give some
insight into this problem, we consider a classic fan-out/fan-in computation
with k& workers implemented as a k-ary tree. This is a simple scenario that
we use to determine the magnitude of the minimum granularity. More
complex computations with a less regular structure would require a more
detailed critical-path analysis, but would likely be within an order of
magnitude of this value. To determine the granularity requirements for
this problem, we compute the minimum grain size needed to break even.
The break-even point is where the sequential time and parallel time are
equal, that is, where the benefits of parallel execution begin to offset the
overhead. Beyond this point, it is profitable to exploit parallelism. The
minimum acceptable granularity should not be confused with the de-
sired computation granularity. Mentat applications often exhibit a com-
putation granularity much higher than the minimum in order to obtain
the best possible performance. We will assume that we have idle
processors and an idle network, i.e., that other users will not impact
performance.

In Figure 11, we show a timeline for the two-worker case with the major
cost components included. The minimum number of workers needed to
realize any performance gain if all real work is done by the workers is two;
if one worker is used then we pay all of the overhead and receive none of
the benefit of parallel execution. The critical path contains the labeled
primitives. (For the following equations, we use the following abbrevia-

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

164 . Andrew S. Grimshaw et al.

Table II. Minimum Granularity on the Sun Network and Intel Paragon

Function Time in psec. Grain Size in fp Instructions
Environment k=2 k=4 k=2 k=4
Sun Sparcstation 2 4356 1823 30492 12761
Intel Paragon 676 265 6760 2650

tions: MS = message send time; MT = message transport time; FT =
function execution time; and BP = block predicate time.) The total execu-
tion time is the time on the critical path:

MS+2x MT +FT+2x BP
(1) (2,5) (4) (3, 6)

The asynchronous message sends are sequential from the caller with the
last message send included in message transport cost (2). If we assume that
the function time is the same for both workers, then break-even is achieved
for two workers when:

2 X (FT)=MS + 2 x (MT + BP) + FT

The left-hand side is the sequential time, and the right-hand side is the
parallel time computed above. Solving for FT yields:

FT =MS + 2 x (MT + BP)

This generalizes to £ workers; break-even is achieved when:

kX (FT)=k—-1XMS+2x(MT+ BP) +FT

FT=(%k-1 x MS+2X(MT+ BP))/(k—-1)

This analysis makes the simplifying assumption that message transport
cost is independent of the number of workers. Often this is not the case due
to contention for communication bandwidth. The product of the function
time and the processor rate (in MFLOPS) gives the minimum granularity of
the break-even point in units of floating-point instructions. The Sun 4 used
in the tests is a 7-MFLOP machine, and the i860 is an 80-MFLOP peak
performance processor. The 1860 peak is not realizable on typical codes.
A rate of 10 MFLOPS on the i860 is considered good [Moyer 1991]. We
assume 7 and 10 MFLOPS for the Sun 4 and i860, respectively. Using
the data from Table I and these floating-point rates we obtain the
function time and minimum grain sizes for k = 2 and & = 4 as shown in
Table 11

The table values are computed easily. Consider k& = 2 for the Sun

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

Dynamic Object-Oriented Parallel Processing . 165
network. The minimum function granularity for the Sun 4 is:

FT =556 +2 x (1730 + 170) = 4356 usec.

Since the Sun 4 is a 7-MFLOP machine, the minimum grain size in
floating-point operations is 7 X 4356 or 30,492 floating-point operations.
The other table values are computed in a similar fashion. As expected, the
minimum granularity is much larger for the Sun 4 due to the high
comnmunication cost on the network.

Performance Benefits. A final comment on performance is in order.
Mentat performance is not always worse than hand-coded. On the contrary,
we have observed that Mentat performance can be superior to hand-coded
performance. At first this might seem counterintuitive. The reason is that
Mentat often exploits concurrency that a programmer may not attempt to
exploit because of the increased complexity.

Two examples illustrate this. First, there are data-parallel applications
that iteratively perform a work phase, in which an operation is carried out
in parallel on the data set, and a reduction phase, where the results are, for
example, sorted and merged. The natural way to code this by hand is to
perform the data-parallel operation for the ith iteration, collect the results,
perform the next data-parallel operation, and so on. Note the synchroniza-
tion point at the end of each iteration. Often the Mentat code will not
synchronize at the end of each iteration. Instead, the compiler will generate
code that results in the pipelined execution of the data-parallel operation
and the reduction phase. Thus, the data-parallel operation and the reduc-
tion are performed concurrently. Further, if the data-parallel operations
require a data-dependent, variable amount of time then the workers will
finish at different times. In a hand-coded implementation the next iteration
begins only when all workers have completed. Once again, the Mentat code
may be less synchronous, synchronizing only at the end of all iterations.
Thus if different workers are slower for different iterations, then the less
synchronous code will complete more quickly.

A second example is pipelined data filtering and feature extraction
applications. When constructing pipelined applications by hand a great
deal of effort goes into balancing the amount of work performed in each
stage because the throughput is limited by the slowest stage. If the
computation requirements for a stage are data dependent then balancing
the work by hand is difficult, and often not performed. This can be
overcome by using regular Mentat objects. The system instantiates a new
instance for each instance of each stage. Thus, if one iteration is slower,
additional processor resources are utilized so that the next iteration may
begin as soon as the data is available, keeping the pipe full and preventing
a “bubble” from forming. While this can be done by hand, it often is not.

5. RELATED WORK

Work related to our effort falls into four categories: other object-oriented
parallel processing systems, other compiler-based distributed-memory

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996

166 . Andrew S. Grimshaw et al.

systems, other portable parallel processing systems, and other large-grain
dataflow systems.

5.1 Parallel Object-Oriented Systems

In the object-oriented parallel processing domain Mentat differs from
systems such as Parmacs [Beck 1990], Presto [Bershad et al. 1988], and
Jade [Lam and Rinard 1991] (shared-memory object-based systems) in its
ability to easily execute on both shared-memory MIMD and distributed-
memory MIMD architectures, as well as hybrids. pC+ + [Bodin et al. 1993]
and Paragon [Cheung and Reeves 1992] on the other hand are data-parallel
derivatives of C++. Mentat accommodates both functional and data paral-
lelism, often within the same program. ESP [Smith et al. 1989] is perhaps
the most similar of the parallel object-oriented systems. It, too, is a
high-performance extension to C+ + that supports both functional and data
parallelism. What distinguishes Mentat is our compiler support. In ESP,
remote invocations either return values or futures. If a value is returned,
then a blocking RPC is performed. If a future is returned, it must be
treated differently. Futures may not be passed to other remote invocations,
limiting the amount of parallelism. Finally, ESP supports only fixed-size
arguments (except strings). This makes the construction of general-purpose
library classes, e.g., matrix operators, difficult.

There are also a large number of object-based systems and languages for
distributed systems [Bal et al. 1989; Chin and Chanson 1991}, as opposed
to parallel systems. Mentat differs from these and other distributed object-
based systems in our objectives: we strive for performance via parallelism
rather than distributed execution.

5.2 Compiled Distributed-Memory Systems

Until recently, there were few results for compiled—as opposed to hand-
coded —applications on distributed-memory machines. There are now several
active projects in this area, Fortran-D [Fox et al. 1990], HP Fortran [Loveman
1993}, Dataparallel C [Nedeljkovic and Quinn 1992], Paragon [Cheung and
Reeves 1992], and the Inspector/Executor [Wu et al. 1991] model, to name a
few. These are primarily data-parallel languages with Wu et al. tied to a
data-parallel model of computation. What differentiates our work from theirs
is that Mentat exploits opportunities for both functional and data parallelism.
Further, in Mentat, parallelism, and the communication and synchronization
constructs that are required, is dynamically detected and managed. Most
other systems statically determine the communication and synchronization
requirements of the program at compile-time.

5.3 Portable Systems

Applications portability across parallel architectures is an objective of
many projects. Examples include PVM [Sunderam 1990], Linda {Carriero
and Gelernter 1989; Carriero et al. 1992], the Argonne P4 macros [Boyle et
al. 19871, Fortran D [Fox et al. 1990], and Parti [Mirchandaney et al. 1988].

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

Dynamic Object-Oriented Parallel Processing . 167

Our effort shares with these and other projects the basic idea of providing a
portable virtual machine to the programmer. The primary difference is the
level of the abstraction. Low-level abstractions (e.g., send/receive and
in/out) such as in Boyle et al. [1987], Carriero and Gelernter [1989], and
Sunderam [1990] require the programmer to operate at the assembly
language level of parallelism. This makes writing parallel programs more
difficult. Others [Beguelin et al. 1992; Fox et al. 1990; Hatcher et al. 1991;
Shu and Kale 1991] share our philosophy of providing a higher-level
language interface in order to simplify applications development. Parti is
limited to run-time data-level parallelism. What differentiates our work
from other high-level portable systems is that we support both functional
and data parallelism as well as support the object-oriented paradigm.

5.4 Large-Grain Dataflow

Mentat and macro dataflow (MDF) differ from other coarse-grain dataflow
systems such as CDF [Babb 1984], HENCE [Beguelin et al. 1992], and
Code/Rope [Browne et al. 1990] in several ways. First, MDF graphs are
dynamic rather than static. Second, some MDF actors maintain state
internally, rather than copying and circulating tokens to maintain state.
Third, the MDF program graphs are constructed at run-time using com-
piler-generated code. Thus, the programmer is not responsible for generat-
ing the program graphs using a graphical interface as in Beguelin et al.
and Browne et al. Finally, the MDF model has been implemented on both
shared-memory and distributed-memory MIMD machines.

6. SUMMARY AND FUTURE WORK

The application of the object-oriented programming paradigm to parallel
computing depends on the efficient implementation of a supporting parallel
run-time system. The Mentat run-time system provides a portable run-time
environment for the execution of parallel object-oriented programs. The
run-time system supports parallel object-oriented computing via a virtual
macro dataflow machine that provides services for object instantiation and
scheduling, select/accept management, remote member function invoca-
tion, dynamic data dependence detection and management, and object
scheduling and instantiation. The run-time system achieves portability by
using a layered virtual-machine model that hides platform-specific details
from the user and the compiler. To date, the run-time system has been
implemented on platforms that include networks of Sun 3s, Sun 4s, HPs,
IBM RS/6000s, and Silicon Graphics workstations, as well as multicomput-
ers such as the Intel iPSC/860, Intel Paragon, and the IBM SP-2.

We presented the overhead costs for the dominant run-time services on
two platforms: the Sun SparcStation 2 and an Intel Paragon. Performance
on applications is good [Grimshaw 1993b; Grimshaw et al. 1993a; 1993b]
for problems of sufficient granularity and leads us to the conclusion that the
run-time system overhead is tolerable for many applications. However, the

ACM Transactions on Computer Systems. Vol 14, No. 2, May 1996

168 . Andrew S. Grimshaw et al.

overhead is too high for those applications that require fine-grain communica-
tion or that have been coded to require fine-grain communication.

Future work on the Mentat run-time system falls into three categories:
porting to additional platforms, generating a thread-based implementation,
and providing heterogeneous metasystem support. The quest to port to an
expanding list of platforms continues. We have set our sights in the near
term on the DEC alpha. In the multicomputer domain we are targeting the
Cray T3D. Toward this end we are further isolating machine, operating
system, and compiler dependencies so that porting will become even easier.

In a thread-based implementation of the run-time system Mentat, objects
will no longer necessarily be physically address space disjoint. Communica-
tion between Mentat objects within the same address space will use
messages implemented using shared memory. There are several advan-
tages to a thread-based implementation: intrahost communication is much
faster; shared-memory multiprocessor (e.g., KSR or multiprocessor Sparc)
implementations will be much faster than is possible with disjoint address
spaces; and limitations on Mentat applications caused by underlying uni-
tasking operating systems (e.g., iPSC/860 and CM-5) will be eliminated.
This will enable Mentat to support more efficient execution of finer-grained
applications. A significant disadvantage is that many user-defined library
routines are not reentrant. This can cause timing-dependent bugs that do
not exist in the current implementation.

A metasystem is a collection of heterogeneous hosts, scalar workstations,
vector processors, SIMD machines, and shared- and distributed-memory
MIMD machines connected by a multilayer, heterogeneous interconnection
network. Qur objective is to integrate these hosts into a system that
provides the illusion of one large virtual machine to users. As part of the
Mentat metasystem testbed project [Grimshaw et al. 1994] we are extend-
ing the Mentat run-time system into a heterogeneous environment. Issues
that must be addressed include data alignment, data coercion, and sched-
uling—in particular, automatic problem decomposition and placement
based on computation granularity and application communication topology
[Weissman and Grimshaw 1994].

ACKNOWLEDGMENTS

This research was performed in part using the Intel Gamma and Paragon
operated by Caltech on behalf of the Concurrent Supercomputing Consor-
tium. Access to this facility was provided by the Jet Propulsion Laboratory.

REFERENCES

ABELSON, H., SussMman, G. J., AND SussmaN, J. 1985. Structure and Interpretation of Com-
puter Programs. The MIT Press, Cambridge Mass.

AGERWALA, T. AND ARVIND. 1982. Data flow systems. IEEE Comput. 15, 2 (Feb.), 10-13.

Basg, R. F. 1984. Parallel processing with large-grain data flow techniques. IEEE Comput.
17,7 (July), 55-61.

BaL, H., STEINER, J., AND TANENBAUM, A. 1989. Programming languages for distributed
computing systems. ACM Comput. Surv. 21, 3 (Sept.), 261-322.

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996,

Dynamic Object-Oriented Parallel Processing . 169

BECK, B. 1990. Shared memory parallel programming in C+ +. IEEE Softw. 7, 4 (July), 38-48.

BersHAD, B. N., Lazowska, E.D., ano Levy, H. M. 1988. Presto: A system for object-
ortented parallel programming. Softw. Pract. Exper. 18, 8 (Aug.), 713-732.

BEGUELIN, A., DONGARRA, J., GEIST, A., MANCHECK, R., AND SUNDERAM, V. S. 1992, HeNCE:
Graphical development tools for network-based concurrent computing. In Proceedings of
SHPCC-92. IEEE Computer Society Press, Los Alamitos, Calif., 129-136.

Bobpin, F., BECKMAN, P., GaNNON, D., NaRAYaNa, S., AND YaNG, S. 1993. Distributed pC+ +:
Basic ideas for an object parallel language. In Proceedings of the Object-Oriented Numerics
Conference. Rogue Wave Software, Corvallis, Oreg.

BrowNE, J. C., LEE, T., aNp WERTH, J. 1990. Experimental evaluation of a reusability-
oriented parallel programming environment. /EEE Trans. Softw. Eng. 16, 2 (Feb.), 111-120.

CARRIERO, N. AND GELERNTER, D. 1989. Linda in context. Commun. ACM 32, 4 (Apr.,
444-458.

CARRIERO, N., GELERNTER, D., AND MaTTSON, T. G. 1992. Linda in heterogeneous computing
environments. In Proceedings of the WHP92 Workshop on Heterogeneous Processing. 1EEE,
New York, 43-46.

Casavant, T. L. aNp KuHL, J. G. 1988. A taxonomy of scheduling in general-purpose distrib-
uted computing systems. IEEE Trans. Softw. Eng. 14, 2 (Feb.), 141-154.

ChiN, R. aND CHansON, 8. 1991, Distributed object-based programming systems. ACM
Comput. Surv. 23, 1 (Mar.), 91-127.

CHEUNG, A. L. aND REEVES, A. P. 1992, High performance computing on a cluster of work-
stations. In Proceedings of the 1st Symposium on High-Performance Distributed Computing.
IEEE Computer Society Press, Los Alamitos, Calif.,, 152-160.

DENNIs, J. 1975, First version of a data flow procedure language. MIT TR-673, MIT,
Cambridge, Mass. May.

Eacer, D. L., Lazowska, E. D., AND ZAHORJAN, J. 1986. Adaptive load sharing in homoge-
neous distributed systems. I[EEE Trans. Softw. Eng. 12, 5 (May), 662-675.

Fox, G. C., HiraNnanDanI, S., Kenneny, K., KoeLBer, C., KrReMEgr, U., TsEnG, C. W.. aND
Wi, M. Y. 1990. Fortran D language specifications. Tech. Rep. SCCS 42¢. NPAC,
Syracuse Univ., Syracuse, N.Y.

GRIMSHAW, A. S, 1993a. The Mentat computation model— data-driven support for dynamic
object-oriented parallel processing. Computer Science Tech. Rep. CS-93-30, Univ. of Vir-
ginia, Charlottesville, Va. May.

GrIMSHAW, A. S 1993b. Easy to use object-oriented parallel programming with Mentat.
IEEE Comput. 26, 5 iMay), 39-51.

GrIMSHAW, A, S. anD Vivas, V.E. 1991. FALCON: A distributed scheduler for MIMD
architectures. In Proceedings of the Symposium on Experiences with Distributed and
Multiprocessor Systems. USENIX Assoc., Berkeley, Calif., 149-163.

GRIMSHAW, A. S, Mack, D., ann Straver, W. T. 1990. MMPS: Portable message passing
support for parallel computing. In Proceedings of the 5th Distributed Memory Computing
Conference. IEEE Computer Society Press, Los Alamitos, Calif., 784-789.

GRIMSHAW, A. S., STRAYER, W. T., AND NARAYAN, P, 1993b. Dynamic object-oriented parallel
processing. IEEE Parallel Distrib. Tech. Syst. Appl. 1, 2 (May), 33-47.

JRIMSHAW, A, S, WeIssman, J. B., West, E. A, anp Lovor, E. 1994, Metasystems: An
approach combining parallel processing and heterogeneous distributed computing systems.
J. Parallel Distrib. Comput. 21, 3 (June).

GrIMSHAW, A. S., WEsT, E. A, AND PEARSON W. R, 1993a. No pain and gain!—Experiences
with Mentat on biological application. Concurrency Pract. Exper. 5, 4 (July), 309-328.

Hac. A. 1989, Load balancing in distributed systems: A summary. Perf. Eval. Rev. 16,
(Feb.1, 17-25.

HarsTeap, R. H., Jr. 1985, Multilisp: A language for concurrent symbolic computation.
ACM Trans. Program. Lang. Syst. 7, 4 (Oct.), 501-538.

Hatcder, PoJ., Quinn, M. J., Lapapura, A. J., SEEVERS, B. K., ANDERSON, R. J., aND JONES,
R. R 1991. Data-parallel programming on MIMD computers. JEEE Trans. Parallel
Distrib. Syst. 2, 3, 377-383.

INTEL. 1988 (PSC/2 USER'S GUIDE. Intel Scientific Computers, Beaverton, Oreg.

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

170 . Andrew S, Grimshaw et al.

Lam, M. S. anD RiNarD, C. 1991. Coarse-grain parallel programming in Jade. In the 3rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM, New
York, 94-105.

Larus, J. R., RICHARDS, B., AND VISWANATHAN, G. 1992. C**: A large-grain, object-oriented,
data-parallel programming language. UW Tech. Rep. 1126, Computer Sciences Dept., Univ.
of Wisconsin, Madison, Wisc. Nov.

Leg, J. K. AND GannoN, D. 1991, Object oriented parallel programming experiments and
results. In Proceedings of Supercomputing '91. IEEE Computer Society Press, Los Alamitos,
Calif., 273-282.

LoveMaN, D. B. 1993. High performance Fortran. IEEE Parallel Distrib. Tech. Syst. Appl.
1, 1 (Feb.), 25-42.

Lusk, E. L. aAND OveERBEEK, R. 1987. Portable Programs for Parallel Processors. Holt,
Rinehart and Winston, New York.

MacCaLLuM, L. AND GRIMSHAW, A. S. 1994. A parallel object-oriented linear algebra library.
In Proceedings of the Object-Oriented Numerics Conference. Rogue Wave Software, Corvallis,
Oreg., 233-249.

MIRCHANDANEY, R., SaLtz, J. H., SMITH, R. M., NicoL, D. M., aNnp CrROWLEY, K. 1988. Prin-
ciples of runtime support for parallel processors. In the International Conference on
Supercomputing. ACM, New York.

MoYER, S. A. 1991. Performance of the IPSC/860 Node Architecture. Computer Science
Tech. Rep. IPC91-09. IPC, Charlottesville, Va. May.

NEDELJKOVIC, N. AND QUINN, M.J. 1992. Data-parallel programming on a network of
heterogeneous workstations. In Proceedings of the Ist Symposium on High-Performance
Distributed Computing. IEEE Computer Society Press, Los Alamitos Calif., 28-36.

SHu, W. aNnDp KaLg, L. V. 1991. Chare kernel—A runtime support system for parallel
computations. J. Parallel Distrib. Comput. 11, 198-211.

SmrtH, S. K., SmitH, R. J., II, CaLpweLL, G. S., PortTEr, C., LEDDY, W. J., KHANA, A.,
CHATTERJEE, A, HUNG, Y. T., HauN, D. W., AND ALLEN, W. P. 1989. Experimental systems
project at MCC. Tech. Rep. ACA-ESP089-89, MCC, Austin, Tex.

SrinNi, V. P. 1986. An architectural comparison of dataflow systems. IEEE Comput. 19, 3
(Mar.), 68-88.

STROUSTRUP, B. 1988. What is object-oriented programming? IEEE Softw. 5, 3 (May),
10-20.

SuNDERaM, V. 8. 1990. PVM: A framework for parallel distributed computing. Concurrency
Pract. Exper. 2, 4 (Dec.), 315-339.

WEISSMAN, J. B. AND GRIMSHAW, A. S. 1994. Network partitioning of data parallel computa-
tions. In Proceedings of the 3rd International Symposium on High-Performance Distributed
Computing. IEEE Computer Society Press, Los Alamitos, Calif., 149-156.

WEISsSMAN, J. B., GRIMSHAW, A. S, AND FERRARO, R. 1994. Parallel object-oriented computa-
tion applied to a finite element problem. Sci. Comput. 2, 133-144.

WEST, E. A. AND GRIMSHAW, A. S. 1995, Braid: Integrating task and data parallelism. In
Proceedings of Frontiers '95.

VEEN, A. H. 1986. Dataflow machine architecture. ACM Comput. Surv. 18, 4 (Dec.), 365—
396.

Wu, J., SaLTZ, J., BERRYMAN, H., AND HIRANANDANI, S. 1991. Distributed memory compiler
design for sparse problems. ICASE Rep. 91-13, ICASE, Hampton, Va. Jan.

Received July 1993; revised April 1994; accepted October 1994

ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

