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Abstract

Previous proposals for implementing instruction-level tempo-
ral redundancy in out-of-order cores have reported a performance
degradation of upto 45% in certain applications compared to an
execution which does not have any temporal redundancy. An im-
portant contributor to this problem is the insufficient number of
ALUs for handling the amplified load injected into the core. At the
same time, increasing the number of ALUs can increase the com-
plexity of the issue logic, which has been pointed out to be one
of the most timing critical components of the processor. This pa-
per proposes a novel extension of a prior idea on instruction reuse
to ease ALU bandwidth requirements in a complexity-effective way
by exploiting certain interesting properties of a dual (temporally
redundant) instruction stream. We present microarchitectural ex-
tensions necessary for implementing an instruction reuse buffer
(IRB) and integrating this with the issue logic of a dual instruc-
tion stream superscalar core, and conduct extensive evaluations
to demonstrate how well it can alleviate the ALU bandwidth prob-
lem. We show that on the average we can gain back nearly 50%
of the IPC loss that occurred due to ALU bandwidth limitations
for an instruction-level temporally redundant superscalar execu-
tion, and 23% of the overall IPC loss.

Keywords: Complexity-effective design, Instruction Reuse,
Temporal Redundancy.

1. Introduction

Higher transistor integration densities, coupled with increasing
clock frequencies and lower operating voltages, make reliability an
important consideration for future processor designs. Deep submi-
cron process technologies and lower transistor threshold voltages
make circuits more susceptible to soft errors [8] caused by cos-
mic ray strikes [36]. It is no longer just the data stored in memory
cells that needs to be protected (using parity, ECC, etc.). Technol-
ogy trends mandate verifying the integrity of the combinational
circuits within the processor datapath as well [28]. Consequently,
several research and developmental efforts in the past decade have
embarked on enhancing datapath reliability against transient er-
rors [26, 20, 25, 33, 24, 15]. Reliability enhancements are typi-
cally provisioned using spatial and/or temporal redundancy mech-
anisms, which require additional hardware, additional complex-
ity in design, and/or incur performance penalties. If we are not

careful, provisioning such redundancy can defeat the purpose of
the fundamental drive towards technological innovations for high
performance. With this underlying philosophy in mind, this pa-
per presents a technique for narrowing the performance gap be-
tween an instruction-level temporally redundant out-of-order exe-
cution and an execution on a normal out-of-order core without any
temporal redundancy.

Hardware reliability enhancement is usually implemented with
spatial or temporal redundancy. In spatial redundancy, hardware
units are replicated and the same workload is run on each of
them to verify that they provide the same results. The granular-
ity of the units that are replicated can vary from simple functional
units to complete pipelines (e.g. [16]). There are also spatial re-
dundancy techniques where one can use a different hardware unit
to verify the integrity of the output produced by the actual hard-
ware (e.g. [4]). While one can argue that spatial redundancy is a
useful way of exploiting future billion-transistor capabilities, the
downside is the possible design complexity and the possibility of
those extra transistors being used to boost performance in the first
place. On the other hand, in temporal redundancy [31], the op-
erations are performed multiple times (though temporally sepa-
rated) on the same hardware to verify the outcome. While tempo-
ral redundancy is an effective use of the available hardware, with-
out requiring additional support, the downside is the performance
penalty of slowing down the normal execution. As a trade-off be-
tween these extremes, one would like to take a temporal redun-
dancy mechanism, provide some minimal hardware support (not
as much as what spatial redundancy mandates), and make its ex-
ecution approach that of the spatially redundant execution. This
raises the following questions: What is the needed hardware sup-
port? How do we ensure that this hardware does not significantly
complicate design? How much of a performance boost can it pro-
vide?

Temporal redundancy can again be implemented at different
granularities: instruction-level [20, 24] or thread-level [26, 25,
33, 15]. In our terminology, we refer to proposals that exploit
hardware supported multithreaded architectures for temporal re-
dundancy as being thread-level, and proposals such as [20, 24]
which implement mechanisms in an ordinary out-of-order core as
instruction-level (with temporal separation between the two exe-
cutions being more fine-grained). In the past few years, thread-
level temporal redundancy has been extensively investigated with
several promising proposals for enhancing its performance. The
problem has been more difficult when implementing instruction-
level temporal redundancy without significant performance conse-



quences. Since the resources in an out-of-order (OOQ) core have
been tuned with one instruction stream in mind (referred to as Sin-
gle Instruction Execution, or SIE, henceforth), resource contention
becomes a serious impediment to performance when these instruc-
tions are replicated temporally (we focus on Dual Instruction Ex-
ecution mechanisms in this paper, which we refer to as DIE). Pre-
vious studies [24] have reported up to 45% performance loss for
SPEC2000 applications for DIE compared to SIE. Any effort to al-
leviate this loss, without significantly complicating hardware de-
sign, can have considerable impact on future processor designs. It
can be directly employed in a superscalar design to enhance relia-
bility without significantly degrading performance. It can also be
used to enhance the OOO core within a SMT or CMP architecture,
to either supplement or even replace the coarser-grain thread level
redundancy mechanisms. The evaluations in this paper mainly fo-
cus on a superscalar design.

Contention for different resources in the OOO core, including
the Reorder Buffer (ROB), the ALUs, and the issue bandwidth,
in the DIE execution can cause longer delays thereby slowing
down the execution compared to SIE (note that a previous study
has shown ways of not inducing additional memory traffic [24],
and consequently our focus is primarily on the datapath compo-
nents). While it may be possible to increase some of these re-
sources to ease such contention in future billion-transistor designs,
at the core of the problem lies the functional units/ALUs? that need
to be shared between the instruction streams and the issue unit that
needs to schedule those ALUSs to the waiting instructions. It has of-
ten been argued [22, 17] that this functionality can become quite
complex to design, and is not very scalable. Even though it may
be possible to add more ALUs, the consequence is that: (i) the is-
sue unit needs to schedule more ALUSs, and (ii) the outputs of these
ALUs have to feed back to the issue window to provide data for-
warding for waiting instructions. The issue logic design complex-
ity obviously grows with the number of ALUs that we provision,
making it a less desirable option for reducing the gap between DIE
and SIE, since this has been shown to be on the critical path.

An alternative is to use a clustered architecture — where there
are separate (dual) issue units scheduling separate sets of ALUs
— and direct the primary and secondary streams to different clus-
ters. Partitioning resources into clusters, however, leads to prob-
lems such as load imbalance, limited ILP within each cluster and
long inter-cluster communication delays for SIE [10, 5, 1, 3]. On
the other hand, replicating resources to form clusters almost re-
sembles a spatial redundancy approach, leading again to the criti-
cism that we may have been able to use such additional hardware
for improving SIE.

Without going to the extreme of replicating many of the hard-
ware resources, and at the same time attempting to simplify design
complexity, this paper presents a novel adaptation of a hardware
technique (that has been previously examined in performance op-
timizations of single streams), called instruction reuse, to bring a
DIE on an OOOQ core closer to the performance of SIE. The con-
cept of instruction reuse for optimizing SIE was first proposed in
[29], and is based on the following observation: when encounter-
ing an instruction which was executed at some time in the past, we
could directly use the output of the previous execution (instead of
re-executing it) as long as the operands match. A simple cache (re-
ferred to as Instruction Reuse Buffer or IRB in this paper) of in-

1 Inthe platform that is modeled, branch target calculations are handled
by the ALUs, and so are memory address calculations (memory ac-
cesses themselves are not something we are trying to optimize). Con-
sequently, we use the terms functional unit and ALU synonymously in
this paper.

structions and their operands and result-values, can be used to ex-
ploit such reuse [29].

An IRB can not only speed up the execution of a multi-cycle in-
struction, but can also enhance the overall execution bandwidth by
allowing multi-ported lookups (resembling multiple ALUS). Pre-
vious studies [29, 12, 13] of IRB for single streams have pointed
out that it is more useful for speeding up long latency operations,
rather than the execution bandwidth, since the OOO cores have al-
ready been designed in a balanced manner for bandwidth. As a re-
sult, the work on IRBs gradually evolved into specialized mech-
anisms (such as value prediction) targeting long latency opera-
tions. While an IRB may seem like an effective way of amplifying
ALU bandwidth without impacting the scheduling costs of the is-
sue logic, it still does not solve the problem of having to propagate
the results (from the lookup) back to waiting instructions.

Using the IRB as a starting point, this paper makes the follow-
ing main contributions:

o We illustrate the use of an IRB to ease the ALU resource con-
tention problem of a DIE system. The IRB is used to not only
speedup the long latency instructions, but to amplify the ex-
ecution bandwidth, which is extremely useful to handle the
doubling of load imposed in a DIE system. Whenever possi-
ble, we direct the duplicate stream through the IRB to ease
the ALU requirements. At the same time, we point out that
the IRB does not need to be protected from faults with any
additional hardware mechanisms.

e We show how this amplification of execution bandwidth can
be achieved without requiring an increase in issue width (and
the scheduling costs). Consequently, it is a simple hardware
extension over the resources that one would provision any-
way for a balanced SIE system.

e We identify an interesting property of a DIE system, wherein
we can use the output from instructions of one stream as in-
put operands for another, without really compromising on the
desired level of temporal redundancy. This property helps us
devise an IRB that does not require its outputs to feed back
into the issue window, consequently not affecting the issue
logic design complexity. We give details on the implemen-
tation of such an IRB, together with its integration with the
rest of the datapath.

e Using several applications from the SPEC2000 suite, and
a detailed cycle-level model, we demonstrate how our en-
hancement can narrow the performance gap between DIE
and SIE.

The rest of this paper is organized as follows. The next sec-
tion reviews the prior DIE proposal [24], together with an exper-
imental study showing the bottlenecks of the DIE execution. The
details of our hardware enhancement are given in section 3. Sec-
tion 4 presents experimental results with our enhancements. Fi-
nally, section 5 summarizes the contributions of this paper.

2. Motivating the Need for Boosting ALU
Bandwidth on aDIE

2.1. Provisioning Dual-Instruction  Execution

(DIE) in a Superscalar Processor

Temporal redundancy in a superscalar processor is imple-
mented by first defining a Sphere of Replication (SoR) [25]. All
components within the SoR are protected via redundant execution
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Figure 1. Implementing DIE in a Superscalar Pro-
cessor, as proposed in [24]. The gray shaded area
is the Sphere of Replication. The solid lines show
the flow of the primary instruction stream and that
for the secondary/dual stream is given in dashed
lines. The access to the data-cache initiated by ei-
ther primary or dual, though not both, is shown in
dotted lines.

and any additional spatial/informational redundancy is not nec-
essary for them. Any inputs coming in to the Sphere and the out-
puts exiting the Sphere need to be checked for inconsistencies. In
the context of superscalar processors, previous proposals have im-
plemented the SoR by instruction duplication [20, 24]. In [20], it
is assumed that the program counter (PC), decode logic, register
file, rename tables, and ROB are outside the SoR, and hence trust-
worthy. In [24], the authors bring the ROB into the SoR as well.
They, however, leave the PC and branch-prediction structures out-
side the SoR since control-flow errors can be detected at the time
the respective branch-instructions are resolved (i.e. though out-
side, these structures can still be considered safe for program
execution). This modified superscalar processor, which we re-
fer to as DIE in the rest of this paper, is shown in Figure 1. At
decode/dispatch, each instruction is duplicated, whereby two ad-
jacent entries in the ROB are created. The primary instructions
and their duplicates are then dispatched to the issue win-
dow and both of them complete independently based on the
dataflow order of their respective streams (there is no commu-
nication between the primary and secondary streams). At the
commit point, the corresponding primary-dual pairs of instruc-
tions are checked against each other to detect any inconsistencies.
If no inconsistency is detected, the architected instruction is re-
tired; otherwise an instruction-rewind is triggered (using the
existing mechanism that is used to recover from incorrect specu-
lation) from the inconsistent instruction.

In the proposed DIE [24], instruction-level temporal redun-
dancy has been provisioned without significantly additional hard-
ware resources. The two streams (primary and dual) share the ROB
capacity, the ALUs, etc. Consequently, an IPC loss (shown to be
around 30% on the average for some SPEC2000 and SPEC95 ap-

plications) is to be expected compared to SIE. However, the dual
execution is exploited for reducing the overhead of branch mispre-
dictions and memaory accesses. For instance, as soon as one stream
detects a branch misprediction (instead of waiting for each to find
out), the instructions for both streams along the mispredicted path
are squashed and execution is initiated along the correct path. Sim-
ilarly, since the memory system is assumed to be outside the SoR,
for loads/stores, only the memory address calculation is performed
for both, and the actual access is performed only once. This opti-
mization also allows for preserving the semantics of uncached ac-
cesses and strong memory-ordering, that are typically required for
memory-mapped devices.

2.2. Impact of Hardware Resources

To motivate the rest of this paper, we first conduct a set of ex-
periments to understand the impact of the extra load imposed by
a DIE system, compared to SIE. There are several hardware re-
sources in the SoR (e.g. ALUs, Issue Window, ROB) shared by
the two streams, which need to handle this extra load. In general,
we observed that by amplifying the number of ALUs (that actu-
ally execute the instructions), the issue width (which determines
the maximum number of instructions that can be sent for execu-
tion to the ALUs every cycle), and the RUU? size (which deter-
mines the number of instructions in flight in the processor), we
can gain back most of the IPC loss for DIE compared to SIE. Con-
sequently, we focus on these three parameters.

The base configuration of the SIE and DIE under considera-
tion are presented later in section 4, and the important parameters
to note are the number of ALUs (4 integer adders, 2 inte-
ger multipliers/dividers, 2 floating point adders, 1 floating point
multiplier/divider/square-rooter), the RUU/Load-Store queue size
(128/64-entries) and the issue width (8). We consider configura-
tions that double the quantity of each of these hardware units,
namely 8/4/4/2 ALUs (called DIE-2xALU), 256 RUU-entries and
128 Load-Store Queue entries (called DIE-2xRUU), and a de-
code/issue/commit width of 16 (called DIE-2xWidths). This gives
us the following 7 configurations: DIE-2xALU, DIE-2xRUU,
DIE-2xWidths, DIE-2xALU-2xRUU, DIE-2xALU-2xWidths, DIE-
2xRUU-2xWidths, and DIE-2xALU-2xRUU-2xWidths, which to-
gether with the base DIE are compared with the IPC of the base
SIE (i.e. the base DIE and SIE have the same capacity of re-
sources for these units). In Figure 2, we plot the IPC slowdown
for these configurations with respect to the base SIE for 12 appli-
cations from SPEC2000.

Performance degradation of DIE is anywhere from 1% (in
ammp) to nearly 45% (in art) with 22% on the average compared
to SIE. This reiterates the earlier observation that temporal redun-
dancy imposes a high performance penalty on the system. At the
same time when we double the capacity of the three aforemen-
tioned components (DIE-2xALU-2xRUU-2xWidths), we are able
to achieve IPCs very close to that of the SIE system (note that
the rightmost bar is very short and may not even visible for many
benchmarks in the figure). This reiterates the importance of these
three factors in determining performance.

While doubling the capacity of each of the three units improves
IPC, we find that, among the three, doubling the number of ALUs
(the DIE-2xALU scheme) provides the maximum reduction in the
IPC loss (13% loss in IPC on the average, compared to 16% for the
RUU and 21% for the widths). An exception to this is art where

2 SimpleScalar, where our simulations are conducted, models a unified
ROB and issue window, called a Register Update Unit (RUU).
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Figure 2. Percentage IPC Loss with respect to SIE

we find that doubling the capacity of the RUU provides greater
savings possible because this exposes more ILP to the hardware
for exploitation in this low IPC application (its IPC for SIE and
DIE are 0.7316 and 0.4113 respectively). In many other cases, just
doubling the ALU capacity provides better improvement than dou-
bling all the other factors. Further, even when higher capacity in
the other units can improve performance, an improvement in ALU
bandwidth can further amplify their gains (note the bars for the dif-
ferent configurations where the ALU capacity is doubled). Rather
than go into the details for each application to explain these results,
our point is to merely note the need for amplifying the ALU band-
width on a DIE, which is the focus of this paper. Future work can
look at the other resources. At the same time, we want to develop
a solution for ALU bandwidth which does not affect the scalabil-
ity of the system, especially the issue logic.

3. Microarchitectural Design of IRB-Based
DIE

In the previous section, we observed that a large fraction of the
IPC loss in DIE was primarily due to the bandwidth limitation of
the functional units/ALUs. Two possible solutions to this problem
are:

e Increase the number of ALUs: Though intuitive (and as the
previous section shows, the rewards can be substantial in an
idealistic setting), the problem with this solution is the design
complexity of the the wakeup, selection, and bypass logic,
which are in the critical path.

— Selection Logic Complexity: The issue logic needs to
allocate a larger number of ALUs to the ready instruc-
tions, thereby increasing the scheduling complexity. If
one goes for stacked arbiters for the selection logic,
increasing the ALUs increases the stacking depth lin-
early. On the other hand, an unstacked implementation
increases the size of each arbiter cell, whose conse-
quences can be even worse than a stacked implemen-
tation [21].

— Wakeup and Bypass Logic Complexity: The output
from each of these ALUs needs to feed back to de-
pendent/waiting instructions in the issue window. The

consequent quadratic growth in delay (due to the addi-
tional complexity in wakeup and bypass logic) tends
to be on the critical timing path of the processor
[22, 17, 14].

e Use a Clustered Architecture: A decentralized clustered ar-
chitecture can avoid the design complexity of a central-
ized large pool of ALUs. However, clustered processors
tend to suffer from problems of limited ILP within each
cluster (compared to a monolithic design) and long inter-
cluster communication delays. In addition, currently pro-
posed instruction-steering policies [10, 5, 1, 3] also cause
load-imbalance between the clusters. Even if one uses sep-
arate clusters for each stream (primary and duplicate), this
still requires replicating the issue window and the register
file, which borders on spatial redundancy rather than a tem-
poral redundancy approach. This goes back to the question
of whether one could use those extra resources for enhanc-
ing even SIE. Though this may be a reasonable option, we
postpone such an investigation for future work.

Instead, our solution for amplifying ALU bandwidth uses a novel
adaptation of an approach that has previously been proposed to
minimize resource conflicts on a SIE system for the functional
units, namely, Dynamic Instruction Reuse [29].

3.1. Dynamic Instruction Reuse

Dynamic Instruction Reuse or, simply, Instruction Reuse (IR)
is a non-speculative technique and is similar to the concept of
memoization. It is based on the observation that there tends to be
significant reuse of the instructions in a program, and when an in-
struction appears again with the same input operands, it will pro-
duce the same result as before. IR attempts to exploit this prop-
erty by buffering previously executed instructions in a small hard-
ware table called an Instruction Reuse Buffer (IRB), indexed by
the PC [29] (there have been variations proposed [11, 12]). Ev-
ery instruction performs a lookup of the IRB to check if it has an
entry, and if so, whether its input operands match those in its en-
try (called a reuse test). If there is a match (“IRB-hit”), then the in-
struction does not require a functional unit and it re-uses the value
from the previous execution. If there is a miss, it has to execute
on the functional units. IR was initially proposed to overcome the



dataflow limit for collapsing true dependencies and to minimize
resource conflicts [29, 30]. In a follow-up research, Citron et. al.
[12] found that IR is effective only for long-latency operations.
Since then, IR research evolved more into the study of value pre-
diction [19, 18].

In this paper, we re-visit IR in a new light. In a DIE-based sys-
tem, we observe that the primary cause for the loss in IPC is more
due to large number of single-cycle instructions contending for a
small number of functional units, rather than the presence of long
latency operations, since we have twice the load being imposed on
the system.

We employ the IRB to relieve this extra load imposed by the
duplicate instruction stream in the following ways to reduce the
overheads that temporal redundancy imposes.

e In our DIE enhancement, referred to henceforth as DIE-IRB,
the primary stream is always executed by the functional units
as in SIE. Instructions in the duplicate stream, on the other
hand, first look up the IRB. If there is a hit, they skip the
functional unit and move onto the completion stage of their
pipeline. If they miss, they contend for the functional units
as before. If there is good instruction reuse, then the pres-
sure on the functional units can be reduced.

e The port requirements of the IRB can be kept low (compara-
ble to an IRB designed originally for SIE) in order to achieve
a fast access latency. This does not produce significant con-
tention for the IRB ports since (i) only the duplicate stream
accesses the IRB and (ii) the effective dispatch/commit width
of a DIE system is half of that of a SIE system.

e Asinanormal DIE, each pair (primary, duplicate) of instruc-
tions needs to be checked before retirement. The IRB does
not need any special/extra protection, since temporal redun-
dancy is provisioned for it by the primary stream executing
in the functional units and vice-versa. Therefore, the IRB lies
within the Sphere of Replication of the processor.

e Our IRB enhancements for a DIE do not incur the problems
that arise when increasing the number of ALUs, that were
identified earlier.

— The number of ALUs that the selection logic needs to
schedule for remains the same as in SIE.

— In previous proposals that exploit Instruction Reuse on
SIE, the IRB behaves like a functional unit and would
therefore broadcast any results from a hit (from all its
output ports) to its dependent instructions in the issue
window. This would entail additional complexity to
the issue logic, in terms of tag/result forwarding lines
from the IRB to the issue window, thereby increas-
ing the complexity of the wakeup-logic. However, us-
ing some properties unique to DIE, we show how an
IRB can be incorporated in the datapath with no extra
forwarding-buses and very little additional overhead to
the issue logic.

e Finally, we incorporate a simple mechanism that can possi-
bly reduce conflict misses in the IRB to further improve per-
formance of DIE.

The rest of this section gives more details on these issues, to-
gether with the hardware modifications we propose to the datapath
for DIE-IRB.

3.2. DIE-IRB Pipeline

The design of the proposed hardware mandates a close scrutiny
of the datapath pipeline, in order to make sure that the cost of the
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Figure 3. Instruction execution pipeline under dif-
ferent instruction-reuse scenarios. The solid-lines
show the flow of execution of instructions in the
primary-stream and the dashed-lines for those in
the duplicate-stream.

IRB access can be accounted for, while still being able to ensure
the benefits of an IRB. At the same time, it is important to al-
low more than one instruction to exploit the IRB in any one cy-
cle, which is really needed for easing the ALU bandwidth require-
ments. In order to ensure that the IRB does not become a bottle-
neck in the system, we allocated the number of ports carefully.
We used 4 read-ports, 2 write-ports, and 2 read-write ports. Us-
ing Cacti 3.2 [9], we found that for a 180nm process technology,
a 1024 entry direct-mapped IRB (which is the eventual configura-
tion that we suggest, and whose hit rate has been shown to be fairly
good [29, 35]) can be clocked at our simulated processor clock fre-
quency of 2 GHz using a 3-stage pipelined access as shown in Fig-
ure 3. The IRB is looked up in parallel with instruction-fetch using
the PC as an index and there are three subsequent possibilities. In
the first case, there is a PC-miss in the IRB, in which case the ex-
ecution proceeds as in a normal DIE (without IRB) for the dupli-
cate instruction. In the second and third cases, the PC hits in IRB,
and it takes two more cycles to read the operands/result from the
IRB entry, and one more to perform the reuse test, which, as we
shall show, can be effectively overlapped with instruction-wakeup.



’—{ Instruction Cache }‘—{ Branch Predictor
IRB Lookup

Decode Buffer

IRB
Operands Register Writeback

Check &
Retire

| Decode/ Architected Rename
! Dispatch Register File Register File =3
I I
| by Iy |
Wakeup i a .
i Issue Window  p--------- =
Select IRB hit l
; I
|
o [0 [0 [o] |
Int Uint FP Ldy/st i
v ! :
Allocate 2 ROB Entries v i %

Data Cache ‘

PC Operand1 ‘ Operand2 ‘ Result ‘ CTR ‘

Sphere of __ . Primary
Replication Instruction Stream

____» Secondary
Instruction Stream

Figure 4. Proposed Datapath Enhancements for
DIE-IRB. Note that IRB lookup is done concur-
rently with Fetch/Decode/Dispatch and there is no
dotted line from the result forwarding path to the
issue window.

Meanwhile, this duplicate instruction has made its way through the
normal pipeline (decode/dispatch) and is at the issue stage. If the
reuse test succeeds, then the duplicate instruction can bypass the
execute phase, and directly move to the retire/commit stage. Else,
from the issue stage, the duplicate instruction goes to the func-
tional units as in the original DIE. If the IRB needs to be updated,
it is done on completion of instruction commit/retire, and is not in
the critical path.

In our implementation, we employ the IRB for integer and
floating-point ALU instructions, and also for branch target-address
calculation. For load/store instructions, the IRB is used only for
address calculation. This simplifies our instruction reuse scheme,
as we do not have to perform a potentially timing-critical mem-
ory disambiguation step to check for intervening stores for a load-
instruction (which would normally require a full scan of the IRB).
The modification to the DIE pipeline by the inclusion of the IRB,
along with the format of an IRB-entry is shown in Figure 4.

3.3. Complexity-Effective DIE-IRB Design

In previous proposals for IR, the goal has been to overcome
the dataflow limit by collapsing true dependencies. In this respect,
the IRB has been treated as a functional unit. As pointed out in
[12], this would be effective only if IR was targeted at long la-
tency operations and not for single-cycle ALU operations. More-
over, if the IRB is to behave as a functional unit and provide mul-
tiple reads and updates in a cycle, it has to be a multi-ported unit.
This implies that each read-port of the IRB needs to have a result-
forwarding bus to broadcast the value (on a hit) to the dependent
instructions in the issue window. This overhead is similar to the
overhead of increasing the issue width, due to the extra match-
lines and comparators in each cell of the issue window to check
for input operand availability. This increase has a quadratic ef-
fect on the delay of the wakeup logic and the data-bypass logic

[2], both of which are on the critical timing path of modern super-
scalar processors [22].

As noted earlier, in our design, the IRB is not treated as a func-
tional unit/ALU as far as the issue logic is concerned. Further, we
can avoid the inclusion of the extra logic and delays of data for-
warding from the IRB by observing an interesting property of Dual
Instruction Execution. Note that in parallel with the IRB access,
the duplicate the duplicate instruction has made its way through
the normal pipeline into the issue window, i.e., both primary and
duplicate instructions have entries in the issue window (refer to
Figure 3). Since we anyway have the output values (register up-
dates) from the execution of the primary stream’s instructions on
the functional units forwarded to the issue window to wake up
waiting primary stream instructions, why not use the same for-
warding of information to wake up waiting duplicate stream in-
structions as well, i.e. the results from the primary stream can be
used to wake up waiting instructions from both primary and dupli-
cate streams in the issue window. Whenever a duplicate instruction
gets its operands (from a primary instruction output), it performs
the reuse test as mentioned earlier. If the reuse test passes, it picks
up the result, and directly proceeds to the commit point without
propagating any results to the issue window. Consequently, we do
not need any data forwarding to occur from the IRB, thereby ben-
efiting from the additional ALU bandwidth provided by the IRB,
without complicating/extending the wakeup and bypass logic. It
is to be noted that we can achieve this complexity-effective de-
sign without really compromising on reliability, as we will show
shortly.
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Figure 5. Design of issue window wakeup logic
to support input-operand forwarding for DIE-IRB.
Note that IRB L/R come into issue logic together
with the instruction.

The design of the issue logic to support input operand for-
warding for DIE-IRB is shown in Figure 5. We use a data cap-
ture instruction scheduler [27], where the tag lines (identifying the
operand) and operand line (containing the propagated values) are
broadcast down the issue window. Normally, each entry of the win-
dow has the operand values, and flags (RdyL and RdyR) to indicate
that the operands are available (i.e. the instruction is ready to is-
sue if both these flags are asserted). Our enhancement to the issue
window does not require any more entries beyond what is already
available in the original SIE/DIE designs. Instead, each entry in the

o
match Instructions



issue window is augmented with an extra field for each operand to
hold the value that has been read from the IRB, designated as IRBL
and IRBR for the left and right operands respectively. In addition,
we use 2 additional flags, Rdy2L and Rdy2R, to indicate whether
the operands are available and the instruction is ready to be sched-
uled. These flags are asserted when (i) the operands are available,
and (ii) at least one of the operands do not match the correspond-
ing IRBL or IRBR values retrieved from the IRB (i.e. this instruc-
tion needs to be serviced by the ALUs). Note that the latter condi-
tion is the IRB reuse test, and we need two extra comparators for
each issue window slot, and the comparison can be performed in
parallel with the updating of the values into the Opd fields. These
flags are then used to determine whether this instruction can be
scheduled (instead of the original RdyR/RdyL flags), and their as-
sertion logic is given below:

Rdy2L = (IRBL.OPDLnmaten V IRBR-OPDRomaten)
ARdyL

Rdy2R = (TIRBL-OPDLyaton V IRBR.OPD Rynaten)
ARdyR

When a primary instruction comes to the issue window, two en-
tries are created (one for primary and another for duplicate). In the
case of the duplicate, the IRBL and IRBR entries are filled with
values from the IRB, whose lookup is complete by this time. In
the case of the primary, one can think of these as having values
which are never going to match the operand values propagated to
this issue window entry (i.e. it will always execute on the ALUS).
Though not explicitly shown in the figure, we point out that the re-
sult value from the IRB can directly propagate to the ROB/rename
register file by the time the instruction moves to the issue window
(even before the reuse test is performed). If the operands match for
the duplicate, then it can directly move to the commit stage with-
out using the ALUs. As seen from the figure, our enhancements
impose little additional complexity to the issue logic.

Implementing Forwarding in Non Data-Capture Schedulers: In a
scheduler that does not employ data-capture, the result tags are
broadcast down the issue window and the operands are obtained
from the register file. Further, the register file is read after the se-
lection process. Therefore, in order to fetch the operands, the in-
struction scheduler would have to allocate a functional unit to in-
structions in the duplicate stream as well. Though this allows for a
duplicate stream instruction to execute in a functional unit imme-
diately if there is a miss in the IRB, in case of an IRB hit, the allo-
cated functional unit is not used. Further, it cannot be re-allocated
to any other ready instruction in the issue window, as any such in-
struction would first have to perform register file access.

A possible technique to overcome this limitation is to perform
the selection after the register file lookup, effectively decoupling
the wakeup and selection steps. Previous studies have shown that
the wakeup and selection steps can be pipelined with very little
impact on the overall IPC [6, 32]. In [6], the authors show that
pipelining can be achieved by dividing the issue mechanism into a
single-cycle wakeup-step and a multi-cycle selection-step. A simi-
lar approach can be taken in our case, where, both primary and du-
plicate instructions can be woken up and made to access the regis-
ter file. The reuse-test is performed immediately following the reg-
ister file access for the instructions in the duplicate stream, which
may be performed within the same cycle as the register file access.
On completion of this step, the ready instructions are assigned the
ALUs. Any instruction that did not get an ALU is re-scheduled us-
ing a method similar to that described in [6].

While we have use a value-based IRB mechanism for the eval-
uations in this paper, one could also opt for name-based instruction
reuse, where the register identifiers (names) are stored in the IRB
instead of operand values. Although the hit rates may decrease,
name-based approach is more straightforward to implement on a
non data-capture scheduler.

3.4. Redundancy Characteristics of DIE-IRB

Having covered the design aspects of our proposal, we now
discuss its temporal redundancy (reliability) properties. There are
two scenarios to consider: (i) the duplicate instruction misses (ei-
ther PC miss or reuse miss) in the IRB, and (ii) the duplicate in-
struction hits in IRB. For each of these scenarios, there are two
further input operand possibilities: (a) the operands are not pro-
vided by any prior instruction (i.e. they are not waiting for any
values to be propagated), and (b) they (both primary and dupli-
cate instructions) get one or both operands from another primary
instruction.

For the combination of (i) and (a), the primary and duplicate
streams will execute on functional units, and our DIE-IRB sys-
tem is not any different than the original DIE, thereby providing
the same redundancy properties. In the case of (ii) and (a), even
though the duplicate stream went through the IRB, its result is still
compared with that for the primary stream which executed through
the functional units. Further, note that in order to create the en-
try in the IRB, an earlier execution of the same instruction (both
primary and duplicate) should have gone through the functional
units (and their outputs would have been compared). Only the er-
rors that struck the IRB (after the entry was inserted) to produce
an output value which exactly matches the output of a primary in-
struction that experienced another error during the execution on
a functional unit, may not be caught (the resulting probability is
comparable to that for the original DIE).

Moving to possibility (b) where the operand values are being
forwarded from a prior primary instruction, a pictorial depiction
of the situation is given in Figure 6. The original DIE [24] has for-
warding only between instructions of its own stream (Figure 6 (a)).
However, in our enhancement, forwarding is done only by the pri-
mary instructions, which are sent to waiting instructions from both
streams. If there is no error occurring in the forwarding itself, then
the reliability characteristics are no different from the (a) possi-
bility analyzed above. However, if an error does occur in this for-
warding mechanism, it can happen in two ways that are logically
shown in Figures 6 (b) and (c). If the error propagates to only one
of the streams (either primary or dual, but not both as in Figure
6 (b)), note that the outputs from both instructions (i.e. instruc-
tionadd r4 <- r3, #1 inthe example) are anyway checked at
commit point to ensure they produce the same result.

On the other hand, the situation that we want to address is
shown in Figure 6 (c) where the error propagates to both streams.
This could happen in a data-capture instruction scheduler, since
the result forwarding from the functional units to the issue window
and that to the rename register file use separate paths [27]. There-
fore an error on the forwarding path to the issue window could go
undetected. In order to provide protection under this condition, we
propose a minor enhancement to provide additional (spatial) re-
dundancy for these paths (see Figure 7). For instance, by having
a duplicate path (which need not traverse through the issue win-
dow) the broadcasted tags and data can be compared with that on
the original path after the last entry has received it. This adds an ex-
tra comparison at the end of the broadcast but the overhead of this
operation is relatively small.



To recover from any detected errors, we do not need any spe-
cial hardware or pay additional performance costs when incorpo-
rating the IRB into the previous DIE design [24, 33].
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Figure 6. Value forwarding within/across instruc-
tion streams.

3.5. Minimizing Conflict Misses in the IRB

We use saturating counters, similar to those used in prediction
structures like the Branch History Table [34], to reduce the conflict
misses in the IRB. In our default configuration we use a 4-bit satu-
rating counter, which is initially set at a value of 7 (a more detailed
sensitivity study can be found in [23]). If any instruction accesses
the IRB and finds that the entry to which it maps to is currently
occupied by another instruction, then the value of the counter is
decremented by one. If it, however, finds that the entry is occu-
pied by the same PC but there is an operand mismatch, the value
of the counter is decremented by 5 (this instruction is less likely
to have the same operands in the future, and should be a less fa-
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Y Y
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Figure 7. Handling faults on the result-forwarding
bus using duplicate forwarding paths.

vorable IRB entry). On the other hand, if there is an IRB-hit, the
value of the counter is incremented by 5. When the counter-value
reaches zero, the entry is a candidate for replacement. In essence,
the rate at which the counter degrades to 0 is an indication of the
usefulness of that entry.

4. Experimental Results

4.1. Simulation Platform and Workloads

Our experiments were carried out using SimpleScalar 3.0 [7].
In addition to using its models as is for the SIE execution, we
extended it (as per the details given in [24]) for DIE, and also
simulated the IRB extensions explained earlier for the DIE-IRB
scheme. Unless explicitly stated/varied, the default simulation pa-
rameters that we use are given in Table 1. For the workloads, we
used 12 benchmarks from the SPEC2000 suite. The benchmarks
were compiled for the PISA instruction set architecture with the
-2 -funroll -1 oops optimization flags. We used the ref-
erence input set for the simulations. Each benchmark was fast-
forwarded by 1 billion instructions and then detailed simulation of
the next 1 billion instructions was performed.

Please note that our focus in the subsequent evaluations is to re-
duce the performance gap between SIE and DIE, and we are not
studying the performance under error occurrences (which though
important, is not the frequent case). Consequently, the metric that
we focus on is the percentage reduction in the gap between these
two with the different enhancements. The IPCs themselves in the
base SIE, and that for the DIE execution, together with the percent-
age degradation of the latter (referred to as the gap henceforth), are
given in Table 2.

4.2. Benefits of DIE-IRB

Figure 8 presents the percentage of IPC gap between SIE
and DIE recovered with our scheme, denoted as DIE-IRB-1K-
sat, which uses the default 1K entry IRB parameters given in Ta-
ble 2 with the saturating counters. In addition to our DIE-IRB
scheme, we also present the benefits obtained by doubling the
ALUs (the DIE-2xALU scheme). The third bar gives the percent-
age of IPC gap recovered using our scheme where we artificially



Processor Parameters
Fetch/Decode/lssue/Commit Width 8
Fetch-Queue Size 8
Branch-Predictor Type Combined predictor with
16K meta-table,
16K L1 and L2 tables
11-bit history-width
XORed with address
in L2 predictor

RAS Size 64
BTB Size 2K-entry 2-way
Branch-Misprediction Latency 7 cycles
RUU Size 128
LSQ Size 64
Integer ALUs 4 (1-cycle latency)
Integer Multipliers/Dividers 2 (3,20)
FP ALUs 2(2)
FP Mult./Div./Sqrt. 1(4,12,24)
L1 Cache Ports 2
L1 D-Cache 32KB, 2-way with
32B line-size (2)
L1 I-Cache 64KB, 2-way with

32B line-size (2)

L2 Unified Cache 512 KB, 4-way
with 64B line-size (12)
TLB Miss-Latency 30 cycles
Memory Latency 112 cycles
Processor Clock-Frequency 2 GHz
Process Technology 180nm
IRB Parameters
Number of Entries 1024

Associativity
Access-Latency

Direct-Mapped
3-Cycles (Pipelined)

Number of Saturation-Counter Bits 4
Decrement-Value on PC-Miss 1
Decrement-Value on Reuse-Miss 5
Increment-Value on Reuse-Hit 5

Table 1. Default simulation parameters. Laten-
cies of ALUs/caches are given in parentheses. All
ALU operations are pipelined except division and
square-root.

set the hit-rate to be 100% in the IRB (i.e. all duplicate instruc-
tions go through it), denoted as DIE-IRB-ideal. The second and
third bars thus give an approximate estimate of what we can hope
to gain by removing the ALU bottleneck of DIE, and how best we
can do with our IRB scheme, respectively. In Table 3, we give the
characteristics of the IRB behavior in the DIE-IRB-1K-sat execu-
tion. The number of references by the duplicate stream to the IRB
is broken down into those that do not have a PC match, those that
have a PC match but fail the reuse test, and those that have a IRB
hit.

We find that the DIE-IRB scheme can recover between 5% (for
art) to 42% (for gzip) of the IPC that is lost due to redundant ex-
ecution, with the average being around 23%. Several factors con-
tribute to the effectiveness of the IRB in bridging the performance
gap between DIE and SIE: (i) the demand for the ALU resources
itself, (ii) the reuse hit rate in the IRB, and (iii) the occurrence
of long latency ALU operations, and how they can be satisfied by
the IRB. The relative impact of these factors on the applications is
noted below:

Benchmark || IPCsig | IPCprg W(%) |
164.gzip 1.5069 1.2129 1951
171.swim 1.9807 1.7622 11.03
175.vpr 1.2098 0.9981 175
176.gcc 1.2764 1.0410 18.44
177.mesa 2.2230 1.5166 31.78
179.art 0.7316 0.4113 43.78
181.mcf 0.3216 0.2964 7.84
183.equake 1.7404 1.2541 27.94
188.ammp 0.1082 0.1066 1.66
197.parser 1.2685 1.0307 18.75
255.vortex 2.3868 1.6190 32.17
256.bzip2 1.8070 1.2941 28.38

Table 2. IPC under SIE and DIE, and their gap, for
simulated SPEC2000 benchmarks.
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e In applications such as gzip, swim, parser, bzip2 and vor-
tex, we are not only getting more than 25% reduction in the
IPC gap, but we are getting much of the IPC gains of dou-
bling the number of ALUs. These are applications with high
ALU demands (as evidenced by the boost in performance by
doubling the ALUs - the bar for DIE-2xALU), which at the
same time exhibit good instruction reuse, as seen by the IRB
hit rate numbers given in Table 3 (close to 40% or higher).

e On the other hand, in gcc where even though the ALUs are in
demand, the IRB hit rate is less than 25%, thereby leaving a
considerable gap between DIE-2xALU and DIE-IRB-1K-sat.

e There are a few applications where the IRB hit rates in Table
3 seem reasonable, but they still do not provide as much IPC
improvements since the ALU bandwidth may not be a signif-
icant bottleneck. For instance, in art (and perhaps in mcf to
a certain extent), ALUs are not that much of a problem (note
that doubling the ALUs only provides 10% IPC improve-
ment in art). As noted earlier in section 2, this is due to the
low ILP in this application, and there are not enough ready
instructions to exploit the available bandwidth, thereby lim-
iting the benefits of an IRB. In the case of ammp, the gap be-
tween SIE and DIE is itself not very significant (only 1.6%),



and the absolute difference between an IRB based approach
and doubling the ALUs is quite small.

e In a few other applications, despite the ALU limitations and
the reasonably good IRB hit rates, there is still a gap be-
tween what doubling the ALUs can achieve, and what is pro-
vided by the IRB. This is a consequence of how the long la-
tency ALU operations are executed. Let us consider the case
of mesa, where despite the 44% IRB hit rate, the benefit for
DIE-2xALU is more than twice that of DIE-IRB-1K-sat. This
is because, of the long latency ALU operations, only 5.6%
go through the IRB (compare this with swim in which we
found around 18% long latency operations serviced by the
IRB, even though its overall IRB hit rate is even lower than
mesa). Collapsing of long-latency operations is also one of
the reasons why DIE-IRB-ideal does even better than DIE-
2xALU (another reason is the fact that DIE-IRB-ideal does
not contend for issue ports, unlike DIE-2xALU). A conse-
quence of this could be the earlier resolution of branches.

Overall, we find that the IRB does a fairly good job of bridg-
ing the gap between SIE and DIE, while not incurring the hardware
complexity of design involved in doubling the number of ALUs.
On the average, we obtain 23% reduction in IPC gap between SIE
and DIE, which is over 50% of that provided by doubling the num-
ber of ALUs. At the same time, the performance of DIE-IRB-ideal
indicates that there is more room to grow for this scheme, if we can
somehow enhance its hit rate (as is investigated in the next subsec-
tion).

[ Benchmark || PC miss [ IRBmiss | IRB hit |

164.9zip 8.46 49.44 42.09
171.swim 3.29 56.71 39.98
175.vpr 38.70 23.75 37.54
176.gcc 28.70 46.33 24.96
177.mesa 39.62 16.18 44.19
179.art 0.01 59.19 40.79
181.mcf 0.02 64.37 35.60
183.equake 5.34 60.69 33.96
188.ammp 8.57 54.03 37.39
197 .parser 9.95 36.41 53.63
255.vortex 37.55 23.59 38.84
256.bzip2 0.09 56.42 43.48

Table 3. Classification of IRB-Accesses

4.3. Enhancing IRB Reuse Characteristics

Techniques for enhancing the hit behavior of the IRB could
prove to be useful in alleviating ALU bandwidth even further (note
that DIE-IRB-ideal shows we have much to gain by improving IRB
hit behavior). There can be three different ways of achieving this:
(i) We can enhance the IRB configuration to hold more (possibly
useful) entries to reduce capacity/conflict misses (i.e. PC-misses),
(ii) Even if we have to be confined to a small IRB (to meet tim-
ing requirements) we can try to make sure only useful entries are
maintained in the limited space of the IRB so that non-useful en-
tries do not evict useful ones (reducing both PC-misses and reuse
misses), and (iii) We can also proactively insert entries into the
IRB to anticipate what would be needed (reducing reuse misses).
We have investigated each of these issues, and detailed results can
be found in [23].

In general, we find that the 1K direct-mapped IRB with satu-
rating counters, used until now, does a fairly good job in terms of
issues (i) and (ii) mentioned above. We find that predicting what
operands to expect for an instruction, and pre-computing the re-
sults for those instructions ahead of need, can on the average re-
duce the IPC gap between SIE and DIE-IRB by 35.95% (for a
six-application subset that we used for sensitivity analysis), com-
pared to 26.03% without any proactive insertion. It should be noted
that the additional hardware for performing such computations are
not part of the issue/execute logic, and do not complicate their de-
sign. At the same time, our point is to merely note the benefits
of predictive IRB insertion, which we hope to investigate in de-
tail in future work.

5. Concluding Remarks

This paper has proposed a novel solution to alleviate the per-
formance loss incurred when implementing instruction-level tem-
poral redundancy in an out-of-order superscalar processor. As in
earlier studies, we observed between 1% to 44% loss in IPC, in
a temporally redundant (dual) execution (called DIE) over a sin-
gle instruction execution (SIE) for a set of 12 SPEC2000 bench-
marks. An important contributor to this performance gap is the in-
sufficient ALU bandwidth, since the same number of ALUs pro-
visioned for an SIE core needs to handle twice the number of in-
structions imposed on a DIE. Increasing the number of ALUs may
not be an easy solution to this problem since it increases the com-
plexity of the issue and bypass logic.

We propose a novel adaptation of an existing idea, Instruction
Reuse (previously examined to improve single stream execution),
to alleviate the ALU bandwidth problem on a DIE. The primary
instructions always use the ALUs. However, the duplicate instruc-
tions are directed to an instruction reuse buffer (IRB) from where
they can directly pick up the result (instead of execution on ALUs)
as long as that instruction has been previously encountered with
the same set of operands. Else, the duplicate instructions are di-
rected to the ALUs as in a normal DIE. This mechanism is able to
provide the required temporal redundancy semantics without re-
quiring any extra protection from faults for the IRB. The tempo-
ral redundancy is being provided by instruction reuse rather than
re-execution.

In our proposal, the issue logic does not manage the IRB (its
lookup is done ahead in the pipeline) and thus does not increase the
scheduling complexity. At the same time, we exploit a unique fea-
ture of DIE, wherein the primary stream can forward data values
to waiting instructions for both primary and secondary streams,
thereby not requiring us to complicate the wakeup and bypass
logic.

Through detailed simulations, we show that our proposal can
provide between 5% to 40% reduction in the IPC gap between
SIE and DIE, with around 23% reduction on the average over 12
SPEC2000 benchmarks. This amounts to around 50% of what is
achievable by removing the ALU bandwidth overload imposed
by DIE. These savings are achievable with a 1024 entry direct
mapped IRB, with read/write ports that can be easily provisioned
in a 3-stage pipelined access manner for a 2 GHz processor.

There are several interesting directions for further research. As
mentioned, the DIE-IRB-ideal scheme (which assumes 100% IRB
hits) provides substantially more savings than what we got with
our practical design. It would be interesting to examine possibil-
ities to bridge this gap not just by keeping only useful entries,
but also by proactively inserting entries anticipating their need.
A preliminary investigation along such lines can be found in [23].



We pointed out that one could employ a clustered architecture for
instruction-level temporal redundancy, and use separate clusters
for each stream (to alleviate load imbalance and inter-cluster com-
munication). However, this still requires replicating the issue win-
dow and the register file (spatial redundancy), going back to the
question of whether we could use those resources for enhancing
SIE itself. Investigating these trade-offs, together with more hybrid
(a combination of temporal and spatial redundancy) approaches, is
part of our future work.
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