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Abstract

Energy-efficiency is a key requirement in data centers
today. Storage systems constitute a significant fraction of
the energy consumed in a data center and therefore enter-
prise storage systems need to deliver high performance in
an energy-efficient manner. Static tuning of the storage sys-
tem is not sufficient since energy consumption is strongly
dependent on runtime variations in workload characteris-
tics. Although dynamic disk power management can enable
the storage system to adapt to varying workload conditions,
prior work in this area has resorted to ad hoc heuristics that
cannot guarantee that the system meets energy-efficiency
goals. In this paper, we present a novel approach to stor-
age power management that uses the sensitivity-based opti-
mization technique. Our approach systematically balances
the dynamic knobs in the disks to operate the storage-system
at a desired performance level while maximizing the energy
savings. We show that sensitivity-based power management
can reduce the energy consumed by the storage system by
over 20% for a set of commercial server workloads. We
compare sensitivity-based power management to a previ-
ously proposed power management scheme for multi-RPM
disk drives and show that our approach yields better per-
formance and energy savings.

1. Introduction

Storage systems play a key role in affecting the perfor-

mance of a large number of data-intensive applications, in-

cluding transaction processing, business analytics, Internet

search-engines, and e-mail services. Storage systems for

these applications are built using a large number of disks,

usually configured as RAID arrays, to provide the requisite

I/O performance. On the other hand, power and cooling

costs have become a significant concern in data centers and

disk drives account for 13%-20% of this cost [22, 20]. Data

center managers therefore face the dilemma of striking a

good balance between meeting the performance demands

of applications hosted on their servers and minimizing the

power and cooling costs of operating those servers.

The power consumption of a disk drive is affected by

both static design parameters as well as runtime (dynamic)

factors [6]. An example of a static design parameter is

the number of the platters, which can be made smaller or

larger based on the power budget. Laptops tend to use

fewer platters due to their highly constrained power bud-

gets while server drives may use more platters for capacity

reasons. However, the greatest opportunity for managing

power consumption is at runtime via the use of dynamic

“knobs”. Common approaches to dynamic disk power man-

agement include turning off the disk during long periods of

idleness [3, 8], varying the rotational speed (RPM) of the

drive [5, 1, 22], and reducing seek activity [10]. The recent

introduction of multi-RPM drives into the market [19, 9]

provides opportunities to control all these dynamic knobs

to reduce the energy consumed by the storage system. Prior

work has explored the use of each of these knobs in isolation

and a number of heuristic policies have been proposed for

disk power management in servers. However, it is desirable

to have a systematic way of optimally controlling several

dynamic knobs in the storage system to maximize the en-

ergy savings for a given set of performance constraints. In

this paper, we propose one such methodology.

Our approach is based on the sensitivity-based optimiza-

tion technique, which was originally proposed for energy-

delay optimizations in circuits [12]. The key idea behind

this optimization technique is the fact that optimally trad-

ing off between performance and power is based on the de-

sired level of performance that we wish to achieve or the

energy that we are willing to consume. Therefore, there are

multiple optimal points in the energy-performance space,

thereby forming a Pareto curve. Sensitivity-based analy-

sis facilitates identifying these optimal points by calculating

the ratio of energy to delay sensitivities with respect to each

knob in the system and ensuring that the sensitivity ratios

are equal. A recent paper by Zhang et al. [21] demonstrated

the applicability of sensitivity-based optimization for de-

termining the optimal settings of the design-time parame-

ters of disk drives. However, this previous work did not

explore how sensitivity-based optimization techniques can

be applied for runtime disk power management using dy-

namic knobs, where the optimizations need to be dynami-



cally adapted to variations in the workload behavior. In this

paper, we use sensitivity-based optimization for dynamic

disk power management.

Towards this end, this paper makes the following contri-

butions:

• We present a sensitivity-based optimization technique

for controlling multiple dynamic knobs in disk drives.

Our technique measures the sensitivity of the various

knobs at regular intervals at runtime and controls the

settings of the various knobs based on this measure-

ment.

• We show that our technique can reduce the energy con-

sumption of the storage system by 20.6% on the aver-

age for a set of commercial server workloads. We com-

pare our technique to a previously proposed heuristic

for power management in multi-RPM disk drives [5]

and show that our approach provides greater energy

savings and delivers higher performance than the pre-

vious technique.

• We perform a sensitivity analysis of our technique to

three storage system and power management policy

parameters: the RPM step-size, the size of the sensitiv-

ity measurement window, and the performance thresh-

old settings. We find that our power management tech-

nique is effective in reducing the storage system energy

consumption for a wide range of parameter values.

The outline for the rest of the paper is as follows.

The next section discusses the related work and Section

3 describes the experimental setup. Section 4 presents an

overview of disk drives and sensitivity based optimization

and describes our power management technique. Our ex-

perimental results are presented in Section 5 and Section 6

concludes this paper.

2. Related Work

The traditional approach to disk power management in

single-user laptop and desktop systems is to spin down the

disks into a standby mode during long periods of idleness

[3]. However, this approach is challenging to apply in en-

terprise storage systems due to the lack of sufficient idle-

ness between I/O requests to spin down the disks into the

standby mode [7]. Three basic sets of techniques have been

proposed to overcome this problem: (i) creating sufficient

idleness in a subset of the disks by replicating and/or mi-

grating their data into other disks [15, 2, 13]; (ii) dynamic

modulation of the disk drive RPM (DRPM) to reduce the

spindle power during periods of idleness or lighter I/O loads

[5, 1, 19, 9]; (iii) minimizing seek activity by replicating

data within the disks [10].

There have been two prior works on providing perfor-

mance guarantees while optimizing power in server storage

systems using DRPM. Li et al. [11] proposed performance-

directed energy management for main memory and disks.

Their disk algorithm periodically adjusts the values of cer-

tain thresholds used in the DRPM control policy (proposed

in [5]) to meet performance goals. Their study showed that

self-tuning the parameters in the DRPM control policy is

challenging due to the large number of parameters. Zhu et

al. [22] propose an alternative approach to providing per-

formance guarantees. Their Hibernator scheme takes as in-

put a given maximum allowable response time as a Service

Level Agreement (SLA) and uses a combination of data

layout optimizations and RPM modulation to ensure that

the storage system meets delivers this performance while

minimizing energy consumption. In Hibernator, the RPM

speed-setting decisions are made infrequently (once every

few hours) which would make their scheme less adaptive to

variations in the workload characteristics over smaller time-

scales. On the other hand, we make power management de-

cisions at a finer granularity and demonstrate that we can

get significant energy savings by adapting to variations in

the workload behavior.

In general, all of these previous works tackle disk power

management by using only a single dynamic knob - spin-

downs, RPM modulation, or disk-arm control. In this pa-

per, we explore the use of multiple dynamic knobs and use

sensitivity-based optimization to guide the setting of these

knobs at runtime to maximize energy efficiency.

Finally, the energy consumed by the storage system can

be reduced by replacing hard disk drives with solid-state

disks (e.g., flash). Indeed, flash memory is already used in

a variety of consumer electronic products and is also be-

coming popular in laptop computers. However, the cost per

megabyte of solid state memory is significantly higher than

those of hard disk drives and disk drives are expected to be

the primary medium of storage in servers for at least another

decade [16].

3. Experimental Setup and Workloads

Our experiments are carried out using Disksim [4],

which is a widely used simulator for studying storage sys-

tems. We incorporate the disk power models equivalent to

those given in [21] into the simulator, after validating them

against real data from several manufacturer data sheets. We

use a set of commercial I/O traces to measure the perfor-

mance and power characteristics of our approach. Table 1

provides details about these workloads and the original stor-

age systems on which they were collected. Financial is a

trace of an On-Line Transaction Processing (OLTP) appli-

cation collected at a large financial institution. Websearch is

an I/O trace collected from a popular Internet search-engine

server [18]. The TPC-H trace was collected on an 8-way

IBM Netfinity SMP machine with 15 disks and running the

IBM DB2 EE edition database management software. The

workload was run in the power test mode in which the 22



queries of the benchmark are run consecutively. Openmail

is a trace of an HP OpenMail e-mail server at the Atlanta

Response Center [17].

Workload Requests Disks Capacity (GB) RPM Platters

Financial 5,334,945 24 19.07 10000 4

Websearch 4,579,809 6 19.07 10000 4

TPC-H 4,228,725 15 35.96 7200 6

Openmail 3,053,745 8 9.29 10000 1

Table 1. Workloads and the configuration of

the original storage systems on which the

traces were collected.

We assume that the storage system of each workload

uses disk drives that are identical to those listed in Table

1, except that they are multi-RPM drives, where the disk

can perform I/O at each RPM level and can dynamically

transition from one RPM to another based on a control pol-

icy [5]. We model the transition time characteristics of our

drives using a linear-fit of the transition time characteristics

of two real multi-RPM drives - the Sony Multi-Mode disk

drive [14] and the Hitachi Deskstar 7K400 [9]. The power

consumed due to the transition between any two RPM lev-

els is assumed to be the average of the power consumption

at those two levels. As with previous work on multi-RPM

drives, we assume that RPM transitions are done in steps

and our default model assumes a total of 10 RPM-levels be-

tween 6000 RPM and 15,000 RPM with an RPM step-size

of 1000 RPM.

4. Disk Drives and Sensitivity based Optimiza-

tion

4.1. Basics of Disk Drives

A hard disk drive consists of a stack of circular platters

that store data, which are mounted on a central spindle and

rotated by a Spindle Motor (SPM) at a certain Rotations Per

Minute (RPM). The data on the platter surface is organized

into sectors and tracks and is read from and written to us-

ing read/write heads. The heads are mounted on sliders,

which are connected to a centrally controlled actuator/arm

assembly, whose motion is effected by the Voice-Coil Mo-

tor (VCM). In addition to these two electro-mechanical

components, modern disk drives also have a variety of on-

board electronics such as data channels, motor drivers, and

a cache.

The main operating modes of a disk drive are: (i) seek:

movement of the disk head (and arms) to desired location

on a platter, effected by the VCM; (ii) rotational latency:

the time during which the desired sector rotates under the

head; (iii) transfer: the data is read from or written to the

platters; (iv) idle: the disk is not servicing a request, and is

waiting to service future requests. The platters continue to

spin during this phase and therefore consume power.

Since the bulk of the power in a disk drive is consumed

by the electro-mechanical components, most storage power

management schemes attempt to reduce the power con-

sumed by these parts of the drive.

4.2. Sensitivity and Energy-Delay Opti-
mization

The goal of the energy-delay optimization problem is

to maximize energy savings subject to a given delay con-

straint. Let us assume that there are two knobs in the

system, x and y, both of which affect energy and delay.

Then, the energy-delay optimization problem can be for-

mally stated as:

min Energy(x, y) s.t. Delay(x, y) = D0

where D0 is the delay constraint (i.e., performance guaran-

tee). Although the knobs can be static or dynamic, since our

goal is on runtime power management, we will restrict our

discussion to dynamic knobs in this paper.

The sensitivity based optimization technique [12, 23]

can be used to solve this optimization problem. The key

idea behind this technique is that energy-efficiency can be

attained when the ratio of sensitivities (partial derivatives)

of energy (E) to delay (D) with respect to each knob is bal-

anced. For knobs x and y, we can state this mathematically

as:

∂E

∂x
∂D

∂x

=

∂E

∂y
∂D

∂y

(1)

We now briefly explain how we can identify such optimal

points. Let θi denote the “potential for energy reduction”

using knob i at a given instant. θi is the ratio of the percent-

age change in energy to a percentage change in delay using

knob i at that particular instant. For example, θi = 2 means

that a 2% change in energy consumption will produce a 1%

change in performance if i is used as the knob at the given

instant. This means that, among the various knobs in the

system, turning down the knob that has the highest value of

θi would provide the best opportunity for energy savings.

Another key point to note is that θi depends upon the actual

energy (E) and delay (D) of the system, which vary over

time based on the characteristics of the workload using the

system. Therefore, θi varies over time as well.

For the knobs x and y, we can express θx and θy as:
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Let us define “Tradeoff Factor” (Tf ) as the ratio of the po-

tentials for energy reduction of the knobs:

Tf = θx : θy (4)

If we wish to operate the system at an optimal point, where

we satisfy a specific delay constraint with minimal energy,

we would like to have:

Tf = θx : θy = 1 (5)

Substituting equations 2 and 3 in equation 5 yields equation

1. Sensitivity-based optimization attempts to achieve this

balance by turning down the knob that has the highest value

of θi or by turning up the knob that has the smallest value

of θi.

4.3 Sensitivity Based Optimization of
Disk Drives

In order to apply sensitivity based optimization to disk

drives, we first need to select the set of dynamic knobs that

we wish to use. In this paper, we use two dynamic knobs:

SPM speed (RPM) and the VCM speed. Controlling the

speed of these two motors can be achieved by varying their

voltages. We do not use disk spindowns because all the

workloads that we use this study have insufficient idleness

for us to be able to apply this technique directly. Idleness

can be increased by using our power management scheme in

conjunction with replication and migration techniques [15,

2, 13].

Given these two knobs, the energy-delay optimization

problem for disk drives for a given performance constraint

D0 can be written as:

min Energy(SPM, VCM) s.t. Delay(SPM, VCM) = D0

Let us denote the potential for energy reduction due to the

SPM and the VCM speeds as θSPM and θV CM .

4.4 Crafting Power Management Policies

Since θi varies over time for a given workload, we need

to periodically measure the energy and delay, and compute

the ratio of sensitivities (∂E/∂i)/(∂D
/

∂i) to the knob i. In

our power management policies, we measure the energy and

delay and compute the sensitivities after every n requests to

the storage system. We call this n-request window as the

“sample window”. (We study the impact of varying the size

of the sample window in Section 5.2). To compute the sen-

sitivities, we vary the value of each knob by a small amount

above and below its current setting and determine the cor-

responding change in E and D as a result of this variation.

We then input these new RPM and VCM speed values into

analytical disk power and performance models to estimate

the change in energy and delay. We use analytical models

that are equivalent to those developed by Zhang et al. [21].

Once we have obtained the values of θSPM and θV CM and

given a particular delay constraint, we can implement power

management policies for the storage system.

We have implemented a Sensitivity-Based Power Man-

agement scheme (which we call SBPM) that works as fol-

lows. We profile a workload running on the storage system

for k I/O requests without performing any power manage-

ment and calculate the average response time of the I/O re-

quests over this window. During this phase, we set the RPM

of the disk drives to those used in their original storage sys-

tem configurations given in Table 1. In our experiments,

we choose k to be the first 100,000 I/O requests of each

workload. We use this average response time value as the

basis for the performance constraint (D0) to use in the op-

timization. (Note that a data center manager may craft this

performance constraint in a different way for her SLA. For

example, the value for D0 might be arrived at through nego-

tiations with the client whose application is to be hosted on

her servers, or she may choose a different performance met-

ric, such as, the maximum or minimum response time of the

I/O requests over the profiling window). In addition to D0,

the SBPM scheme also uses two additional thresholds that

specify the range of acceptable deviation in performance of

the storage system from D0: an upper threshold (UT ) and a

lower threshold (LT ), which are expressed as a percentage.

We then measure the average response time of the stor-

age system (RT ) every n requests and calculate θSPM ,

θV CM , and Tf . Based on the values of RT , D0, UT , and

LT , there are three possibilities:

• 100(RT−D0

D0

) > UT : This condition indicates that the

storage system is operating below the acceptable level

of performance and therefore we need to turn up the

knob settings to improve performance.

• 100(RT−D0

D0

) < LT : This condition indicates that the

storage system is operating at higher performance than

the desired level and therefore we can save energy by

turning down the knob settings.

• If the difference in the response times is between LT
and UT , then no power management actions are taken.

For the first two cases, the magnitude and direction of the

SPM and VCM knobs are modulated based on the ratio of

the potentials for energy reduction such that we bring Tf to

one.

We compare the effectiveness of SBPM to the power

management heuristic proposed by Gurumurthi et al. for

DRPM drives [5]. That heuristic focuses solely on the RPM

knob for power management and we denote this heuris-

tic as DRPM. DRPM is an ad hoc policy implemented at

two-levels in the system: a performance-centric component

that is implemented at the storage array controller and an

energy-centric component at the disks. The array controller

measures the average response time of the storage system



across n-request sample windows and compares the differ-

ence in the response times between successive windows. As

with SBPM, DRPM also uses upper and lower performance

thresholds. In DRPM, the difference in response times be-

tween two consecutive windows is compared against pre-

defined values of UT and LT . If the difference is greater

than UT , then all the disks are ramped up to the full-speed

RPM. If the difference is less than LT , then disks are al-

lowed to lower their RPMs to a level that is proportional to

the difference between the response-time change and LT .

This information is conveyed to the disks via a watermark

value. The disks periodically check whether they have any

I/O requests pending in their input queues and scale down

their RPM by one step if the queue is empty to reduce en-

ergy consumption, eventually saturating their RPM at the

watermark level.

In our experiments, we use the same values of UT and

LT for both SBPM and DRPM.

5. Results

We present two sets of experimental results. The first set

of results show the energy and performance characteristics

of SBPM for the four workloads and compare them to the

original storage systems of each of the workloads (which

we denote as Baseline) and those that use the DRPM power

management scheme. In the second set of results, we per-

form a sensitivity analysis of SBPM to various storage sys-

tem and power management policy parameters. The default

parameters used in the experiments are given in Table 2.

Parameters Values in Experiment

RPM Step-Size 1000

Upper Threshold 15%

Lower Threshold 5%

Sample Window size 10000

Table 2. Default parameters used in the ex-

periments.

5.1. Energy and Performance Characteris-
tics of SBPM

The energy consumption characteristics of SBPM,

DRPM, and Baseline are given in Figure 1 and the corre-

sponding performance results are given in Figure 2. Figure

1 shows the energy consumption of the two power man-

agement schemes normalized to the Baseline system. We

present the performance results in Figure 2 as Cumulative

Distribution Functions (CDFs) of the response time. CDFs

show the fraction of I/O requests whose response times are

less than or equal to a given value on the x-axis. CDFs allow

us to visualize the scenario where a large number of I/O re-

quests may be experiencing relatively short response times

whereas a few other requests may have very long response

times.
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Figure 1. Energy consumption of DRPM and
SBPM normalized to the Baseline energy con-

sumption.

When we look at Figure 1, we can see that SBPM re-

duces the energy consumption of the storage system from

the baseline. The energy savings for Financial, Websearch,

TPC-H, and Openmail are 21.31%, 26.14%, 4.34%, and

30.75% respectively. SBPM also delivers performance com-

parable to Baseline for Financial, Websearch, and TPC-H as

shown in Figure 2. Since we choose to allow up to a 15%

degradation in the average response time to save energy (via

the UT parameter), the SBPM CDFs are slightly shifted be-

low the Baseline CDFs.

However, we find that DRPM consumes more energy

than Baseline for all four workloads and its performance

is worse than SBPM. The energy result is surprising given

that this heuristic has been shown in prior work to be effec-

tive for managing power [5, 11]. The main reason for this

difference is due to our assumptions about the time taken

to transition between RPM levels. The prior work assumed

the transition times between RPMs to be in the millisecond

range. However real multi-RPM drives [9, 14], which we

use as the basis for our transition time model, have latencies

in the order of seconds to shift between RPM levels. This

order of magnitude difference in the transition latencies has

a profound impact on the performance and energy costs of

shifting RPM levels. We will provide a deeper analysis of

why SBPM fares better than DRPM shortly.

One factor that has a direct impact on performance is the

inter-arrival time of the I/O requests. We find that the av-

erage inter-arrival times of Financial, Websearch, TPC-H,

and Openmail to be 8.19 ms, 2.96 ms, 8.76 ms, and 1.18 ms

respectively. Indeed, as we can see in Figure 2, both SBPM

and DRPM for those workloads with very short inter-arrival

times (Websearch and Openmail) experience a larger re-

duction in performance than those with longer inter-arrival

times. However, beyond this high-level trend, although both

power management schemes use the same values for UT
and LT , SBPM consistently outperforms DRPM, thereby
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Figure 2. Performance of SBPM, DRPM, and

Baseline.

suggesting that the latter might be making more sub-optimal

RPM transition decisions and hence incurring larger perfor-

mance penalties and energy overheads.

In order gain a deeper understanding of the relative dif-

ferences between SBPM and DRPM, we use the sensitivity-

based optimization as an analysis tool. As we discussed

in Section 4.2, in order to operate the storage system in an

energy-efficient manner, we need Tf = (θSPM/θV CM ) =
1 at all times. Therefore, an analysis of the variation in the

Tf value of the storage system can provide insights into the

energy-efficiency of the system. A system whose Tf value

stays closer to one will be more energy-efficient than one

whose Tf value varies over a larger range. The variation in

the Tf values for SBPM and DRPM for each workload are

given in Figure 3, and the variation in the two potentials of

energy reduction - θSPM and θV CM - are shown in Figure

4.

In Figure 3, the first row of graphs correspond to the Tf

values for DRPM and the second row corresponds to SBPM.

We can observe that the Tf values for DRPM oscillate sig-

nificantly without ever reaching a steady-state value. This

is due to the design of the DRPM heuristic, where the pol-

icy is to ramp up the RPM of all the drives to full speed

if the performance degradation exceeds UT . As a result

of such transitions to the highest RPM, the response time

of the storage system improves significantly over the given

sample window and, in many cases, the response time mea-

surement in the next window exceeds the lower threshold

LT . When the array controller observes this, it lowers the

watermarks by a large value and the disks pull down their

RPMs in order to reduce energy consumption. This results

in excessive performance degradation and disks are forced

to ramp back up again to full speed in the following sam-

ple window. As a result of these RPM oscillations, coupled

with the performance and energy costs of transitioning be-

tween RPMs, the use of the DRPM policy leads to exces-

sive energy consumption and poor performance, especially

for those workloads that have very short inter-arrival times

between I/O requests.

SBPM, on the other hand, is able to better balance the

system by using both the SPM and VCM as knobs and we

can see that the Tf values of all the workloads using this

policy stay closer to one. Even for the Financial workload,

which starts out at a sub-optimal state with a high Tf value,

SBPM quickly balances the system and subsequent Tf val-

ues stay close to one. This process of balancing is shown in

Figure 4, where, although θV CM starts out at a lower point,

both the θSPM and θV CM values are equalized after about

50 sample windows. This equalization of the potentials of

energy of the two knobs is also clearly visible for the Web-

search workload.

For TPC-H, we can see that there are occasional spikes in

the Tf values of SBPM. Although the frequency and mag-

nitude of these spikes are lower than DRPM, such spikes

lead to short durations of sub-optimal behavior. As Figure

4 shows, the θV CM values for TPC-H oscillate over a larger

range in order to keep the system in balance. The reason

for this behavior is due to the characteristics of disk seeks

in this workload. We find that there is substantial varia-

tion in seek activity across the sample windows. For exam-

ple, during sample windows 118-127, we find that seek time
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Figure 3. Comparison of Tf , the ratio of sensitivities, for DRPM and SBPM. For SBPM, Tf is close to
the optimal value of 1 most of the time.

constituted 4% of the average response time whereas seeks

accounted for 20% of the response time during the next ten

sample windows. In order to quantify this behavior, we cal-

culated the coefficient of variation in the seek time as a pro-

portion of the overall response time over all the sample win-

dows of each workload. The coefficient of variation is a nor-

malized measure of dispersion in a probability distribution

and is mathematically expressed as a percentage, 100(σ/µ),
where µ and σ are the mean and standard-deviations of the

distribution respectively. We find that TPC-H has the high-

est coefficient of variation (62.01%), while those of Finan-

cial, Websearch, and Openmail are 18.57%, 10.88%, and

20.84% respectively. Since the VCM speed has a direct im-

pact on the seek time and the impact of seeks on the re-

sponse time varies significantly for this workload, the Tf

of this workload is occasionally thrown off balance and the

VCM knob is made to compensate for this and bring Tf

closer to one. As a result of these frequent compensating

actions, a large amount of energy is expended and therefore

the energy savings using SBPM for TPC-H is lower than

those for the other three workloads as shown in Figure 1. A

similar region of deviation in seek behavior is seen for the

Openmail workload at the 65th sample window in Figure 3.

However, in general, SBPM is able to operate the storage

system closer to the Tf = 1 point and therefore provides

more energy savings and delivers higher performance than

DRPM.

5.2. Sensitivity Analysis

Having seen the benefits of SBPM, we now analyze its

behavior under a variety of system and policy parameters.

We perform three sensitivity analysis experiments. The

first experiment studies the impact of the RPM step-size

on the effectiveness of SBPM. The second and third experi-

ments explore the impact of two policy related parameters -

the sample window size and the values of the performance

thresholds UT and LT respectively.

5.2.1 Impact of RPM Step-Size

The RPM step-size can impact the effectiveness of power

management. A smaller step-size gives finer granularity

of control over energy and performance, but may be more

challenging from the engineering viewpoint, whereas larger

step-sizes are easier to implement but provide less control.

To evaluate the impact of this parameter on SBPM, we con-

sider a finer-grained step-size of 500 RPM and a coarser-

grained step-size of 2500 RPM. The results from this exper-

iment are given in Figure 5. Each set of bars in the Figure

correspond the energy consumption of each step-size nor-

malized to the default 1000 RPM step-size.

As we can see from Figure 5, using finer or coarser step-

sizes does not significantly change the energy behavior. We

also find the relative performance of all the configurations

to be very similar and therefore do not show the response

time CDF graphs. This result concurs with a previous study

on DRPM drives that used an oracle (i.e., perfect) disk idle-

ness predictor to evaluate the impact of RPM step-size [5].



Financial: 
�

SPM

0

0.5

1

1.5

2

2.5

3

1 27 53 79 105 131 157 183 209 235 261 287 313 339 365 391 417 443 469 495 521

Sample window

V
a

lu
e

Financial: �VCM

0

0.5

1

1.5

2

2.5

3

1 27 53 79 105 131 157 183 209 235 261 287 313 339 365 391 417 443 469 495 521

Sample window

V
a

lu
e

Websearch: �SPM

0

0.5

1

1.5

2

2.5

3

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93

Sample window

V
a

lu
e

Websearch: �VCM

0

0.5

1

1.5

2

2.5

3

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93

Sample window

V
a
lu

e

TPC-H: �SPM

0

0.5

1

1.5

2

2.5

3

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401

Sample window

V
a

lu
e

TPC-H: �VCM

0

0.5

1

1.5

2

2.5

3

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401

Sample window

V
a
lu

e

Openmail: �SPM

0

0.5

1

1.5

2

2.5

3

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289 305 321

Sample window

V
a

lu
e

Openmail: �VCM

0

0.5

1

1.5

2

2.5

3

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289 305 321

Sample window

V
a
lu

e

Figure 4. Variation in θSPM and θV CM for

SBPM.

Although SBPM does not use any oracle, we still achieve

energy savings across different RPM step-sizes.

5.2.2 Impact of Sample Window Size

The sample window size is a policy related parameter

whose granularity can affect performance and energy. Too

small a sample window can lead to frequent changes to the

knob settings, which can have adverse consequences on per-

formance and energy consumption. On the other hand, if

the sample window is too large, then the system will be
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Energy consumption. The values are normal-

ized to the 1000 RPM step-size configuration.

less responsive to workload variations and we might have

to resort to large knob modulations to re-balance the system

which can again entail performance and energy penalties.

In order to study the effect of this parameter on SBPM, we

consider two smaller sample windows of 1000 and 5000

I/O requests and two larger windows of 25000 and 50000

requests. The performance results corresponding to this ex-

periment are given in Figure 6 and the energy results in Fig-

ure 7. Each set of bars in Figure 7 correspond the energy

consumption of each sample window normalized to the de-

fault 10000-request window.

In our system, one of the most important factors that in-

fluences the choice of the sample window size is the tran-

sition time between RPM levels. In our disk drive model,

the time taken to move from one RPM level to another is

in the order of seconds, while the inter-arrival time between

I/O requests for all our workloads are in the order of mil-

liseconds. Since transitioning between RPM levels incurs

performance and energy costs, it is important to amortize

this cost over a large number of I/O requests.

Among the four workloads, Openmail has the shortest

inter-arrival time between I/O requests (1.18 ms) and there-

fore its performance is most sensitive to RPM transitions.

We find that the use of shorter sample windows leads to se-

vere performance degradation and the system is overloaded

within a short period of time. As a result of this behavior,

we omit the data points for Openmail in the graphs. (Al-

though a real system would handle such an overload con-

dition at a higher level, for example, by dropping connec-

tions to the server, we do not attempt to modulate the ar-

rival rate of the I/O requests to the storage system in this

study. However, in a real system, we expect our power man-

agement scheme to be used in conjunction with admission-

control schemes at the higher level to handle the overall

system load). Websearch also has very short inter-arrival

times (2.96 ms) and therefore using very small sample win-

dows leads to significant performance degradation. Since

the other workloads have longer inter-arrival times, their
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performance is less sensitive to the sample window size.

When we look at Figure 7, we can see that the smaller

sample window sizes (1000, 5000, and 10000) are compa-

rable in their energy consumption trends. The energy varia-

tions between the various configurations for each workload

are within 10%. An interesting case is the TPC-H workload,

whose energy consumption is significantly higher for the

1000-request sample window. The reason for this is due to

a combination of two factors: (i) the transition time between

RPM levels, and (ii) significant variations in the seek time.

As we mentioned in Section 5.1, TPC-H exhibits significant

variation in its seek characteristics compared to the other

workloads and hence its θV CM varies significantly. For the

1000-request sample window, we find that the coefficient of

variation of the seek time as a proportion of the overall re-

sponse time for TPC-H is 55.6%, compared to 15.92% and

19.88% for Financial and Websearch respectively. There-
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ues are normalized to the 10000-request sam-
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fore, in each sample window, in addition to any latencies

incurred due to RPM transitions, there is also energy ex-

penditure due to VCM speed modulations, both of which

combine to diminish the effectiveness of SBPM in reducing

the energy consumption. The use of the larger 25000 and

50000-request sample windows, on the other hand, reduces

the effectiveness of SBPM in adapting to the workload con-

ditions and results in higher energy consumption as shown

in Figure 7.

To summarize, when deploying a system that uses

SBPM, it is important to choose sample windows that are

large enough to amortize the cost of transition times while

still being responsive to changes in the workload conditions.

5.2.3 Impact of Performance Thresholds

The choice of the performance thresholds UT and LT
can have a significant impact on the energy-efficiency of

the storage system. We experimented with two additional

settings for these parameters: (UT =8%, LT =5%) and

(UT =15%, LT =10%). The former setting biases the sys-

tem towards higher performance whereas the latter is geared

towards saving more energy. In both these cases, we found

that the relative differences between SBPM and DRPM re-

main invariant and SBPM provides higher energy savings

than DRPM for the same parameter settings. In the interest

of space, we omit these graphs in the paper.

6. Conclusions and Future Work

Power is a major problem in data centers and storage sys-

tems account for a sizable portion of the overall energy con-

sumption. However, many applications that run on servers

housed in data centers also demand high performance. It

is therefore important to develop techniques that can meet

the performance demands of these applications while maxi-

mizing the energy savings. In this paper, we have presented



one such technique. Our approach makes use of sensitivity-

based optimization to dynamically modulate various knobs

in the storage system, such as the disk RPM and the VCM

speed to adapt the storage system to varying workload con-

ditions and save energy. We have shown how to craft power

management policies based on sensitivity-based optimiza-

tion and have demonstrated that our SBPM approach can

provide significant energy savings for several server work-

loads. We have also shown that our approach is superior to

the previously proposed DRPM heuristic for dynamic RPM

modulation, especially for realistic RPM transition laten-

cies. Our sensitivity analysis demonstrates the effectiveness

of SBPM in reducing the storage energy consumption for a

variety of RPM steps-sizes, sample window sizes, and per-

formance threshold settings.

In future work, we plan to explore how sensitivity-based

power management can be used in conjunction with

idleness creation techniques [15, 2, 13] to save even more

energy. We also plan to explore the use of sensitivity-based

power management for other knobs within the storage

system such as the disk and array controller cache sizes.
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