
A Benchmark Suite for Unstructured Data Processing

Clinton Wills Smullen, IV Shahrukh Rohinton Tarapore Sudhanva Gurumurthi

Department of Computer Science
University of Virginia

Charlottesville, VA 22904
{cws3k,shahrukh,gurumurthi}@cs.virginia.edu

Abstract

A large fraction of the data that will stored and accessed
in future systems is expected to be unstructured, in the form
of images, audio files, etc. Therefore, it is very important
to design future I/O subsystems to provide efficient storage,
and access to these vast and continuously growing reposi-
tories of unstructured data. To facilitate system design and
evaluation, we first need benchmarks that capture the pro-
cessing and I/O access characteristics of applications that
operate on unstructured data. In this paper, we present an
unstructured data processing benchmark suite that we have
developed. We provide detailed descriptions of the work-
loads in the benchmark suite and discuss the larger space
of application characteristics that each of them capture.

Keywords: Benchmarks, unstructured data, I/O.

1 Introduction

In recent years, storage has undergone a major transfor-
mation. Due to advances in magnetic recording technol-
ogy, the cost of storage has dropped dramatically, from over
$4/Megabyte in 1990, to less than $0.001/Megabyte today
[14]. These trends have led to disks being considered as
commodity components, and it is now common to see disk
drives that have capacities of several tens or even hundreds
of Gigabytes. This growth in storage, coupled with equally
dramatic technological advances in processor design, have
paved the way for relatively inexpensive, but computation-
ally powerful computers. One of the most significant out-
comes of these technological advancements is the massive
growth in the amount of digital data.

According to a recent study by IDC [10], a leading Infor-
mation Technology market research and analysis firm, the
amount of data that would be captured, stored, and repli-
cated worldwide (what they refer to as the “digital uni-
verse”) would grow from 161 exabytes in the year 2006,

to over 988 exabytes in 2010 (1 exabyte = 1018 bytes). Two
key findings of this study are:

• A majority of this data would be in the form of im-
ages, captured from a large number of devices, such
as digital cameras, camera phones, surveillance cam-
eras, and medical imaging equipment. Most of this
data would need to be stored and managed in central-
ized systems within organizations. The study indicates
that, by 2010, although enterprises will create, capture,
and replicate only 30% of the digital universe, they will
have to store and manage over 85% of all data in it.

• Over 95% of the digital universe is unstructured data
(e.g., image and music files, e-mail). According to this
study, 80% of all stored data of organizations is un-
structured. This growth trend is expected to continue
into the future, thereby mandating the need for efficient
ways of searching, structuring, and providing security
for unstructured data [10]. Similar trends about the
importance of unstructured data processing have also
been reported by other market research and advisory
firms, such as, the Gartner Group and the Butler Group
[36].

Unstructured data processing is therefore a very impor-
tant emerging class of applications. There are a number of
unstructured data processing applications that are already
in use today. These applications include text searches (ex-
act and approximate searches) [5], content-based searches
of image, video, and audio files [26], and data fusion [19].
Although some of these applications are used in relatively
niche domains (e.g., geo-spatial data fusion is used in ur-
ban planning and forestry [35]), the core methods used in
these applications are expected to become commonplace
across a wider range of applications in the future. For ex-
ample, Content-Based Image Retrieval (CBIR) [26], which
is very processing and I/O intensive, is now used in the field
of medicine for querying biomedical digital libraries [18].

1

However, CBIR has been identified by Intel as an important
emerging application even for the home user [7], say, for
content-based querying of digital photo collections stored
on her personal computer, or on a photo repository, such as,
FlickrTM. This growing demand for unstructured data man-
agement has already started creating a market for hardware
appliances that are specifically designed for searching and
processing unstructured data [8, 32, 30].

Given this shift in momentum towards unstructured data
processing, it is imperative to develop benchmarks that can
aid in the design and evaluation of future systems that would
have to run these applications efficiently. A common feature
across several unstructured data processing applications are
that they are very I/O intensive, and therefore the place
heavy demand on the storage system to deliver high per-
formance. Moreover, unstructured data processing work-
loads exhibit a variety of unique data access patterns that
are not sufficiently captured by traditional server I/O work-
loads, such as, the TPC [33] benchmarks. Therefore, in
order to design storage systems for this important emerging
class of applications, we need a benchmark suite that can
capture their processing and I/O characteristics. In this pa-
per, we present a benchmark suite that we have developed
for unstructured data processing.

Our benchmark suite consists of four workloads:

• Edge detection

• Proximity search

• Data scanning

• Data fusion

The edge detection workload applies the Smallest Uni-
valve Segment Assimilating Nucleus (SUSAN) [27] algo-
rithm on a set of images from the MIT CBCL Face Recog-
nition Database [22]. The proximity search application per-
forms the k-Nearest Neighbor [17] search algorithm over a
database of meteorological records [16]. Data scanning ap-
plies the Boyer-Moore string matching algorithm [2] over
a synthetically generated file-system of unstructured files
and captures the behavior of an anti-virus engine [29]. Data
fusion implements pixel-based fusion of a collection of im-
ages from the NASA World Wind database [24].

In this paper, we present details about the implementa-
tion of each of these workloads, and discuss how work-
load models a larger application space. These bench-
marks capture the core operations that are common across
a wide spectrum of unstructured data processing applica-
tions. Each of these core operations encapsulate an unique
processing and data access pattern. These benchmarks are
valuable to computer architects and system designers, espe-
cially those who work in the area of storage system design.

The outline for the rest of the paper is as follows. The
next section discusses related work and Section 3 presents

a detailed description of the benchmark suite. Section 4
concludes this paper.

2 Related Work

A large number of benchmarks are available for evaluat-
ing different aspects of computer performance. Some pop-
ular benchmarks include: SPEC [28] – for evaluating pro-
cessor and cache performance, STREAM [21] – for evalu-
ating memory system performance, and IOMeter [15] – for
benchmarking I/O performance. Benchmarks also exist for
evaluating particular classes of systems, e.g., TPC [33] and
EEMBC [31], which target server and embedded platforms
respectively. None of these benchmarks specifically capture
the characteristics of unstructured data processing.

Recently, there have been a number of efforts to create
benchmarks for specific applications. These applications
include bioinformatics [1, 20], biometrics [6], and data min-
ing [23]. Our unstructured data processing benchmark suite
is intended to contribute to this growing pool of benchmarks
for emerging workloads.

3 Benchmark Description

Our primary goal in assembling this workload suite was
to identify and study a wide range of unstructured data pro-
cessing applications, distill their key processing and I/O ac-
cess characteristics, and compose workloads that embody
these characteristics. To identify these workloads (and their
associated datasets), we did extensive literature surveys and
also talked to experts in various fields such as, scientific
computing, business analytics, and computer security. We
were also careful in crafting the workloads in a such a way
that they could be easily ported onto an architecture simu-
lator and run to completion within a reasonable amount of
time.

We have identified four workloads that capture a wide
spectrum of applications within the domain of unstructured
data processing. We now provide a brief description of
each of these workloads and highlight the larger application
space that each of them represent. The name that we coined
for each of these workloads is given in parenthesis.

• Edge Detection (susan):

Edge detection is a basic operation that is used in appli-
cations, such as content-based image recognition [26],
and speech recognition [12]. Edge detection is repre-
sentative of a class of applications that highlight or col-
lect points on high contrast in the input. These points
of interest can be the edges of an object in an image,
or individual words in a conversation (in the case of

2

speech recognition systems). The primary use of edge
detection is as a filter of less relevant information in
the data, leaving only the structural properties of the
data that are of interest to the user.

We model this space of applications by composing a
workload that performs the edge detection operation
on images. The objective of this workload is to
detect and extract the facial features of subjects
(which are edges) from a set of images. The edge
detection is performed using the Smallest Univalve
Segment Assimilating Nucleus (SUSAN) algorithm
[27]. SUSAN is a low level image processing suite,
which can perform edge detection, corner detection,
and structure preserving noise reduction. A non-linear
filtering approach is taken to associate a local region
with each pixel of similar intensity. Our dataset
consists of a set of images from the MIT CBCL Face
Recognition Database [22]. In this workload, the
processor requests an image from the storage system,
performs the edge detection algorithm, and then
requests the next image.

• Proximity Search (nn):

Given a search criteria and a distance function a prox-
imity search will return any occurrence of the search
criteria along with any neighbors as defined by the
distance function. Proximity searches contrast point-
based searches in that the latter will return only an ex-
act match of the search criteria, if it exists, and nothing
more. There are many variants of proximity searches,
such as k-nearest neighbor search and ε-approximate
nearest neighbor search [17], but they all perform the
same task: classifying a specific point in the search
space with respect to its neighbors. Proximity searches
are often used in Internet search engines [3], and also
in content-based search applications, such as, song in-
tersection [4], which is used to search for songs based
on the acoustic properties of an input song, and scene
completion [13], which is a technique to seamlessly
patch a photograph by automatically detecting and us-
ing parts from other images that preserve the semantics
of the original image.

Our workload implements the k-nearest neighbor
search procedure. The procedure works as follows:
given a search criteria and non-negative integer k,
the nearest neighbor search returns the k database
records that match or come closest to matching the
specified criteria. We use a database from the National
Oceanic and Atmospheric Administration (NOAA)
National Hurricane/Tropical Prediction Center as
our dataset [16]. This database contains information
about tropical cyclones in the North Atlantic for a

period of 155 years, starting from the year 1851, with
storm progressions recorded at six-hour intervals.
Each record in this database has fields for the date
and time of the storm, the latitude and longitude
of the storm center, storm surge levels, and variety
of barometric data. For a given (latitude,longitude)
pair, we compute the k tropical storms that occurred
closest to the given coordinate. The search procedure
scans through the entire database, calculating the
Euclidean distance between the search coordinates
and the (latitude,longitude) pair of each database
record, maintaining a list of the k closest matches. We
resort to a full scan of the database for each query,
since scanning has been shown to be efficient for such
multi-attribute searches [25]. The workload reads in
the entire database from disk and performs the search
as the records come in, maintaining the k closest
matches. In our workload, we set k=3.

• Data Scanning (malware):

This workload captures the behavior of text search en-
gines, which scan through large unstructured datasets
to find patterns of interest. One large class of appli-
cations that perform such scan-based searches are se-
curity software, such, as anti-virus engines, spyware
and rootkits scanners, and intrusion-detection systems.
These software use a technique known as signature-
matching, where the bytes of a file are compared
against a set of known-to-be malicious byte-sequences,
known as “signatures” [29]. In fact, malware detection
is considered a significantly important application that
there are co-processors that are commercially available
that are designed specifically for signature-matching
[30].

The key characteristic of malware scanning applica-
tions is that they scan a large amount of unstructured
file data against a database of signatures to detect the
presence of specific byte-sequences. We implement
this form of signature-matching using the efficient
Boyer-Moore string searching algorithm [2]. We
use a database of randomized signatures where each
signature is, on average, 64 bytes in length. The
dataset to be scanned is randomly generated with
each file being 256 KB, on average. Exponential
distributions are used to determine whether a file has
either a partial signature or a complete signature. The
partial signatures prevent the Boyer-Moore algorithm
from achieving its best-case running time. Only one
file in the entire dataset has a real signature. An
instance of the Boyer-Moore algorithm is run for
each signature. Data streaming is provided by the
use of circular buffer to hold the section of the file

3

currently under inspection. As data is passed over by
every instance of the Boyer-Moore algorithm, data
is removed from the circular buffer and replaced by
new data from the file. If any one of the signatures
matches, the name of the file is returned, and we skip
to the next file. The Boyer-Moore algorithm generates
bad-character and good suffixes tables, for which the
size depends on the size of the signature set. Thus
there is significant bookkeeping overhead associated
with each execution of the algorithm in addition to the
data to be scanned.

• Data Fusion: (geo):

Data fusion is a technique that is used to obtain infor-
mation originating from different sources by combin-
ing their individual data into a composite entity. There
are many examples of the use of data fusion in high
performance computing, such as in strategic defense
[9], where data coming in from multiple sources needs
to be evaluated to make decisions in real-time. In
medicine, image fusion techniques are used in Mag-
netic Resonance Imaging (MRI) to build an accurate
three-dimensional model of a subject from hundreds
of “slice” images [34]. Geo-spatial data fusion is used
for analyzing changes to a particular geographical re-
gion using data from sources (e.g., different satellite
images), possibly gathered at different points of time.
Geo-spatial data fusion is used to aid urban planning,
in forestry, and in disaster relief, e.g., to assess damage
due to flooding [35].

Data fusion is becoming a very popular Internet-based
application, especially in the context of web-based
maps (e.g., Google MapsTM). In this application,
roadmap data is combined with other information,
such as, satellite images and traffic updates, to present
a wealth of information to the user about a particu-
lar geographical region. Given the popularity of web-
based maps, it is highly conceivable that future ver-
sions of these applications would use much richer con-
tent, such as, images and videos from traffic-cameras
and sensors to provide real-time detailed visualiza-
tions. The servers that run such an application would
need to support very efficient data fusion capabilities,
which will place a heavy demand on the storage system
to deliver the required data streams to the server pro-
cessor(s), where the fusion operations are performed
to provide the composite information requested by the
user.

Our workload implements pixel-based geo-spatial data
fusion [11] on a dataset that consists of several satel-
lite images, which we obtained from the NASA World
Wind database [24]. For a given pair of images,

the workload performs a sequence of three processing
steps: (i) image enhancement, (ii) edge detection, and
(iii) pixel-based image fusion. Image enhancement ap-
plies a combination of low-pass and high-pass filters
to the images, which are then fed into the edge detec-
tion step, which uses the same algorithm as our susan
workload to extract the edges of the images. The third
processing stage combines common pixels in the two
images to produce a new image that highlights the dif-
ferences between the two that are input to the work-
load.

4 Conclusions

We have presented four benchmarks that capture the pro-
cessing and data access patterns of the core operations that
are used in a wide spectrum of unstructured data processing
applications. These applications are I/O intensive and place
heavy demands on the storage system. We plan to release
these benchmarks to the research community shortly.

5 Acknowledgements

This research has been supported in part by NSF
grants: CAREER Award CCF-0643925, CNS-0627527,
CNS-0551630, and a grant from HP.

References

[1] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob,
C.-W. Tseng, and D. Yeung. BioBench: A Benchmark Suite
for Bioinformatics Applications. In Proceedings of the In-
ternational Symposium on Performance Analysis of Systems
and Software (ISPASS), pages 2–9, March 2005.

[2] R. Boyer and J. Moore. A Fast String Searching Algorithm.
Communication of the ACM, 20(10):762–772, 1977.

[3] S. Brin and L. Page. The Anatomy of A Large-Scale Hy-
pertextual Web Search Engine. In Proceedings of the World
Wide Web Conference (WWW), pages 107–117, April 1998.

[4] M. Casey and M. Slaney. Song intersection by approximate
nearest neighbor search. In Proceedings of the International
Conference on Music Information Retrieval (ISMIR), pages
144–149, October 2006.

[5] R. Chamberlain, M. Franklin, and R. Indeck. Exploiting Re-
configurability for Text Search. In Proceedings of the Work-
shop on High Performance Embedded Computing (HPEC),
September 2006.

[6] C.-B. Cho, A. Chande, Y. Li, and T. Li. Workload Charac-
terization of Biometric Applications on Pentium 4 Microar-
chitecture. In Proceedings of the International Workload
Characterization Symposium, pages 76–86, October 2005.

[7] P. Dubey. Recognition, Mining, and Synthesis Moves Com-
puters to the Era of Tera. Technology@Intel Magazine,
February 2005.

4

[8] Exegy TextMiner (Whitepaper). http://www.exegy.com.
[9] G. Fountain and S. Drager. High performance real-time fu-

sion architecture. In Proceedings of the Fifth International
Conference on Information Fusion, pages 1478–1485, 2002.

[10] J. Gantz and et al. The Expanding Digital Universe - A
Forecaset of Worldwide Information Growth Through 2010,
March 2007. IDC Whitepaper.

[11] R. Gens. Geospatial Data Fusion - Seminar Talk, Geophysi-
cal Institute, University of Alaska Fairbanks, February 2004.

[12] D. Haisheng, Z. Xiaoyan, L. Yupin, and Y. Shiyuan. Ro-
bust Edge Detection Method for Speech Recognition. In
Proceedings of the International Conference on Signal Pro-
cessing (ICSP), pages 609–612, August 2004.

[13] J. Hays and A. Efros. Scene completion using millions of
photographs. ACM Transactions on Graphics (SIGGRAPH
2007), 26(3), 2007.

[14] Hitachi Global Storage Technologies - HDD Technology
Overview Charts. http://www.hitachigst.com/hdd/technolo/
overview/storagetechchart.html.

[15] Iometer. http://www.iometer.org/.
[16] B. Jarvinen, C. Neumann, and M. Davis. A Tropical Cy-

clone Data Tape for the North Atlantic Basin, 1886-1983:
Contents, Limitations, and Uses. Technical Report NWS
NHC 22, National Oceanic and Atmospheric Administration
(NOAA), 1984.

[17] J. Kleinberg. Two algorithms for nearest-neighbor search in
high dimensions. In Proceedings of the Symposium on the
Theory of Computing (STOC), pages 599–608, May 1997.

[18] T. Lehmann and et al. Content-based Image Retrieval in
Medical Applications. Methods of Information in Medicine,
43(4):354–361, 2004.

[19] LexisNexis Special Services Extends its Intelligence
Analysis Solutions with Inxight ThingFinder Professional,
April 2006. LexisNexis Press Release
http://www.lexisnexis.com/about/releases/LNSS-
Inxight.asp.

[20] Y. Li, T. Li, T. Kahveci, and J. Fortes. Workload Char-
acterization of Bioinformatics Applications on Pentium 4
Architecture. In Proceedings of the International Sympo-
sium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, pages 15–22, September
2005.

[21] J. McCalpin. The STREAM2 Home Page.
http://www.cs.virginia.edu/stream/stream2.

[22] MIT Center for Biological and Compu-
tational Learning (CBCL) Face Recogni-
tion Database. http://cbcl.mit.edu/software-
datasets/heisele/facerecognition-database.html.

[23] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik,
and A. Choudhary. MineBench: A Benchmark Suite for
Data Mining Workloads. In IEEE International Symposium
on Workload Characterization (IISWC), pages 182–188, Oc-
tober 2006.

[24] NASA World Wind. http://worldwind.arc.nasa.gov/.
[25] E. Riedel, G. Gibson, and C. Faloutsos. Active Storage for

Large-Scale Data Mining and Multimedia. In Proceedings
of the International Conference on Very Large Data Bases
(VLDB), pages 62–73, August 1998.

[26] A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain.
Content-based Image Retrieval at the End of the Early Years.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 22(12):1349–1380, December 2000.

[27] S. Smith and J. Brady. SUSAN - A New Approach to Low
Level Image Processing. International Journal of Computer
Vision, 23(1):45–78, May 1997.

[28] SPEC - Standard Performance Evaluation Corporation.
http://www.spec.org/.

[29] P. Szor. The Art of Computer Virus Research and Defense.
Addison-Wesley, 2005.

[30] Tarari Anti-Virus Content Processor.
http://www.tarari.com/antivirus/index.html.

[31] The Embedded Microprocessor Benchmark Consortium
(EEMBC). http://www.eembc.org/.

[32] The Netezza Performance Server System.
http://www.netezza.com/products/products.cfm.

[33] TPC - Transaction Processing Performance Council.
http://www.tpc.org/.

[34] R. Wasserman, R. Acharya, C. Sibata, and K. Shin. A data
fusion approach to tumor delineation. icip, 02:2476, 1995.

[35] A. Waxman and et al. Information Fusion for Image Anal-
ysis: Geospatial Foundations for Higher-Level Fusion. In
Proceedings of the International Conference on Information
Fusion (ISIF), pages 562–569 Vol. 1, July 2002.

[36] C. White. Consolidating, Accessing, and Analyzing Un-
structured Data, December 2005. Business Intelligence Net-
work article.

5

